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Vanadium – a transition metal – is found in the ferrous-ferric mineral, magnetite.
Vanadium has many industrial applications, such as in the production of high-
strength low-alloy steels, and its increasing global industrial consumption requires new
primary sources. Bioleaching is a biotechnological process for microbially catalyzed
dissolution of minerals and wastes for metal recovery such as biogenic organic acid
dissolution of bauxite residues. In this study, 16S rRNA gene amplicon sequencing
was used to identify microorganisms in Nordic mining environments influenced by
vanadium containing sources. These data identified gene sequences that aligned to
the Gluconobacter genus that produce gluconic acid. Several strategies for magnetite
dissolution were tested including oxidative and reductive bioleaching by acidophilic
microbes along with dissimilatory reduction by Shewanella spp. that did not yield
significant metal release. In addition, abiotic dissolution of the magnetite was tested
with gluconic and oxalic acids, and yielded 3.99 and 81.31% iron release as a proxy
for vanadium release, respectively. As a proof of principle, leaching via gluconic acid
production by Gluconobacter oxydans resulted in a maximum yield of 9.8% of the
available iron and 3.3% of the vanadium. Addition of an increased concentration of
glucose as electron donor for gluconic acid production alone, or in combination with
calcium carbonate to buffer the pH, increased the rate of iron dissolution and final
vanadium recoveries. These data suggest a strategy of biogenic organic acid mediated
vanadium recovery from magnetite and point the way to testing additional microbial
species to optimize the recovery.

Keywords: vanadium, magnetite, Gluconobacter oxydans, 16S rRNA amplicon sequencing, bioleaching

INTRODUCTION

Vanadium is a transition metal that is primarily used as a steel alloy in approximately 85% of
global steel production. It is also used in the aerospace industry for the production of alloyed-
titanium, in industrial catalysts for the production of synthetic products, and in the cathodes of
some lithium ion batteries [reviewed in Peng (2019); Gilligan and Nikoloski (2020)]. Vanadium
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is widespread in the Earth’s crust but it does not form
concentrated deposits, such as a sulfide mineral, but occurs
rather as V(III) replacing iron or aluminum in different minerals
including titanomagnetite (Dill, 2010). The majority of vanadium
is refined from slag waste as a by-product of the processing of
titanomagnetite ores and steel refining, and to a lesser extent
as a by-product of uranium mining [reviewed in Gilligan and
Nikoloski (2020)]. In addition, vanadium is found in coal, oil
shale, phosphate rock, and crude oil. A general process for
vanadium production can include magnetic separation, salt roast,
water leach, precipitation, and calcination of V2O5. Up to 87%
vanadium recovery from magnetite is achieved by chemical
leaching using a mixture of nitric and sulfuric acids at a
temperature of 80–95◦C (Nejad et al., 2018). A further study used
a combined process involving magnetic separation, hydrofluoric
acid leaching, co-precipitation, roasting, water leaching, and
precipitation to achieve a total vanadium recovery of 81% (purity
of >99%) from titanomagnetite (Zhu et al., 2016). The use
of vanadium in next-generation energy storage and conversion
technologies is predicted to increase its demand and highlights
the need to develop production methods (Zhang et al., 2020).

Due to increased extraction and use along with its significant
environmental toxicity, vanadium’s position as an environmental
hazard is being reconsidered (Watt et al., 2018). However,
knowledge of vanadium geochemistry is lacking in comparison
to other environmental pollutants. Vanadium exists in the
+3, +4, and +5 oxidation states and is most common
as the +5 vanadate oxyanion in oxic conditions, while the
+3 state occurs in anoxic/sulfidic conditions (Gustafsson,
2019; Shaheen et al., 2019). Vanadium transfers from soil
to plants such that phytoaccumulation may impact human
health by potentially causing a number of diseases (Imtiaz
et al., 2015). A study in China identified vanadium in
soils and groundwater where species from the Bacillus and
Thauera genera were well represented, resulting in reduction
of V5+ to less toxic V4+ suggesting a path to bioremediation
with these species (Zhang et al., 2019). Vanadium can also
be recovered by chemical and biological sorbents for both
remediation and industrial vanadium recovery (Huang et al.,
2020; Kong et al., 2020; Zhang and Leiviskä, 2020; Sharififard and
Rezvanpanah, 2021). However, the paucity of microbiological
studies highlights the gap in current knowledge of vanadium-
contaminated environments.

Biomining is the use of microbes to catalyze the dissolution of
solid metal-containing minerals into metal-containing solutions
[reviewed in Johnson (2014)]. This metal dissolution is often
facilitated by low pH in combination with microbial catalyzed
oxidation (Vera et al., 2013) or reduction (Johnson and Du
Plessis, 2015) of iron ions. Several metal sulfide ore biomining
systems have been developed with the most well-known being
the low pH microbial catalyzed oxidative dissolution of metal
sulfides, such as copper release from chalcopyrite (Watling,
2006; Christel et al., 2018). More recent technologies have been
developed including the reductive dissolution of e.g., limonitic
laterite by acidophilic microorganisms for the recovery of nickel
(Hallberg et al., 2011). Shewanella spp. are known to use
magnetite as an electron acceptor (Kostka and Nealson, 1995)

and the reductive bioleaching of several iron(III) oxides including
magnetite by Shewanella loihica shows dissimilatory iron
reduction and dissolution of all the tested minerals (Benaiges-
Fernandez et al., 2019). The solubility of metals can also
be enhanced by heterotrophic microbes that oxidize organic
substrates (such as glucose to organic acids) that are excreted
and act as metal-binding ligands (Pohlman and Mc Coll,
1986; Jones et al., 1996). Consequently, biological extraction of
metals using organic acid producing fungi and bacteria (e.g.,
Gluconobacter spp. producing gluconic acid) has also been
investigated (Bosecker, 1997; Mulligan et al., 2004). These studies
include base metal recycling from electronic waste by e.g., fungal
ligands (Valix, 2017) and rare earth element release from e.g.,
bauxite residues by bacterial and fungal biogenic organic acids
[reviewed in Rasoulnia et al. (2020)]. Bioleaching strategies have
also been tested for vanadium recovery including oxidative and
organic acid leaching from spent catalysts by Acidithiobacillus
ferrooxidans, Acidithiobacillus thiooxidans, and Aspergillus niger
(Muddanna and Baral, 2019; Mikoda et al., 2020; Pradhan et al.,
2021); shale by At. ferrooxidans (He et al., 2019); red mud with the
fungi A. niger and Penicillium tricolor (Qu et al., 2019); and steel
slag by a mixed consortium of acidophilic bacteria dominated
by At. ferrooxidans and At. thiooxidans (Gomes et al., 2018).
However, the paucity of knowledge regarding the biological
recovery of vanadium from the industrially relevant resource of
titanomagnetite highlights the need to develop biotechnologies
for a more sustainable recovery of vanadium from magnetite-
bearing sources.

In this study, we investigated the 16S rRNA gene amplicon-
based molecular microbiology of environments with industrially
relevant vanadium concentrations to inform strategies in the
development of a biomining technology. To this end, several
chemical and biological mineral dissolution systems were tested
to identify the most efficient method to release vanadium from
magnetite concentrate for metal recovery.

MATERIALS AND METHODS

Characterization of Solid and Liquid
Samples
Waste rocks samples (BRU_S1 to S6; n = 6) were collected from
the Bruvann mine by combining material from the upper 15 cm
of the waste dump that were used for mineralogical analyses
(Supplementary File 1). Magnetite was extracted from the rocks
by magnetic separation to run the laboratory leaching test on the
material for the microbial analysis of sample BRU_L4 (described
below in section “Microbial Sample Collection, DNA Extraction,
and 16S rRNA Amplicon Analysis”). In addition, solid waste
(MV_S1 and S2; n = 2) was collected from the upper 15 cm
of the Mustavaara tailings site. Solid samples were ground and
pressed into pellets and then analyzed by X-Ray Fluorescence
Spectroscopy (XRF) using a Bruker AXS S4 Pioneer machine.
The MV_L1 and L2 liquid samples were analyzed with an
Analytik Jena Contra 700 atomic absorption spectrometer with
a graphite furnace while the Ti_L1 liquid sample was analyzed
for vanadium concentration by inductively coupled plasma mass

Frontiers in Microbiology | www.frontiersin.org 2 June 2021 | Volume 12 | Article 693615

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-693615 June 24, 2021 Time: 18:12 # 3

Bellenberg et al. Towards Vanadium Bioleaching

spectrometry (ICP-MS) using a Thermo Fisher Scientific iCAP
RQ machine according to ISO 17294-2:2016. Samples BRU_L1
to L3 pH and conductivity were measured in the field using
an Aqua TROLL multi parameter sonde while BRU_L4 was
measured using an OAKTON pH 2100 and a HACH sensION
5, respectively. Conductivity and pH of Ti_L1 plus MV_L1
and L2 liquid samples were analyzed using a Mettler Toledo
conductivity meter and a pHenomenal R© pH 1000 L (VWR) pH
meter, respectively.

Microbial Sample Collection, DNA
Extraction, and 16S rRNA Amplicon
Analysis
Water, sediment, and solid waste samples were collected for
microbial community analyses at vanadium-containing sites in
Norway and Finland in 2016 and 2018 with sample details
provided in Supplementary File 1. Bruvann mine sediment
samples were collected from a mine stream (BRU_S7 and S8;
n = 2) by combining material from the upper 15 cm below the
sediment surface. In addition, Mustavaara solid tailings waste
(MV_S3 to S8; n = 6) was sampled from the tailing area (next to
the settling basin) by first removing approximately 20 cm of the
top layer of the tailing material and then taking all samples from
approximately same depth. Water samples were obtained from
the Bruvann mine stream as close to the mine entrance as possible
(samples BRU_L1 and L2; n= 2), Bruvann tailings deposit stream
leading from the mine tailings deposit (BRU_L3; n= 1), Bruvann
leaching experiment (BRU_L4; n = 1), Mustavaara settling basin
(MV_L3 to L5; n = 3), and Titania mine water (Ti_L1; n = 1).
All the water samples were separately filtered (0.1 µm) for cell
recovery and each filter was placed in a sterile tube.

The filters, sediment, and solid waste samples were frozen
and stored at −20 or −80◦C until analysis. Genomic DNA was
extracted using the PowerWater DNA isolation Kit (Qiagen)
for filters and PowerSoil DNA isolation Kit (Qiagen) for
sediment and solid tailings waste samples according to the
manufacturers’ instructions other than that the DNA was eluted
in 50 µL of EB buffer.

Partial 16S rRNA genes were amplified with a modified PCR
protocol (Hugerth et al., 2014) by using the 341F and 805R
primer set (Herlemann et al., 2011). The PCR amplification and
Illumina libraries were constructed and sequenced by Science
for Life Laboratory, Sweden1 according to published methods
(Lindh et al., 2015). The DADA2 pipeline [version 1.16, “dada2”
R package version 1.14.1; (Callahan et al., 2016)] was used to
process the sequence data. After initial filtering and trimming
(280 and 220 bp sequence length for forward and reverse reads,
respectively; 21 bp trimmed for primers), the remaining primer
sequences were removed with cutadapt [version 2.3; (Martin,
2011)]. On average, 18% of the raw reads were filtered out. The
resultant amplicon sequence variants (ASVs) were annotated
against the Silva NR database v138 (Quast et al., 2013), and
analyzed in R [version 3.6.3; (R Core Team, 2019)] utilizing the
vegan package [version 2.5–6; (Oksanen et al., 2020)].

1www.scilifelab.se

Magnetite Concentrate
Magnetite concentrate was provided by Titania AS (Norway).
A Bruker AXS S4 Pioneer X-ray fluorescence (XRF) spectrometer
was used to determine the chemical composition of the magnetite
concentrate. The sample was milled and 13.16 g was mixed
with 0.84 g of C-wax and pressed pellets were prepared from
the mixture (7–8 g) using boric acid as binder and applying a
hydraulic pressure of 10 metric tons to pellet the sample. X-ray
diffraction (XRD) measurement was performed with a Rigaku
SmartLab rotating anode diffractometer using Co Ka radiation.
The milled sample was measured at room temperature in the
2-theta range from 5◦ to 130◦ with a step size of 0.02 and an
acquisition rate of 4 deg/min. Rietveld analysis was performed
to measure the proportion of crystalline compounds. X-ray
photoelectron spectroscopy (XPS) analyses were performed
with a Thermo Fisher Scientific ESCALAB 250Xi using a
monochromatic Al Kα source (1486.6 eV). The charge correction
was done by setting the binding energy (BE) of adventitious
carbon to 284.8 eV.

Abiotic Organic Acid Leaching
Abiotic leaching using the metal-binding ligands gluconic acid
(0.5 N, 500 mM) and oxalic acid (0.5 N, 250 mM) was performed
in triplicate assays using 100 mL at pH 1.8 in 250 mL Erlenmeyer
flasks with agitation at 120 rpm and 30◦C. Samples of the leach
were removed and analyzed as described below [see section
“(Bio)leaching Analyses”].

Bioleaching Experiments With
Iron(III)-Reducing Acidophiles
Reductive bioleaching with iron(III)-reducing acidophiles used
mixed cultures of the iron- and sulfur-oxidizing species At.
ferrooxidans ATCC 53993, the sulfur-oxidizer At. thiooxidans
DSM 9463, and the heterotroph Acidiphilium cryptum JF-5
[kindly provided by Küsel et al. (1999, 2002)]. At. ferrooxidans
and At. thiooxidans strains were grown axenically in 250 mL
Erlenmeyer flasks with 100 mL Mackintosh (Mac) basal salt
medium (Mackintosh, 1978) at pH 2.5 with 1% (wt/vol) elemental
sulfur. Ac. cryptum JF-5 was grown in 100 mL Erlenmeyer flasks
with 50 mL Mac medium supplemented with 1 g/L glucose
and 0.02% (wt/vol) yeast extract. The cultures were grown at
30◦C with agitation (120 rpm). Early stationary phase cultures
were used as inocula for bioreactor experiments performed in
2 L Schott flasks with 2 L medium supplemented with 0.5%
elemental sulfur and 1 g/L of iron, supplied as Fe2SO4 × 7H2O
solution (pH 1.2) and stirred at 300 rpm using a magnetic
stirrer. The bioreactors were initially operated with aeration
until the pH dropped below 1.2 before aeration was stopped,
the pH was set to 2.0 with 2 M NaOH, the medium was
purged with nitrogen and supplemented with 3% (wt/vol) Titania
magnetite concentrate and ingress of oxygen was prevented by
rubber seals. The aerobic metabolism of the microorganisms was
initially used for efficient growth and then for oxygen elimination
in order to switch from oxygen to iron respiration. Sampling
was via sterile needles during which nitrogen was injected into
the reactors to prevent oxygen ingress. Bioleaching parameters
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were sampled and analyzed as described below [see section
“(Bio)leaching Analyses”].

Magnetite Reduction With Shewanella
loihica
Strain PV-4 (DSM 17748) was pre-cultured aerobically in
100 mL Erlenmeyer flasks with 50 mL LB medium at 20◦C
with agitation (120 rpm). Cells were harvested by centrifugation
at 7,000 × g for 10 min and washed in M1 defined
medium (Roh et al., 2006). The reduction of magnetite was
assessed in 100 mL serum bottles using 100 mL M1 medium
supplemented with lactate (10 mM) as the electron donor
and 3% (wt/vol) Titania magnetite concentrate. Alternatively,
the reduction of magnetite was tested in synthetic seawater
prepared following the standard protocol D1141-98 (ATSM
International) amended with sodium lactate (10 mM) as
an electron donor and carbon source, ammonium chloride
(1.87 mM) as a source of nitrogen, and Tris–HCl (10 mM)
as a pH buffer (Benaiges-Fernandez et al., 2019). The pH
of the medium was adjusted to 8.2 with 0.1 N NaOH.
Reduction of magnetite was conducted anaerobically in N2
purged medium in sealed serum bottles. Bioleaching cultures
were sampled and analyzed as described below [see section
“(Bio)leaching Analyses”].

Magnetite Bioleaching With
Gluconobacter oxydans
Gluconobacter oxydans strain DSM 46616 was pre-grown in DSM
105 medium (glucose 100 g/L, yeast extract 10 g/L, CaCO3
20 g/L, pH 6.8) at 30◦C and 120 rpm agitation. For magnetite
leaching assays, sub-cultures were supplemented with 3%
(wt/vol) Titania magnetite concentrate and inoculated with 10%
(vol/vol) pre-grown culture. Different medium compositions
were tested by modifying DSM 105 medium with lower yeast
extract concentration (0.1% compared to 1%) or omitting/adding
CaCO3 as described for the different experiments. Lowering the
yeast extract content was performed to investigate if lowered
levels of yeast extract (i.e., growth factors and nitrogen) in the
medium fostered conversion of glucose to gluconic acid, since
conversion into biomass would be limited. Bioleaching cultures
were sampled and analyzed as described in section “(Bio)leaching
Analyses.”

(Bio)leaching Analyses
The parameters tested in the chemical and biological leaching
were pH (VWRTM pHenomenal pH1000L, SI Analytics BlueLine
15pH probe), redox potential (VWR pHenomenalTM pH1100L,
Mettler Toledo InLab Redox-L), as well as photometric
determination of iron(II)-ions and total iron ion concentrations
(Harvey et al., 1955) using a plate reader (FLUOstar OmegaTM,
BMG LabTech R©). Cell counts were performed with a Thoma
counting chamber on a Zeiss microscope with a magnification of
400-fold. Selected samples were analyzed for their total vanadium
content (ICP-MS) as carried out at ALS AB, Sweden or Servizos
de Apoio á Investigación, Spain.

RESULTS AND DISCUSSION

Characterization of Vanadium Containing
Environments
Nordic vanadium containing environments including operating
and closed mines were sampled to investigate indigenous
microbial communities that may provide information into
leaching strategies for vanadium dissolution. The closed Bruvann
nickel-olivine deposit has six Mtons of deposited tailings
and while no vanadium data are available for the near pH
neutral liquid samples used for microbial community analysis,
Bruvann waste rocks (BRU_S1 to BRU_S6) contained vanadium
concentrations ranging from 59 to 161 ppm along with 35–
45% (wt/wt) SiO2 indicating the samples were dominated by
felsic minerals and high in olivine (Supplementary File 2). The
Mustavaara Fe-Ti-V-rich magnetite deposit mine has resulted
in vanadium contaminated surrounding natural water systems
(ponds, lakes, and rivers) along with vanadium containing
tailings. The settling basin MV_L1 and L2 water samples
contained between 9.42 and 9.74 µg/L vanadium while the
vanadium content in the tailings (MV_S1 and S2) was 1,029
and 755 ppm, respectively. Finally, the Ti_L1 Titania mine water
contained 526 µg/L of vanadium, high sulfate, and low pH that
was loaded with many constituents in addition to vanadium
including 219 mg/L iron enriched due to sulfide oxidation in the
drying process of Ni-Cu sulfide concentrate.

Microbial Diversity of Vanadium
Containing Environments
The rarefaction analysis generally showed asymptote converged
curves that indicated the majority of taxa were captured by the
sequencing (Supplementary File 3). However, samples MV_L5
and MV_S5 did not fully reach the horizontal curve progression,
likely due to the low number of obtained sequences for these two
samples. The similar values for observed ASVs (“Observed”) and
estimated richness (“Chao1”) confirmed a sufficient sequencing
depth for most samples (Supplementary File 4). The average
number of observed ASVs per sample was 1946 ± 2047 (min
185 and max 5972). The greatest Alpha diversity as determined
by Chao1 richness and Shannon diversity index was observed
in Bruvann (BRU_L3 and BRU_L1) and Mustavaara (MV_L4)
mine water samples with values ranging from 4,854 to 5,977
(Chao1) and 6.87 to 7.85 (Shannon). The increased diversity of
the water samples may have been due to the low number of
niches and relative scarcity of electron donors present in the
tailings samples.

Non-metric multidimensional scaling (NMDS) comparison
of microbial community composition between samples (Beta
diversity; Figure 1) showed similar communities within groups
for e.g., Mustavaara solid waste samples while the respective mine
water samples were dissimilar. Differences in the Mustavaara
communities may be related to low interface area between fluid
and solid waste samples, different sampling areas, or the different
sampling times (i.e., water samples were taken in October 2017,
whereas solid waste samples were taken in August 2018). The
Titania microbial communities (Ti_L1) were most dissimilar to
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FIGURE 1 | Non-metric multidimensional scaling (NMDS) of microbial
community composition for the environmental 16S rRNA gene samples. The
NMDS is based on a Bray Curtis dissimilarity matrix using relative abundances
of the ASVs. Color encodes sampling site and symbols encode sample type.

those of the other samples potentially as the site is located in the
south of Norway compared to the northern sites for the other
samples plus the Titania mine water was acidic compared to near
pH neutral conditions in the other samples.

Taxonomic Analysis of the Vanadium
Containing Communities
Overall, the most abundant 16S rRNA gene amplicons had
sequences that aligned within the phyla Proteobacteria,
Patescibacteria, Actinobacteriota, and Chloroflexi (Figure 2 with
taxonomic levels to genera in Supplementary File 5).

Patescibacteria and Proteobacteria dominated the oxic
Bruvann mine water samples (BRU_L1 to BRU_L4). The
Proteobacteria included Thiobacillus and Sulfurifustis that
include autotrophic sulfur-oxidizers (Vishniac, 1952; Kojima
et al., 2015), the iron-oxidizing Sideroxydans (Weiss et al., 2007),
and the genus Rhodoferax that includes psychrophilic aerobes
that can grow on glycerol, mannose, and mannitol (Kaden et al.,
2014). In contrast, the class Gammaproteobacteria dominated the
likely anoxic Bruvann BRU_S7 and BRU_S8 sediment samples
that included sulfur-oxidizing and nitrate-reducing Thiobacillus
and Sulfuriferula (Watanabe et al., 2015), the psychrophilic
and facultative anaerobic Rhodoferax, and Actimicrobium that
was isolated from Antarctic seawater (Kim et al., 2011). The
identification of ASVs most similar to psychrophilic bacteria
matches the low temperatures typically encountered in northern

Norway and the facultative aerobes match the likely oxygen
concentrations in the sediment samples.

The Mustavaara mine tailings water samples (MV_L3
to MV_L5) were dominated by the phyla Actinobacteriota,
Proteobacteria, Patescibacteria, and Bacteroidota with the
respective classes Actinobacteria, Gammaproteobacteria,
Parcubacteria, and Bacteroidia. Proteobacteria dominated the
Mustavaara solid waste samples (MV_S3 to MV_S8) with lower
relative abundances of Chloroflexi and Actinobacteriota. Within
the class Gammaproteobacteria, the genus Gallionella was
abundant that includes iron-oxidizing species that reside in low
oxygen environments (Hallbeck and Pedersen, 2015).

The Titania mine water (Ti_L1) microbial community
was similar to the Mustavaara solid waste samples on
phylum and class levels but was different on more
defined taxonomic levels. The most abundant genera
within the Gammaproteobacteria were Pseudomonas
(family Pseudomonadaceae), Polynucleobacter (family
Burkholderiaceae), as well as Hydrogenophaga, and
Limnohabitans (family Comamonadaceae). In addition, this
water sample contained 16S rRNA gene sequences that
aligned within the Gluconacetobacter genus that typically
produces ketogluconic acid (Yamada et al., 1997) and the
acidophilic Acidithiobacillus genus that can mediate sulfur
compound oxidation along with some species also oxidizing iron
(Johnson, 2016).

These vanadium-containing magnetite environments
contained populations in the water samples and to
some extent the sediment/tailings samples typical for pH
neutral (neutrophiles), low temperature (psychrophiles and
psychrotolerant taxa), and oxic versus anoxic environments.
In addition, populations that have the potential to be used
for mineral dissolution were present such as the acidophilic
Acidithiobacillus genus that may be able to mediate low pH
reductive bioleaching (Hallberg et al., 2011; Smith et al., 2017)
or the Gluconacetobacter genus for organic acid dissolution
[reviewed in Rasoulnia et al. (2020)]. The presence of these
microbes in the oxic and anoxic environments that have
previously been demonstrated to mediate metal dissolution led
to testing of several strategies for vanadium dissolution.

Magnetite Concentrate Composition
The chemical composition determined by XRF confirmed
iron as the main element along with significant amounts of
titanium, magnesium, aluminum, silicon, and chromium plus
a vanadium content of 3739 ppm (Supplementary File 6).
XRD analysis showed that the magnetite concentrate contained
mostly magnetite (∼90%; Mg0.04Fe2.96O4) and a small amount
of magnesium titanium oxide (∼5%; MgTiO3; Supplementary
File 7). The third phase present in the sample was not accurately
identified, but data analysis indicated a spinel phase of spinel
ferrian chromian or chlorospinel. The XPS survey spectrum
confirmed the presence of O, Fe, Si, Mg, S, C, Al, Na, and Ti
on the surface of the magnetite sample (Supplementary File 8).
Vanadium was not detected in the survey and neither in the
V2p high-resolution spectrum, which indicated that vanadium
was buried deeper in the sample. The Fe2p high-resolution
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FIGURE 2 | Stacked bar graph of the microbial community composition based on the relative abundances of phyla (>1%). The remaining proportion to 100% (1.0)
includes low-abundant taxa of <1% of the relative abundance.

TABLE 1 | Summary table of magnetite dissolution from the (bio)leaching strategies tested.

Iron yield Rate Leaching time Magnetite dissolution

mmol/L mg/L mmol L−1 d−1 Days %

Chemical leaching (this study)

Gluconic acid (0.5 N) 14.0 783 0.93 15 3.99 ± 0.03

Oxalic acid (0.5 N) 285.3 15 930 47.5 6 81.31 ± 1.71

Bioleaching (this study)

Acidophile bioreactor (anaerobic) 6.1 341 0.14 45 1.74 ± 0.12

A. cryptum (aerobic) 1.4 77 0.03 40 0.39 ± 0.09

A. cryptum (anaerobic) 1.6 88 0.04 40 0.45 ± 0.05

G. oxydans (aerobic) 32.2 1 799 2.15 16 9.18 ± 0.16

Bioleaching (previous studies)

S. loihica [anaerobic medium (Roh et al., 2006)] 2.0 113 0.04 46 0.58 ± 0.03

S. loihica [anaerobic medium (Benaiges-Fernandez et al., 2019)] 0.5 28 0.01 87 0.14 ± 0.04

spectrum showed the Fe2p3/2 peak at 711.8 eV and the Fe2p1/2
peak at around 725 eV (Supplementary File 9). The binding
energies are consistent with previous studies related to magnetite
characterization with XPS (Tian et al., 2011; Cuenca et al., 2016).
No clear satellite peak was observed at around 719 eV, which

further confirmed that the sample contained magnetite (Cuenca
et al., 2016). Ti2p spectrum showed doublet peaks of Ti2p3/2
at 459.0 eV and Ti2p1/2 at 464.8 eV (Supplementary File 9)
indicating that Ti existed in +4 state (Pukazhselvan et al., 2019)
that is also the oxidation state of Ti in MgTiO3.
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Acidophile Bioleaching of the Vanadium
Containing Magnetite Concentrate
Iron(III) reducing acidophiles, namely At. ferrooxidans, At.
thiooxidans (Marrero et al., 2015, 2017), and Ac. cryptum
JF-5 (Harvey et al., 1955) were investigated for magnetite
bioleaching tests. These species are able to reduce iron(III)
and are consequently capable of reductive bioleaching (Küsel
et al., 1999, 2002; Hallberg et al., 2011; González et al., 2015;
Marrero et al., 2017). Bioreactors (2 L) inoculated with the
three species achieved low magnetite dissolution (1.74 ± 0.12%;
Table 1) within 45 days of cultivation as well as shake flask
experiments that were incubated aerobically or anaerobically.
Likewise, axenic shake flask experiments with Ac. cryptum that
were also conducted under aerobic or anaerobic conditions
yielded low magnetite dissolution (0.39 ± 0.09 or 0.45 ± 0.05%;
Table 1) and were therefore deemed unsuitable for vanadium
leaching from the tested mineral concentrate. Other studies have
reported more efficient magnetite dissolution by A. cryptum JF-
5, reaching up to 25% in anaerobic and pH-controlled systems
(González et al., 2015) although these conditions are more
difficult and expensive to be implemented in large scale industrial
biohydrometallurgical processes.

Shewanella loihica Bioleaching of the
Magnetite Concentrate
As mentioned above, Shewanella spp. use magnetite as an
electron acceptor during dissimilatory microbial reduction
(Kostka and Nealson, 1995) and magnetite reduction has recently
been demonstrated to occur under marine sediment conditions
(Benaiges-Fernandez et al., 2019). Consequently, bioleaching
by S. loihica PV-4 was tested for its potential to dissolve the
magnetite concentrate. The yields of iron obtained in this study
using marine and non-marine media plus lactate as electron
donor (0.14 ± 0.04 and 0.58 ± 0.03%, respectively) were greater
than the 0.05% magnetite dissolution obtained by S. loihica under
marine conditions (Benaiges-Fernandez et al., 2019). Despite
these slight increases in iron concentration (Table 1), the low
rates and yields render this option unfeasible for the development
of an industrial bioleaching process.

Abiotic Organic Acid Leaching of the
Magnetite Concentrate
Chemical leaching of the magnetite concentrate was tested with
organic acids (0.5 N, pH 1.8) to investigate their efficacy for
magnetite dissolution [reviewed in Eisele and Gabby (2014)].
Iron leached from the magnetite reached 14.0 and 285.3 mmol/L
during gluconic- and oxalic-acid leaching after 15 and 6 days,
respectively (Figure 3 and Table 1). This corresponded to
3.99 ± 0.03 and 81.31 ± 1.71% of the available iron in
the 3% (wt/vol) magnetite pulp density in the shake flasks.
Consequently, the dibasic oxalic acid was a more potent ligand
than the monobasic gluconic acid and therefore, was confirmed
to be suitable for magnetite dissolution (Lee et al., 2007). Both
organic acids gave significantly higher yields (Table 1) than the
acidophile and S. loihica bioleaching described above. Therefore,
investigations into whether biological organic acid production

FIGURE 3 | Chemical leaching of magnetite using gluconic acid (dashed line)
and oxalic acid (solid line). Equal normality (0.5 N) solutions of gluconic and
oxalic acid were used in shake flasks incubated at 30◦C and 120 rpm
agitation. Data are averages ± SD (n = 3).

FIGURE 4 | Bioleaching of 3% (wt/vol) magnetite concentrate using
Gluconobacter oxydans showing the development of soluble iron ions (solid
line) and pH (dashed line). Data are averages ± SD (n = 3) except for pH
values between days 0 and 4 that are single replicates.

also increased the magnetite dissolution were carried out. A. niger
has been successfully applied for iron removal from silicates
(Castro et al., 2000) and clay (Mandal and Banerjee, 2004)
via binding by e.g., citric, oxalic, malic, and gluconic acids. In
addition, it has been used to recover valuable metals from a low-
grade mining ore (Mulligan et al., 2004); bioleaching of metals
from spent fluid catalytic cracking catalyst (Santhiya and Ting,
2006; Das et al., 2019), waste printed circuit boards (Faraji et al.,
2018), and spent lithium ion batteries (Horeh et al., 2016). Many
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FIGURE 5 | Bioleaching of 3% magnetite concentrate using Gluconobacter oxydans with 0.1% (wt/vol) yeast extract (�), 1.0% (wt/vol) yeast extract (�), and 1.0%
(wt/vol) yeast extract plus 2.0% (wt/vol) CaCO3 (•). Results show pH (A), soluble iron ions (B), and vanadium (C). Data are averages ± SD (n = 3).

of these studies reported that biogenic organic acids (culture
supernatants) outperformed chemical leaching of comparable
assays with pure organic acids (Reed et al., 2016; Qu et al., 2019).

Gluconobacter oxydans Bioleaching of
the Magnetite Concentrate
Gluconobacter spp. produce the ligand gluconic acid when grown
with glucose as substrate (Gupta et al., 2001). Consequently,
biogenic gluconic acid was used to test metal solubilization from
solids as a proof of concept for vanadium recovery from Titania
magnetite concentrate. An initial test of G. oxydans bioleaching
efficacy in assays with unamended medium containing 0.1%
(wt/vol) yeast extract yielded 1737± 36 mg/L (n= 3) soluble iron
after 13 days that corresponded to 8.9% of the available iron in the
magnetite concentrate (Figure 4). During bioleaching, the pH fell
to 3.73 ± 0.13 (n = 3) after 13 days and continued to decrease to
2.97 ± 0.06 (n = 3) after 39 days. This likely inhibited gluconic

acid production by G. oxydans that has an optimum growth pH
5.5–6.0 (Gupta et al., 2001). However, the solubilization of iron as
a proxy for vanadium dissolution suggested promising results for
metal recovery from the magnetite concentrate.

Investigation of G. oxydans magnetite concentrate
bioleaching with increased yeast extract (1.0% wt/vol) yielded
2112 ± 199 mg/L (9.8%) soluble iron after 30 days that was
greater than with 0.1% (wt/vol) yeast extract (Students t-test,
p < 0.01; Figure 5). However, once again the medium pH fell
to 2.27 ± 0.01 after 12 days, which likely negatively affected the
leaching rate of 128 mg/L/day (R2

= 0.95). Further amending
the growth medium with 2% CaCO3 to pH buffer the medium
yielded 1921 ± 153 mg/L soluble iron after 12 days with an iron
dissolution rate of 158 mg/L/day (R2

= 0.97). However, while
the pH buffering increased the leaching rate it did not increase
the total dissolved iron compared to without pH buffering after
30 days (p = 0.11 for total dissolved iron; Figure 5). Vanadium
yields after 30 days in G. oxydans assays with 0.1 and 1% yeast
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extract were 2496 ± 498 and 3059 ± 200 µg/L, respectively,
confirming the difference that was observed by comparing
respective iron dissolution rates. Likewise, vanadium yields were
highest in medium with 2% CaCO3 (3678± 180 µg/L) indicating
that glucose conversion to gluconic acid by G. oxydans is
most efficient when the pH is efficiently buffered (Figure 5).
Furthermore, vanadium dissolution in G. oxydans growth
medium is pH dependent, since vanadium solubilization by
gluconic acid occurred as soon as the pH dropped below a
value of 4. Finally, the lower vanadium yields compared to
iron dissolution supports that the mineral analysis in that the
vanadium was present deep within the sample.

CONCLUSION

Vanadium containing environments contain microorganisms
that can potentially be utilized for bioleaching of magnetite. The
presence of these microbes may also explain the elevated levels
of vanadium in water samples at the sampling sites. Magnetite
leaching using acidophiles under aerobic and anaerobic culturing
did not result in significant accumulation of dissolved iron,
which functions as a proxy for vanadium release. Additionally,
bioleaching with S. loihica PV-4 did not solubilize a significant
fraction of the available iron in the magnetite concentrate.
However, chemical leaching with oxalic and gluconic acids
showed significant iron release that led to the evaluation
of G. oxydans-mediated biogenic gluconic acid leaching that
resulted in a maximum yield of 9.8% of the available iron and
3.3% of the vanadium. Amendment of the growth medium with
CaCO3 to buffer the pH resulted in an increased leaching rate, but
did not result in additional total iron solubilization. Future work
to increase the yield and efficiency of the magnetite bioleaching
may be directed toward optimizing the gluconic acid production
by G. oxydans along with other organic acid producing strains
such as A. niger.
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