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The ability of marine diazotrophs to fix dinitrogen gas (N2) is one of the most influential
yet enigmatic processes in the ocean. With their activity diazotrophs support biological
production by fixing about 100–200 Tg N/year and turning otherwise unavailable
dinitrogen into bioavailable nitrogen (N), an essential limiting nutrient. Despite their
important role, the factors that control the distribution of diazotrophs and their ability
to fix N2 are not fully elucidated. We discuss insights that can be gained from the
emerging picture of a wide geographical distribution of marine diazotrophs and provide a
critical assessment of environmental (bottom-up) versus trophic (top-down) controls. We
expand a simplified theoretical framework to understand how top-down control affects
competition for resources that determine ecological niches. Selective mortality, mediated
by grazing or viral-lysis, on non-fixing phytoplankton is identified as a critical process that
can broaden the ability of diazotrophs to compete for resources in top-down controlled
systems and explain an expanded ecological niche for diazotrophs. Our simplified
analysis predicts a larger importance of top-down control on competition patterns
as resource levels increase. As grazing controls the faster growing phytoplankton,
coexistence of the slower growing diazotrophs can be established. However, these
predictions require corroboration by experimental and field data, together with the
identification of specific traits of organisms and associated trade-offs related to selective
top-down control. Elucidation of these factors could greatly improve our predictive
capability for patterns and rates of marine N2 fixation. The susceptibility of this key
biogeochemical process to future changes may not only be determined by changes in
environmental conditions but also via changes in the ecological interactions.

Keywords: N2 fixation, selective grazing, environmental controls, bottom-up control, top-down control,
ecological niche, marine diazotrophs

INTRODUCTION

Biological N2 fixation has evolved early in Earth’s history (Falkowski, 1997), when the ocean
was void of oxygen (O2) and fixed N but rich in dissolved iron (Fe2+). The appearance of this
process marked the beginning of the modern ocean about 2.5 billion years ago (Canfield et al.,
2010). It is thus not surprising that the nitrogenase enzyme complex, which catalyzes the energy-
demanding reduction of the inert N2 to NH4

+ (Postgate, 1982), functions only under strictly

Frontiers in Microbiology | www.frontiersin.org 1 August 2021 | Volume 12 | Article 690200

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.690200
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.690200
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.690200&domain=pdf&date_stamp=2021-08-18
https://www.frontiersin.org/articles/10.3389/fmicb.2021.690200/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-690200 August 12, 2021 Time: 13:30 # 2

Landolfi et al. Top-Down Controls Expand Diazotrophs’ Niche

anaerobic conditions and has an elevated Fe2+ requirement
(Kustka et al., 2003). As aerobic N2 fixers evolved and
ocean chemistry changed, diazotrophs developed numerous
strategies to protect nitrogenase from O2, including elevated
respiration rates and temporal or spatial separation of oxygenic
photosynthesis from N2 fixation (Berman-Frank, 2001).

The ability to fix N2 is associated with additional energetic
costs that are generally understood to yield lower growth rates
of N2 fixing phytoplankton as compared to their non-N2 fixing
phytoplankton competitors. Key costs are the breaking of the
triple bond and reduction of N2 to NH4

+, and include the
indirect costs required to maintain a functioning nitrogenase
complex, e.g., an anaerobic intracellular environment (Großkopf
and La Roche, 2012). While diazotrophs are generally considered
facultative (Zehr and Capone, 2020), nitrate utilization seems
to be beneficial only at rather high concentrations (above
7 µmol L−1, Holl and Montoya, 2005; Pahlow et al., 2013).
We restrict our analysis here to conditions where diazotrophs
fix N2. The slow-growth assumption has long guided our
understanding of the competitive ability of diazotrophs (Redfield
et al., 1963). It has been the basic tenet of resource competition
theory (RCT) to explain coexistence patterns in idealized
systems (Tilman, 1980), to understand N-inventory regulatory
mechanisms on long time scales (Tyrrell, 1999; Gruber, 2004),
and to simulate diazotroph activity in state-of-the-art global
biogeochemical models (Ward et al., 2013; Dutkiewicz et al.,
2014; Landolfi et al., 2015, 2017, 2018; Wang et al., 2019;
Pahlow et al., 2020). Elevated growth rates have been reported
recently for several diazotrophic species (Turk-Kubo et al.,
2018), further questioning our conceptual understanding
of diazotrophy. Nevertheless, the competitive advantage of
N2 fixation in slowly growing autotrophic diazotrophs with
elevated Fe-requirements should be restricted to N-limited
and/or Fe-replete regions, leading to the traditional resource or
“bottom-up” control paradigm of their ecological niche. This
bottom-up control of autotrophic diazotrophs can be visualized
using the simplified RCT graphical approach with nitrogen (N)
and phosphorus (P) as limiting resources, in the absence of
grazing pressure (Figure 1A).

Novel emerging data suggest that diazotrophs are distributed
far more widely than the bottom-up control by N, Fe, and P
predicts, spanning a wide range of ocean environments from
surface to deep sea (Benavides et al., 2018) and hydrothermal
vents (Mehta and Baross, 2006), from warm tropical to cold
polar regions (Moisander et al., 2017; Shiozaki et al., 2017;
Harding et al., 2018; Mulholland et al., 2019), from permanently
oligotrophic waters of the subtropical gyres to high-NO3

−

oceanic and coastal waters (Knapp, 2012; Turk-Kubo et al.,
2018) to aphotic oxygen minimum zones (Löscher et al.,
2014) and hypoxic basins (Hamersley et al., 2011; Farnelid
et al., 2013). These oceanic environments are populated by
genetically and morphologically diverse diazotrophs reflecting
a large ecological diversity, from unicellular (Zehr et al., 1998)
free-living (UCYN-B) and symbiont species (UCYN-A, UCYN-
C) and diazotroph-diatom associations, DDA (Foster et al.,
2011) to multicellular species with heterocysts (Nodularia and
Aphanizomenon) and colonial forms (Trichodesmium), including

also non-cyanobacterial diazotrophs (Riemann et al., 2010;
Moisander et al., 2017). Can recent observations be reconciled
with theoretical predictions?

Laboratory experiments (Knapp, 2012) as well as RCT analyses
and results from numerical models of different complexity
(Pahlow et al., 2013; Landolfi et al., 2015; Inomura et al.,
2018) collectively suggest that autotrophic diazotrophs can still
coexist with non-N2 fixing phytoplankton where fixed forms
of N (e.g., NO3

−, NH4
+, and NH3) are available, which may

be due to a combination of co-limitation by N and P (and
possibly Fe or other micro-nutrients), greater N requirements
for nutrient acquisition (Klausmeier et al., 2004) and the high
competitive ability of diazotrophs for P (Pahlow et al., 2013).
In models, with explicit representation of physiologically costly
nutrient acquisition strategies, coexistence among organisms that
compete for limited resources occurs for a wide range of nutrient-
supply conditions (Pahlow et al., 2013, 2020; Landolfi et al., 2015;
Inomura et al., 2018; Chien et al., 2020). Insight from these
recent works highlights the key role of competitive interactions
in setting the ecological niche of diazotrophs.

There is a growing understanding of how environmental
factors affecting diazotroph physiology, with regard to
temperature optima (Moisander et al., 2010), Fe requirements
(Saito et al., 2011), NO−3 tolerance (Knapp, 2012; Inomura
et al., 2018), O2 inhibition (Stal, 2009), and competition for P
(Pahlow et al., 2013; Landolfi et al., 2015), shape competition
patters. There is still little knowledge, however, of how ecological
interactions, such as selective mortality by zooplankton grazing
and/or viral-lysis, modulate the ability of diazotrophs to compete
for resources in relation to their main competitors and thereby
influence their ecological niche.

TOP-DOWN CONTROL CAN EXPAND
THE ECOLOGICAL NICHE OF
DIAZOTROPHS

Top-down control by grazers (Prowe et al., 2012a; Vallina
et al., 2014) and mortality by viral infection (Suttle, 2007;
Weitz et al., 2015) are thought to exert a major control on
plankton diversity and coexistence, driving adaptation and
evolution. For example, grazing can drive changes in cell size
and morphology (Fenchel, 1980; Branco et al., 2020) as well
as defense mechanisms (Lürling, 2021). Selective mortality, via
grazing or viral-lysis, leads to increased diversity and coexistence
(Thingstad, 2000), contributing, together with the spatial and
temporal heterogeneity of the environment, to maintain plankton
diversity (Hutchinson, 1961) on seasonal to centennial time scales
(Barton et al., 2010; Tsakalakis et al., 2018; Dutkiewicz et al.,
2020).

To better understand how selective mortality affects
phytoplankton competition for resources and coexistence
patterns, we use a simple model with one nutrient (N), a
fast-growing and a slowly growing phytoplankton (Phyfast and
Physlow) and one zooplankton (Z), and interpret our results
within the RCT theoretical framework. The RCT predicts
the outcome of competition and co-existence of autotrophic
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FIGURE 1 | (A) Traditional RCT graphical approach (considering equal mortality and nutrient requirements independent from one another). In an idealized system,
phytoplankton (Phy, black) and diazotrophs (D, orange) competing for nitrogen, N, and phosphorus, P, draw down nutrient concentrations to their individual
equilibrium nutrient requirements (R*), here Neq and Peq, reaching steady state (growth = mortality) on the zero net growth isoclines (ZNGI, black, and orange dashed
lines). For nutrient supply below Neq, Peq both algae cannot grow (gray region, mortality > growth). Phy consume nutrients (black arrow pointing toward axis origin)
in their cellular proportions of R. D consume P only (orange arrow pointing left) and supply extra N. At steady state, total N and P consumption (blue vectors pointing
toward low N and P) must be balanced by the nutrient supply (blue vectors pointing toward high N and P). Stable coexistence of Phy and D occurs at the
interception of the ZNGIs where the growth of Phy is limited by N and that of D is limited by P. This occurs when N:Psupply < R, i.e., when the resource limiting the
slower-growing phytoplankton is supplied in excess. Note that the region of coexistence extends all the way to the x axis (0 N supply) because the N added by D
can be utilized by Phy. (B) R* depends on physiological characteristics and grazing pressure (gZ; Eq. 1). Accounting for selective grazing on Phy (gZPhy > gZD) can
increase the nutrient requirements Neq and Peq of the faster-growing competitor, thereby expanding the region of coexistence. (C) Should PeqPhy = PeqD Phy
becomes limited by P also for N:Psupply > R, allowing D to coexist in high N supply regions (see Supplementary Material for analytical derivation). (D) R* hierarchy:
RCT predicts that in competition for the same resource, the species with the lowest R* (mmol m-3) will dominate. Fast growing species (blue dashed line) dominate
slowly growing ones (red dashed line) in the absence of grazing (gZ = 0), or selective grazing (gZfast = gZslow). The inversion of the R* hierarchy occurs with selective
grazing on the fastest growing organism (gZfast > gZslow, solid lines). (E) Coexistence at equilibrium as a function of ecosystem fertility (nutrient initial conditions) for
the fast (blue) and slow (red) phytoplankton in the absence of grazing or selective grazing (dashed lines) and with selective grazing (gZfast > gZslow, solid lines).
(F) Grazing rates (giZ, day-1) on the fast and slow phytoplankton as a function of zooplankton biomass (Z, mmol m-3). (G) Top-down versus bottom-up control on R*

as a function of system fertility. Top-down fraction (tdf) calculated as: tdf =
∑(

1−
Ri
∗

min
R∗i

)
n−1, where for each ith species R∗i min = R∗i for giZ = 0, i.e., for pure

bottom-up control, and n is the number of species. Plots (D–G) are based on equilibrium solutions of a 100-member ensemble of a 0D ecosystem model [nutrients
(N), fast-growing (Phyfast) and slow-growing phytoplankton (Physlow), and zooplankton (Z)] with different initial nutrient levels. Phyfast and Physlow differ only in their
maximum growth rate (µmax, 1.3 and 0.65 day−1, respectively) and palatability (∅i ,0.7 and 0.3, respectively). All other ecosystem model parameters are equal (half
saturation constant for nutrient uptake k = 0.5 mmol m−3; linear mortality m = 0.03 day−1; maximum grazing rate gmax = 0.4 day−1; and prey half saturation

constant kz = 0.5 mmol m−3). The grazing rate per unit biomass gi (m3 mmol−1day−1) is of the form: gi = gmax
∅i

6Phyii

Phy2
i

kz2 +6Phy2
i

.

phytoplankton based on the R∗ hierarchy. R∗ is the resource
concentration required by each phytoplankton type to reach
equilibrium growth (growth = mortality). At equilibrium,
each phytoplankton type draws down the ambient nutrient
concentrations to its own equilibrium requirements R∗. It
follows that different phytoplankton types can coexist only if
each has at least one resource for which its R∗ is less than that
of all others. The R∗ hierarchy depends on the combinations
of physiological characteristics (maximal growth rate, µmax,
and half saturation constants, k) and mortality terms [specific
mortality m and grazing gZ, where g is the grazing rate per unit
biomass (m3 mmol−1 day−1) and Z (mmol m−3) is zooplankton

biomass] of each phytoplankton type, as expressed by Eq. 1 (see
appendix for derivation).

R
∗

=
k
(
m+ gZ

)
µmax − (m+ gZ)

. (1)

Traditionally, RCT considers the simplest case of similar
mortality terms for all phytoplankton types, assuming constant
specific mortality m and negligible effects of grazing (gZ = 0;
Tilman, 1980). Under these simplified assumptions, the
phytoplankton with the largest maximal growth rate (µmax;
or lowest nutrient half saturation constant k) will have the
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lowest resource requirement R∗ at equilibrium (Figure 1D,
dashed blue line), and will be the superior competitor, out-
competing the slower-growing competitor (Figures 1D,E,
dashed red line; Tilman, 1980). Recognizing that mortality
terms may differ among phytoplankton and thereby relaxing
the original RCT assumption of negligible grazing effects, we
find that differential mortality, in our example mediated by
selective top-down processes, but which could also include viral-
mediated processes, can allow coexistence for a wider range of
conditions. If zooplankton graze equally on two phytoplankton
types (i.e., gZfast = gZslow) the more slowly growing one will
be competitively excluded as in the simplified gZfast = 0 case
(Figure 1E, dashed lines). However, selective grazing on fast-
growing phytoplankton (i.e., gZfast > gZslow, Figure 1F), can
change the hierarchy of R∗ (Figure 1D, solid lines). This allows
the inferior competitor, otherwise out-competed in the absence
of selective grazing, to survive and coexist (Figure 1E, compare
red lines) in top-down controlled systems (Prowe et al., 2012b;
analytical derivation in Supplementary Material). The relative
importance of top-down control on R∗ is not fixed but varies,
increasing with resource levels, or “fertility” of the system, as
a larger zooplankton biomass can be supported (Figure 1G).
With selective grazing, the effect of top-down control on
R∗ increases with system “fertility.” It should be noted that
physiologically costly defense strategies (e.g., morphological
and size changes, toxicity, etc.) have associated trade-offs,
implying a reduction of the maximum growth rate that would
affect R∗ (Eq. 1) and the resulting R∗ hierarchy. The extended
RCT framework illustrates that selective top-down control can
prevent the fastest-growing organism from exploiting all of
the limiting resource, expanding the niche of slower-growing
species in top-down controlled regions, effectively providing for
novel coexistence regimes compared to bottom-up control and
non-selective mortality. Although simple, the RCT principles
can help interpret phytoplankton biogeographies emerging in
complex global ecological-biogeochemical models that include
multiple limiting nutrients, complex grazing functions and loss
terms, and circulation and mixing (Dutkiewicz et al., 2009; Ward
et al., 2012, 2014).

In the specific case of autotrophic diazotrophs (D) competing
with faster-growing non-fixing phytoplankton (Phy), we now
extend the traditional bottom-up paradigm within the RCT
graphical framework (Figure 1A) to include selective grazing on
Phy (Figures 1B,C). This effectively expands the diazotrophs’
region of co-existence by increasing the minimum nutrient
requirements, Neq and Peq, of Phy (Figures 1B,C). Also,
when accounting for interdependent N and P requirements
(Sterner and Elser, 2002) as in chain models (e.g., Pahlow
et al., 2013), selective grazing on Phy enlarges the niche of
diazotrophs relative to bottom-up control only (Supplementary
Figure 2). While competition for resources (P and Fe) has
been central for explaining the diazotrophs’ spatiotemporal
distribution in models (Landolfi et al., 2013, 2015, 2017; Ward
et al., 2013; Dutkiewicz et al., 2014), the role of top-down
control in modulating the space of diazotroph-non-diazotroph
coexistence remains insufficiently explored (Wang et al., 2019).
Our expanded resource-competition analysis suggests that
physiological characteristics determine competitive outcomes in

bottom-up controlled (nutrient scarce) environments, but as
environmental resource levels increase, competition patterns
become modulated by selective mortality. This can expand
the ecological niche of autotrophic diazotrophs. A more
comprehensive mechanistic understanding of the links between
phytoplankton traits, environmental factors and ecological
interactions (competition, predation, defense strategies, and
mortality) is required.

Do We Know How Diazotrophs Die?
Zooplankton grazing is considered the predominant
phytoplankton mortality in the ocean (Landry and Calbet,
2004), whereas virus-mediated mortality contributes less than
10% on average (Brussaard, 2004). At low latitudes, virus-induced
mortality appears to be more prevalent than at higher latitudes
(Mojica et al., 2016). Under environmental stress and/or viral
attack, an autocatalytic programmed cell death (PCD) has been
observed in many phytoplankton species, including diazotrophs
(Bidle, 2016). However, the fate of diazotroph biomass across the
food web is poorly understood (Mulholland, 2007) and little is
known about diazotroph mortality due to grazing, viral-lysis, or
PCD and their relative importance. Trichodesmium is generally
regarded as having low palatability for grazers (Capone, 1997),
yet whether this is because of poor nutritional quality, chemical
defense (toxin production), or morphological characteristics,
remains unclear. Virus-mediated mortality (Hewson et al.,
2004) and PCD (Berman-Frank et al., 2004, 2007) have been
described as significant loss processes for this diazotroph.
However, the major loss mechanisms of other diazotrophs are
poorly known. Which diazotrophs (unicellular, colonial, and
symbiont) are hosts for viruses, which are grazed by which size
classes of grazers, micro- (<200 µm) or meso-zooplankton
(0.2–20 mm), by which strategy (passive or active feeding), and
at what rates is mostly unresolved. Potential traits, associated
with defense strategies (morphological, physiological, and
behavioral) are hardly identified and their physiological costs
(trade-offs) remain mostly uncharacterized. In the following
we provide a tentative synthesis of the literature reporting
grazing on diazotrophs as well as a list of potential traits that
could affect selective feeding (Table 1). The lack of knowledge
on grazer identity, grazing rates, and traits associated with
top-down processes currently limits our deterministic power in
numerical models.

Evidence of Defense Traits and Selective
Top-Down Control Against Diazotrophs?
Selective top-down control can depend on prey abundance
(Jürgens and DeMott, 1995; Boenigk et al., 2002), size and
morphology (Armstrong, 1994), and nutritional quality (Schultz
and Kiørboe, 2009), but can also be due to the host specificity
of viruses. Defense strategies can be induced to reduce grazing
and/or viral attack. For example, defense against grazing
can include morphological and physiological traits (such as
resting stages, motility), although the associated trade-offs,
e.g., enhanced metabolic costs are not identified yet (Pančić
and Kiørboe, 2018) and overall effects on the community
level are unclear. Grazing experiments on diazotrophs are
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TABLE 1 | Literature reporting grazing on diazotrophs.

Diazo group Predator Interaction TRAIT Rates (day−1) Region Methos References

UCYN-A Mesozoo (cop. Acartia
tonsa)

Direct Size Baltic, WNA PCR Scavotto et al., 2015

Microzoo Indirect Symbiosis WTNA -Amazon qPCR Conroy et al., 2017

Microzoo Direct Size 0.2–1 NPSG qPCR, dilution method Turk-Kubo et al., 2018

UCYN-B Indirect Aggregates WTNA -Amazon qPCR Conroy et al., 2017

Crocosphaera
watsonii

Direct Size 0.7 ± 0.2 NPSG Microscopy, dilution
method

Wilson et al., 2017

Microzoo Direct Quality – FlowCam Deng et al., 2020

Dinoflagellates Direct Size 0.5 ± 0.4 NPSG IFCB – model Dugenne et al., 2020

Clilates Direct Size 0.14 ± 0.17 NPSG IFCB – model Dugenne et al., 2020

UCYN-C Mesozoo Direct SWP qPCR, 15N2 tracer Bonnet et al., 2016

Mesozoo (copepods) Direct SWP qPCR, 15N2 tracer Hunt et al., 2016

Microzoo No Size 1.36–1.75 NPSG qPCR, dilution method Turk-Kubo et al., 2018

DDA Het1 Mesozoo Direct SWP qPCR, 15N2 tracer Bonnet et al., 2016

Richelia-
Rhizosolenia

Mesozoo No SWP qPCR, 15N2 tracer Hunt et al., 2016

Mesozoo (calanoid and
harpacticoid cop.)

Direct WTNA -Amazon qPCR Conroy et al., 2017

DDA Het2 Mesozoo (copepods) SWP qPCR, 15N2 tracer Hunt et al., 2016

Richelia-Hemiaulus Mesozoo Direct SWP qPCR, 15N2 tracer Bonnet et al., 2016

Mesozoo (calanoid and
harpacticoid cop.)

Direct WTNA -Amazon qPCR Conroy et al., 2017

Trichodesmium Mesozoo (cop. Acartia
Tonsa)

Avoidance Toxicity NA Zoo cell counts Guo and Tester, 1994

Mesozoo (harpacticoid) Direct WTNA 14C tracer O’Neil and Roman,
1994

Mesozoo Direct NA Natural d15N zoo McClelland et al., 2003

Mesozoo (copepods) Indirect Aggregates NP Gut content
microscopy

Wilson and Steinberg,
2010

Mesozoo (copepods) No SWP qPCR, 15N2 tracer Hunt et al., 2016

Mesozoo Direct SWP 15N2 incubations Bonnet et al., 2016

Mesozoo Indirect ETNA Natural d15N zoo Sandel et al., 2015

Mesozoo Direct WTNA -Amazon Natural d15N zoo Loick-Wilde et al., 2012

Mesozoo (harpacticoid) Direct Mozambique ch. Natural d15N zoo Dupuy et al., 2016

Mesozoo (copepods) Avoidance Mozambique ch. Natural d15N zoo Dupuy et al., 2016

Mesozoo (calanoid and
harpacticoid cop.)

Direct WTNA -Amazon qPCR Conroy et al., 2017

Nodularia
spumigena

Mesozoo (copeod
Acartia bifilosa)

Direct Baltic Natural d15N zoo,
pigments

Meyer-Harms et al.,
1999

Mesozoo (cop.
Eurytemora affinis, A.

bifilosa)

Direct Baltic, mesocosms Gut content pigments Koski et al., 2002

Mesozoo (cop.
E. affinis., A. bifilosa)

Direct Toxicity Baltic Cell counts, toxin
detection

Kozlowsky-Suzuki
et al., 2003

Mesozoo (cop. Acartia
clausii)

Indirect Baltic Natural d15N zoo Sommer et al., 2006

Cladocerans Direct Baltic 15N tracer Wannicke et al., 2013

Micro-/mesozoo Avoidance Australia Estuarine d15N, dilution exp. Woodland et al., 2013

Mesozoo (cop.
E. affinis)

Avoidance Baltic 5N2 tracer Loick-Wilde et al., 2012

Copepods, rotifers,
cladocerans

Direct Baltic qPCR Motwani et al., 2018

Anabena Mesozoo (cop. Acartia
tonsa)

Direct NA, estuarine Cell counts, dilution
method

Chan et al., 2006

Cladocerans Direct Baltic 5N2 tracer Wannicke et al., 2013

Aphanizomenon Cladocerans Direct Baltic 5N2 tracer Wannicke et al., 2013

Pseudoanabaena Cladocerans Direct Baltic 5N2 tracer Wannicke et al., 2013

Method of diazotroph detection in predator diet is reported. Grazing interactions (direct/indirect grazing or avoidance) as reported by the authors. Western North Atlantic
(WNA); Western Tropical North Atlantic (WTNA); North Pacific Subtropical Gyre (NPSG); South West Pacific (SWP); North Atlantic (NA); North Pacific (NP); Eastern Tropical
North Atlantic (ETNA); Imaging FlowCytoBot (IFCB).
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very limited (Table 1). The few observations suggest a high
variability of taxon-specific grazing interactions (e.g., Wannicke
et al., 2013; Deng et al., 2020) with mixed evidence of
zooplankton selectivity for/against diazotrophs, based on size
and morphology, extracellular environment (e.g., DOM release),
nutritional quality and toxicity.

Size and Morphology
Size and morphology are regarded among the most important
factors affecting prey selectivity (Armstrong, 1994). Zooplankton
specific ingestion rates generally decrease with size of the
predator (Kiørboe and Hirst, 2014), reflecting an increase in prey
handling time with large sizes and complex morphologies (Wirtz,
2012). Size and morphological changes can be induced by grazing
pressure and are achieved, e.g., via the formation of colonies and
aggregates in phytoplankton, likely at the cost of reduced growth
rates (Van Donk et al., 2011; Lürling, 2021).

In diazotrophs size, morphology, aggregation, and colony
formation may thus also affect susceptibility to grazing pressure
and potentially growth rates. The size spectrum of diazotrophs
covers a wide range from 1 µm diameter (UCYN-A) up
to Trichodesmium filaments of about 550 µm (LaRoche and
Breitbarth, 2005; Goebel et al., 2008). Unicellular diazotrophs
are part of the diet of heterotrophic and mixotrophic protists
(microzooplankton; Turk-Kubo et al., 2018; Deng et al.,
2020; Dugenne et al., 2020; Table 1). While large aggregates,
symbionts of large organisms (>40 µm), and colonies may
be protected against grazing, selective grazing on UCYN-A
(Scavotto et al., 2015; Turk-Kubo et al., 2018) and UCYN-B
(Scavotto et al., 2015; Conroy et al., 2017; Wilson et al.,
2017; Dugenne et al., 2020) and Trichodesmium (Wilson
and Steinberg, 2010), as part of symbionts and/or aggregates
has been inferred. This suggests that aggregation and/or
symbiosis may not be a deterrent for mesozooplankton grazers
(Wilson and Steinberg, 2010; Hunt et al., 2016; Bonnet
et al., 2018). However, given that the presence of nifH genes
in the gut content may not unambiguously indicate direct
ingestion of the diazotroph or its aggregate, conclusive evidence
for direct ingestion of aggregates is scarce. In filamentous
freshwater cyanobacteria, aggregation and size changes induced
by the presence of grazers have been described (Cerbin
et al., 2013). Triggers and costs of Trichodesmium colony
formation and aggregation into parallel (tufts) or radial (puffs)
trichomes, with presumedly different exposures to grazing,
remain speculative.

The production of dissolved organic matter has been
suggested to affect the size distribution, sinking speed, and
accessibility to potential consumers, acting both as grazing
deterrent (Liu and Buskey, 2000) or by making small cells
available to larger consumers via aggregation (Passow, 2002). In
Trichodesmium, extracellular C release has been documented and
ascribed to buoyancy regulation (Villareal and Carpenter, 2003).
During PCD extracellular carbohydrate release can promote the
formation of sticky, fast-sinking aggregates (Bar-Zeev et al.,
2013). Extracellular carbohydrates release has been observed
also in Crocosphaera when forming aggregates (Sohm et al.,
2011). The relevance of this process for reducing/increasing

zooplankton grazing rates on diazotrophs is an open question
that requires further elucidation.

Nutritional Quality
The elemental composition of phytoplankton is characterized by
high plasticity compared to that of grazers (Sterner and Elser,
2002). The ingestion of nutrient deficient phytoplankton (high
C:N, C:P ratios) can result in compensatory or selective feeding
in zooplankton. Compensatory feeding may lead to increased
ingestion of prey (to fulfill the nutrient requirement Ng et al.,
2017), whereas selective feeding reduces the ingestion of prey
(due to lower growth rates of grazers; Mitra and Flynn, 2006).
Selection by nutritional quality may require metabolically costly
and sophisticated pre-ingestion sensory abilities, as observed in
marine copepods (Meunier et al., 2016). Low fatty acid content
has led freshwater cyanobacteria to be considered as being of
low nutritional value (Müller-Navarra et al., 2000). The range of
molar C:N ratios in diazotrophs (Trichodesmium C:N = 4.7–8.6,
LaRoche and Breitbarth, 2005; White et al., 2006; Crocosphaera
C:N = 5.9–11.4, Tuit et al., 2004), are within the range of
other phytoplankton (C:N = 5.23–9.44, Garcia et al., 2018).
However, high nutritional quality in UCYN-B (Crocosphaera) at
night (day – night C:N range = 10–6.9), driven by a light-dark
N2-fixation pattern, has been suggested to promote night-time
selective grazing by microplanktonic protists (Deng et al., 2020).

Toxicity
Toxin production can be induced by the presence of grazers,
and lead to several adverse effects on zooplankton feeding
on toxic species as a sole diet, such as reduced survival, egg
production or hatching success, or induce selection against toxic
species in a mixed diet (Schultz and Kiørboe, 2009; Ger et al.,
2019), fostering proliferation of toxic blooms (Turner, 2014).
Anabaena (Dolichospermum), Nodularia, Aphanizomenon, and
Trichodesmium are among the toxin producing diazotrophs
(Huisman et al., 2018). Early studies found that aging
Trichodesmium (Hawser et al., 1992; Guo and Tester, 1994)
and Nodularia spumigena (Sellner et al., 1994, 1996; Engstrom,
2000; Lundgren et al., 2012) were toxic to calanoid copepods.
Hence, Trichodesmium has been considered as being of low
palatability for most zooplankton (O’Neil and Roman, 1992),
although the harpacticoid copepod Macrosetella gracilis, relies
on Trichodesmium as a food source (O’Neil, 1998). Neutral or
positive effects have been found also for zooplankton feeding
on Nodularia spumigena (Hogfors et al., 2014). Some copepods
show compensatory feeding (high grazing rates) on Nodularia
(Kozlowsky-Suzuki et al., 2003). Adaptive strategies to overcome
toxicity (Dupuy et al., 2016) may explain the mixed evidence of
diazotroph toxicity for zooplankton.

Model Parameterizations and
Implications for Coexistence
In models a major control on coexistence of different
phytoplankton functional types is exerted by the functional
response that describes how predator’s ingestion depends
on prey concentration (Prowe, 2012; Vallina et al., 2014).
A multitude of functional responses exists that cover diverse
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predator-prey interactions driven by encounter, escape, selection,
handling, ingestion, and digestion processes, governed by
prey and predator traits and trade-offs. Three major types of
functional responses (I-linear, II-hyperbolic, and III-sigmoidal)
are often assumed to describe the feeding rate as function of
prey concentration (Holling, 1965). However, these do not fully
reproduce grazing responses observed in controlled laboratory
experiments and field data (Pahlow and Prowe, 2010). The
sigmoidal form (type III) stipulates proportional feeding on
the most abundant prey compared to its relative contribution
to total food, and may equalize R∗ values (Prowe, 2012), and
is therefore often used to promote coexistence (Bates et al.,
2016) and prevent extinction when diazotroph biomass is low
(Landolfi et al., 2013; Ward et al., 2013). Experimental evidence
for the link between feeding behavior and functional response
has been found, e.g., for different copepods (Kiørboe et al.,
2018). Experimental studies to derive the functional responses
of zooplankton feeding strategies on diazotrophs are lacking
(Table 1). Recently, a type II response has been obtained by
automated imaging of grazing dynamics (Dugenne et al., 2020).
In models, selective grazing can result from the combination
of density dependent functional responses and phytoplankton
type/size specific grazing preferences/palatability choices.
Current models generally employ reduced grazing pressure for
diazotrophs (selective grazing on non-fixing phytoplankton)
resulting from lower palatability, size-selectivity (Dutkiewicz
et al., 2020), and/or strong density dependence (e.g., type III,
Landolfi et al., 2013). Diazotroph distribution and N2 fixation
rates are very sensitive to grazing formulations. Similarly to
what RCT predicts, strong selective grazing on non-fixing
phytoplankton allows a greater expansion of the diazotrophs’
niche in top-down controlled nutrient rich regions, whereas
weak selective grazing constrains the diazotrophs’ niche to
bottom-up controlled regions in models with greater complexity
in terms of multiple limiting nutrients, trophic interactions, and
circulation and mixing (Supplementary Figure 3; Chien et al.,
2020). Higher grazing preference for diazotrophs, relative to
non-fixing phytoplankton, can result from optimized parameters
in global biogeochemical models (Wang et al., 2019; Chien et al.,
2020). This suggests that numerous interactions may arise in
more complex models, calling for more explicit discussion and
further scrutiny of the treatment of grazing formulations.

CONCLUSION AND FUTURE
PERSPECTIVES

The remarkable variety of growth strategies that allows
diazotrophs to flourish in waters ranging from warm oligotrophic
regions to cold, nutrient-rich, and highly productive systems
prompts the question: What are the underlying advantages
of fixing N2, given the associated additional energetic costs?
This remarkable and widely distributed ability demands a
better understanding of interdependencies between physiology
and ecological dynamics (competition and predation) that
set the broad ecological niches of diazotrophs. While our
comprehension of physiological constraints on diazotrophs and
their environmental (bottom-up) sensitivity is growing, the role

of selective mortality mediated by top-down processes and/or
viral-lysis in shaping their ecological niche is less clear. Relaxing
the RCT’s equal mortality assumption, we identify selective
mortality of faster-growing competitors as a key process for
expanding the niche of autotrophic diazotrophs in nutrient rich
regions. However, to date, observational evidence is limited
and insufficient to support the occurrence of selective grazing
against diazotrophs. Identifying traits and trade-offs associated
with selective top-down control (changes in size and morphology,
nutritional quality, toxicity, and DOM release) and linking them
in a multi-trait perspective remains a fundamental challenge
for elucidating the mechanisms that allow the ecological
complexity needed for insightful model applications. Whether
future environmental and ecological changes will introduce
benefits or disadvantages for N2 fixers will depend on how these
changes affect the competitive ability of diazotrophs in relation to
their main competitors and predators on seasonal to centennial
timescales. This suggests that we need to move beyond correlative
relationships and instead establish mechanistic links between
physiologically costly traits and their function in ecological
dynamics. Understanding and resolving these links is key to
making ecological complexity and its impact on, and interaction
with, marine nitrogen fixation emerge in biogeochemical models
and allowing for more reliable predictions of the future ocean.
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