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Microbial communities normally comprise a few core species and large numbers of satellite 
species. These two sub-communities have different ecological and functional roles in 
natural environments, but knowledge on the assembly processes and co-occurrence 
patterns of the core and satellite species in Tibetan lakes is still sparse. Here, we investigated 
the ecological processes and co-occurrence relationships of the core and satellite bacterial 
sub-communities in the Tibetan lakes via 454 sequencing of 16S rRNA gene. Our studies 
indicated that the core and satellite bacterial sub-communities have similar dominant 
phyla (Proteobacteria, Bacteroidetes, and Actinobacteria). But the core sub-communities 
were less diverse and exhibited a stronger distance-decay relationship than the satellite 
sub-communities. In addition, topological properties of nodes in the network demonstrated 
that the core sub-communities had more complex and stable co-occurrence associations 
and were primarily driven by stochastic processes (58.19%). By contrast, the satellite 
sub-communities were mainly governed by deterministic processes (62.17%). Overall, 
this study demonstrated the differences in the core and satellite sub-community assembly 
and network stability, suggesting the importance of considering species traits to understand 
the biogeographic distribution of bacterial communities in high-altitude lakes.

Keywords: core and satellite sub-communities, biogeographic patterns, community assembly, co-occurrence 
patterns, Tibetan lakes

INTRODUCTION

In natural ecosystems, bacteria within a metacommunity could be  partitioned into different 
ecological assemblages, such as abundant or rare sub-communities and core or satellite 
sub-communities in light of potential importance for the community function (Unterseher 
et  al., 2011; Jeanbille et  al., 2016; Lindh et  al., 2017). Defining OTUs as abundant and rare 
taxa are often conducted on the relative abundance of each taxa (Campbell et  al., 2011; 
Alonso-Sáez et  al., 2015), while the division of the core and satellite taxa is based on 
occurrence in addition to abundance (Magurran and Henderson, 2003; Hu et  al., 2017b). 

Published: 17 September 2021

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.695465﻿&domain=pdf&date_stamp=2021-09-20
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fmicb.2021.695465
https://creativecommons.org/licenses/by/4.0/
mailto:liukeshao@itpcas.ac.cn
https://doi.org/10.3389/fmicb.2021.695465
https://www.frontiersin.org/articles/10.3389/fmicb.2021.695465/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.695465/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.695465/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.695465/full


Yan et al. Bacterial Biogeography and Co-occurrence

Frontiers in Microbiology | www.frontiersin.org 2 September 2021 | Volume 12 | Article 695465

The latter combines the positive feedback effect between 
abundance and occurrence, which could improve predictions 
and interpretations of patterns in biodiversity reacting to 
environmental change (Lindh et  al., 2017). The core 
sub-communities are composed of the dominant species that 
are widely distributed and play a key role in the cycle of 
elements (Fuhrman, 2009; Pedrós-Alió, 2012), whereas the 
satellite sub-communities occur in low abundance and few 
locations and conduct specific metabolic functions, which 
constitute the seed bank of biodiversity (Pester et  al., 2010; 
Van Der Gast et  al., 2011; Lindh et  al., 2017; Gendron et  al., 
2019). Up to now, this classification has proved to be a useful 
tool for understanding ecological principles of microorganisms, 
and has been applied in marine (Lindh et  al., 2017) and 
rivers (Hu et al., 2017b) ecosystems, but has only infrequently 
been implemented in lake ecosystems.

Previous studies have reported that deterministic processes 
and stochastic processes play important roles in the regulation 
of spatial distribution of bacterial communities in natural 
environments (Sloan et  al., 2006; Ofiţeru et  al., 2010; 
Langenheder and Székely, 2011; Lindström and Östman, 2011; 
Lindström and Langenheder, 2012; Liao et  al., 2016a,b). 
Deterministic processes refer to environmental filtering and 
biotic interactions influencing the fitness of microbial 
communities and determine the composition and abundance 
of microbes (Campbell et al., 2011; Gilbert et al., 2012; Zhang 
et al., 2014). Conversely, stochastic processes include dispersal 
limitation and random changes in species relative abundance, 
and therefore, changes in community composition are 
unpredictable (Hubbell, 2001; Dini-Andreote et  al., 2015; Li 
et  al., 2019). Recently, some studies have identified that 
different properties or traits of microbial sub-communities 
may assemble by different or same mechanisms (Pandit et al., 
2009; Langenheder and Székely, 2011). For instance, the core 
and satellite sub-communities in a salinity-influenced watershed 
of China were mainly droved by deterministic processes (Hu 
et  al., 2017b). The core sub-communities in arbuscular 
mycorrhizal fungi (AMF) were mainly influenced by 
deterministic processes related to soil properties, whereas the 
satellite sub-communities were considerably influenced by 
stochastic processes (Barnes et al., 2016). However, it remains 
unclear whether assembly processes of the core and satellite 
sub-communities in Tibetan lakes are similar or different 
when the range of distances over hundreds of kilometers? 
The ecological strategy can be  elucidated by the contribution 
of deterministic and stochastic processes to microbial 
community assembly (Kraft et  al., 2015; Jiao and Lu, 2020). 
Microorganisms with microscopic sizes and high dispersal 
capacity could display complex interaction webs within an 
ecological niche, which are also key to maintaining microbial 
community structure (Faust and Raes, 2012). Co-occurrence 
network analysis provides powerful support for revealing the 
complex microbial community structure and interactions 
among microorganisms, which could reflect shared niches 
among community members in the real world (Faust and 
Raes, 2012; Mikhailov et  al., 2019; Mingkun et  al., 2020). 
Hu et al. (2017b) demonstrated that due to different ecological 

niches, core and satellite sub-communities play different roles 
in the co-occurrence network and have different network 
topological characteristics.

In this study, we  used 454 pyrosequencing of the bacterial 
16S rRNA gene to investigate the diversity and composition 
of core and satellite bacterial sub-communities in 47 lake water 
samples of 30 lakes located on the Tibetan Plateau. The Tibetan 
Plateau has the largest number of plateau lakes group in the 
world (Zhang et  al., 2011). A most recent study about the 
biogeography of microbial communities in Tibetan lakes reported 
that bacterial communities were mainly controlled by salinity-
driven deterministic processes (Liu et  al., 2020). Although the 
useful information gained from this study, the spatial distribution 
patterns, community assembly mechanisms, and the 
co-occurrence patterns may be  different due to their different 
roles of the core and satellite bacterial sub-communities in 
the Tibetan lakes. Therefore, we sort to determine and compare 
the biogeographic patterns and underlying mechanisms for the 
core and satellite bacterial sub-communities at a regional scale. 
Specifically, we  tested the following three hypotheses: (1) core 
and satellite taxa exhibit different biogeographic patterns in 
lakes on Tibetan Plateau; (2) core and satellite sub-communities 
assembly driven by divergent processes; and (3) compared to 
satellite, core sub-communities show a discrepant co-occurrence  
pattern.

MATERIALS AND METHODS

Study Area and Sampling
We investigated surface water from 30 Tibetan lakes in 2012, 
China (Supplementary Figure S1). These lakes are characterized 
by high-altitude location (above 3,900 meters), which covered 
an area from 79.81'E to 96.82'E longitudinally and 28.27'N to 
34.58'N latitudinally. The mean annual air temperature of the 
lakes ranged from −9°C to +2°C, and the surface area ranged 
from 8 to 2062 km2 (Supplementary Table S1).

In total, 47 water samples were collected from 30 Tibetan lakes. 
The Schindler sampler was used to collect approximately 1 L surface 
water samples (∼0.5 m depth) from twenty lakes, respectively. 
Duplicate samples were collected at the same time from same 
points from 10 lakes, AGC, BC, BGC, DZC, GZC, NMC, PE, 
PMYC, Yamdrok, and ZGTC (Supplementary Table S1). Water 
samples from each site for bacterial community analyses were 
pre-filtered through 20 μm mesh (Millipore, United  States) for 
removal of the large plankton and particles, and all filtrates were 
subsequently filtered through a 0.22 μm polycarbonate membrane 
(Millipore, united states). Afterward, the membranes were put in 
sterile 2 ml microcentrifuge tubes and were stored at −80°C for 
DNA extraction. Latitude, longitude, and altitude were measured 
using the Global Positioning System during the field work.

DNA Extraction, Bacterial 16S rRNA 
Amplification, and 454 Sequencing
Microbial DNA was extracted from filters using a FastDNA® 
Spin kit (MP Biomedicals, Santa Ana, CA) according to the 
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manufacturer’s instructions. It was checked for concentration 
and purity using a NanoDrop Spectrophotometer (ND-1000 
Thermo Fisher Scientific, Wilmington, DE, United  States). The 
V4-V5 region of the bacterial 16S rRNA genes was amplified 
using the primer pair 515F (5'-GTGCCAGCMGCCGCGGTAA-3') 
and 907R (5'-CCGTCAATTCMTTTRAGTTT-3'; Christopher 
et  al., 2011). An aliquot of 10 ng purified DNA template from 
each sample was amplified in triplicate in a 50 μl reaction system. 
The amplification conditions were as follows: 30 cycles of 
denaturation at 94°C for 30 s, annealing at 55°C for 30 s, and 
extension at 72°C for 30 s, with a final extension at 72°C for 
10 min (Liu et  al., 2019b). Then, triplicate PCR products for 
each sample were pooled in equal quantity and purified using 
agarose gel DNA purification kits (TaKaRa, Japan). Finally, 
running on a Roche FLX 454 pyrosequencing machine (Roche 
Diagnostics Corporation, Branford, CT, United  States; Liu et  al., 
2016). Raw sequence reads have been submitted to NCBI 
(BioProject ID PRJNA306720).

Processing of Pyrosequencing Data
Paired-end reads were quality trimmed using Trimmomatic 
v0.30 (Bolger et al., 2014) and combined using FLASH software 
(Magoč and Salzberg, 2011). The raw sequences data were 
subsequently analyzed by using QIIME v1.9.0 (Caporaso et  al., 
2010). The reads which had ambiguous bases and mismatches 
to the barcode or primers or chimeric characteristics were 
discarded. Then, the sequences were clustered into OTUs using 
UPARSE algorithm in USEARCH v 11.0.667 with a 97% 
threshold of sequence similarity (Edgar, 2013). Representative 
sequences of each OTU were aligned using PyNAST (DeSantis 
et  al., 2006). Taxonomic identity of each phylotype was 
determined using the SILVA 132 database (Quast et  al., 2013) 
via the RDP classifier (Wang et al., 2007). Before tree construction, 
the filter_alignment.py script in qiime1was used to remove 
highly variable regions, and then, a phylogenetic tree was 
constructed based on Neighbor-joining method (Saitou and 
Nei, 1987). All eukaryote, chloroplasts, mitochondria, and 
unknown sequences were culled before the OTU table was 
generated. To avoid biases generated by differences in sequencing 
depth and to make samples comparable, samples were randomly 
rarefied to the minimum number of retrieved sequences in 
the whole sample (2210). After taxonomies had been assigned, 
we  deleted all archaea OTUs and obtained 5,233 OTUs and 
103,870 sequences.

Core and Satellite Sub-Community 
Classification
The Poisson model of species abundance was examined by 
Krebs’ method, and the dispersion index was tested by Chi-square 
test to partition the bacteria into the core and satellite 
sub-communities (Van Der Gast et  al., 2011; Hu et  al., 2017b). 
Bacterial taxa that occurred only in a single sample were 
excluded from this analysis because their distributed in space 
would have no variance. Briefly, OTU occurrence plotted against 
the index of dispersion (the ratio of variance to the mean 
abundance) for each OTU, taking 2.5% of the χ2 distribution 

as the confidence limit. OTUs that below the interval following 
a random distribution were considered as satellite 
sub-communities, whereas above were non-randomly distributed 
core sub-communities. Calculations were performed using the 
“vegan” and “plyr” R packages (Hu et  al., 2017b).

Distance Decay of the Community 
Dissimilarity
To evaluate the distance decay of community similarity, the 
linear regression between ln-transformed geographic distances 
and the Bray-Curtis dissimilarities was generated based on 
ordinary least squares. The relationships were evaluated using 
the Mantel test. The statistical significance of such comparisons 
was determined using 999 permutations and the analyses were 
performed using the “mantel” function of the “vegan” package 
in R (Jiao et  al., 2020). Permutation test was used to test for 
significant differences between slopes in the “simba” R package 
(Nekola and White, 1999). Geographical distance between 
samples was calculated from the latitude and longitude 
coordinates using the “geosphere” packages (Hijmans, 2019). 
Bray-Curtis dissimilarities were based on the core and satellite 
OTU tables using the vegdist function in the “vegan” package 
(Zhu et  al., 2019).

Phylogenetic Null Model Analysis
Null model was used to quantify the contribution of different 
ecological processes (stochastic and deterministic; Stegen 
et al., 2013, 2015). This approach uses the beta mean nearest 
taxon distance (βMNTD) to represent the pairwise 
phylogenetic turnover between communities, and beta-nearest 
taxon index (βNTI) to represent the environmental impacts 
calculated by the standard deviation of the observed βMNTD 
from the βMNTD of the null model. When beta-nearest 
taxon index (βNTI) < −2 and ≥ 2 was identified as 
homogeneous selection and heterogeneous selection, 
respectively. Moreover, 999 random permutations of 
communities generate a null distribution of Bray-Curtis 
dissimilarity, and a Raup-Crick metric (RCbray) is subsequently 
calculated by comparing empirically observed Bray-Curtis 
and simulated null distribution. The |βNTI| < 2 and 
RCbray < −0.95 or the |βNTI| < 2 and RCbray ≥ 0.95 RCbray were 
identified as homogenizing dispersal and dispersal limitation, 
respectively. When the |βNTI| < 2 and |RCbray| < 0.95 were 
identified as “Undominated” (Dini-Andreote et  al., 2015; 
Stegen et  al., 2015; Isabwe et  al., 2019). To demonstrate 
which process contributed more to the DDR slopes between 
the core and satellite sub-communities, samples controlled 
by dispersal limitation and heterogeneous selection were 
separately extracted from both sub-communities according 
to the results of Stegen’s null model. Then, the DDR slopes 
were calculated separately.

Habitat Niche Breadth
Niche breadth is often used to identify different levels of habitat 
specialization, which is a crucial trait that affects the relative 
importance of selection and dispersal limitation affecting 
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communities (Pandit et  al., 2009; Logares et  al., 2013; 
Liao et  al., 2016a). Niche breadth was calculated using Levins’ 
niche breadth (Levins, 1968) index (B):

B
P

j

i
N

ij

=

=∑
1

1
2

where Bj represents the habitat niche breadth; Pij is the 
mean relative abundance of OTU j in lake i (i.e., one of 
the 30 water samples); and N is the total number of 
communities. A high B-values indicate a wide range of 
OTUs and even distribution, representing wide habitat niche 
breadth and more metabolic flexibility at the community 
level (Wu et  al., 2018).

Network Construction
We used network analysis to examine co-occurrence networks 
of core and satellite sub-communities. To reduce noise and 
complexity of the datasets, we  kept OTUs that appeared 
in ≥5 samples for network analysis. Spearman’s rank 
coefficients (ρ) between those OTUs were calculated pairwise 
by the “Hmisc” package in an R environment. Only robust 
correlations with Spearman’s correlation coefficients (ρ) > 0.6 
and false discovery rate-corrected values of p < 0.01 were 
used to construct networks (Hu et  al., 2017a). Each node 
represents one OTU, and each edge represents a strong 
and significant correlation between two nodes. Network 
visualization was performed using the interactive platform 
Gephi (0.9.2). We  use the “igraph” R package to calculate 
the node-level network topologies features (node degree, 
betweenness centrality, closeness centrality, and transitivity) 
and were examined by Kruskal-Wallis test to measure 
differences (Bastian et al., 2009; Mo et al., 2020). In addition, 
“igraph” package was used to calculate and compare the 
topology characteristics of the real networks and 10,000 
Erdős-Rényi random networks, which had the same number 
of nodes and edges as the real networks (Jiao et  al., 2020). 
To understand the stability of the core and satellite networks, 
two indices were used to characterize the stability, including 
robustness and vulnerability. Natural connections were 
used to assess network stability by removing nodes in the 
network to evaluate the rate of robustness degradation 
(Peng and Wu, 2016). Network vulnerability is expressed 
as the maximal vulnerability of nodes in the network  
(Yuan et  al., 2021).

Statistical Analyses
Diversity index was analyzed using “vegan” package in the 
R environment (R Core Team, 2013). Kruskal-Wallis test 
was performed with the PAST software to compare the 
α-diversity and niche differences of the core and satellite 
sub-communities and to identify the significantly and 
differentially abundant phyla/classes and genera between the 
core and satellite sub-communities. All the R analyses were 
performed in version 3.6.1.

RESULTS

OTUs Composition and Diversity of the 
Core and Satellite Sub-Communities
After removing low quality sequences, a total of 103,870 reads 
were obtained in this study and clustered into 5,233 OTUs 
(Table  1). Good’s coverage ranged from 86 to 96%, indicating 
that sequences identified in these samples represent the majority 
of bacterial sequences present in the collected water samples 
(Supplementary Table S2). A positive relationship between 
the mean abundance of OTUs and their occurrence was observed 
(R2 = 0.24, p < 0.001; Figure  1A). The 1,276 OTUs fit a χ2 test 
were defined as the satellite sub-communities that with 4,500 
(4.33%) reads. In contrast, the remaining 809 OTUs (93,493 
reads), surpassing 2.5% confidence limit line of χ2 distribution, 
formed core sub-communities and accounted for 90.01% of 
the total reads (Table  1; Figure  1B).

In all taxa, Proteobacteria, Bacteroidetes, and Actinobacteria 
were the dominant phyla in the core and satellite sub-communities, 
together accounting for 71 and 78.62% of each sub-community 
sequences, respectively (Supplementary Table S3). Cyanobacteria 
was significantly abundant in the core sub-communities, while 
Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, 
Gemmatimonadetes, Thermi, and TM7 were found to be significantly 
dominant in the satellite sub-communities (Kruskal-Wallis test, 
p < 0.05; Figure 2). At the genus level, 43 genera showed significant 
differences between the two sub-communities (p < 0.05; 
Supplementary Figure S2). Among them, the genera Arthrobacter, 
B-42, Loktanella, and Rhodobacter harbored a higher abundance 
in the satellite sub-communities, while some genera, such as 
Planococcus, Psychroflexus, and Synechococcus exhibited significantly 
higher abundances in the core sub-communities. The α-diversity 
indices of the core and satellite sub-communities were compared 
based on Chao1 and Shannon indices (Figure  3). Both Chao1 
and Shannon indices of the satellite sub-communities were 
significantly higher than those of the core sub-communities (p < 0.001).

Geographic Patterns of the Core and 
Satellite Sub-Communities
Distance-decay relationship (DDR) is a fundamental pattern 
in ecology, in which community similarity decreases as the 
geographic distance increases. In the current study, although 
the significant positive DDRs (Mantel p < 0.05; Figure  4) were 
observed, the fitness values were relatively low (R2 < 0.1), 
indicating weak relationship of community dissimilarity with 
geographic distance for the core and satellite sub-communities. 
Meanwhile, the slope of DDRs was significant (p < 0.01) steeper 
for the core sub-communities (0.019) than that of the satellite 
sub-communities (0.004).

TABLE 1 | The number of OTUs and sequences of the core and satellite 
bacteria sub-communities.

Taxa OTU number Sequence number

ALL OTUs 5,233 103,870
Core OTUs 809 (15.46%) 93,493 (90.01%)
Satellite OTUs 1,276 (24.38%) 4,500 (4.33%)
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Niche Breadth and Ecological Processes 
Underlying the Core and Satellite Sub-
Communities
The niche breadth (B) analysis indicated that the average niche 
breadth for the core communities (4.11) was significantly wider 

than that of the satellite communities (2.65; p < 0.001; 
Supplementary Figure S3).

The results of the null model quantify the relative contributions 
of major ecological processes of the core and satellite 
sub-communities in the Tibetan lakes (Figure  5). We  found 

A B

FIGURE 1 | Distribution (A) and dispersion (B) of the core and satellite OTUs in the Tibetan lakes. (A) The OTU occurrence (number of samples in which a given 
OTU was detected) plotted against the mean relative abundance of each OTU across samples. The red line represents the linear regression model fit to species 
abundance distribution. (B) The OTU occurrence plotted against the index of dispersion for each OTU calculated as variance to mean ratio of abundance for each 
OTU. The red line represents 2.5% confidence limit for the χ2 distribution.

FIGURE 2 | The relative abundance of the 18 common phyla and the classes of Proteobacteria within the core and satellite communities. Asterisks indicate 
significant differentially abundant phyla/class between the core and satellite bacterial sub-communities (p < 0.05).
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A B

FIGURE 3 | Comparison of α-diversities of the core and satellite bacterial sub-communities. (A) Chao1 index and (B) Shannon index.

A

B

FIGURE 4 | The relationship between geographic distances and Bray-Curtis dissimilarities of the (A) core and (B) satellite bacterial sub-communities. The red line 
in each plot represents a linear regression model fit to Ln (geographic distance+1) vs. Ln (Bray-Curtis community dissimilarity). Gray band around the line indicates 
95% confidence interval. Asterisks denote significant different between slopes (p < 0.01).
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that heterogeneous selection was the most important process 
structuring of the core and satellite bacterial sub-communities 
(41.26 and 55.32% of the overall community turnover, respectively). 
Dispersal limitation and undominated showed similar relative 
importance in shaping the core sub-communities (32.56% vs. 
21.74% of the turnover; Figure  5A). In contrast, undominated 
process contributed about 27.38% to shaping the satellite 
sub-communities, while that of dispersal limitation process was 
less than 5.5% (Figure 5B). Generally, the results recommended 
that stochastic processes explained a higher proportion of the 
core sub-community variations than deterministic processes, 
while satellite sub-communities were primarily affected by 
deterministic processes. As shown in Supplementary Figure S4, 
core sub-community turnover that controlled by dispersal 
limitation process showed a negative distance-decay slope (−0.004), 
while satellite sub-community turnover showed a slight positive 
distance-decay slope (0.001). On the contrary, core sub-community 
turnover governed by heterogeneous selection process was 
significantly higher (p < 0.05) than that of satellite sub-communities 
(Supplementary Figure S4).

Co-occurrence Network of the Core and 
Satellite Sub-Communities
The whole network included 5,145 associations among 518 
microbial OTUs and exhibited scale-free characteristics (Power 
law: R2 = 0.71). Meanwhile, the real network exhibited higher 
values of average clustering coefficient (0.58 vs. 0.04), average 
path length (5.99 vs. 2.41), and modularity (0.64 vs. 0.19) than 
those of the respective Erdős-Rényi random, suggesting the 
real network was non-random and modular structure (Table 2). 
We  identified 423 and 95 core and satellite OTUs throughout 
the whole network, respectively (Figure  6A). In addition, the 
degree, betweenness, closeness, and eigenvector showed 
significantly higher values in the core sub-communities bacterial 
co-occurrence patterns than that in the satellite sub-communities 

in the Tibetan lakes (p  < 0.01; Figure  6B). The core 
sub-communities co-occurrence network exhibited higher 
robustness structure and lower network vulnerability compared 
to the satellite sub-communities (Supplementary Figure S5), 
indicating that the core sub-community network was more stable.

DISCUSSION

Community assembly mechanisms can predict community 
changes in space and time gradients, influence hydro-
biogeochemical function, and have potential implications for 
ecosystem function and biodiversity conservation (Jiang and 
Patel, 2008; Hanson et al., 2012; Nemergut et al., 2013; Graham 
and Stegen, 2017). In this study, we  used null model and 
network analysis to quantify the relative importance of ecological 
processes in shaping the core and satellite sub-communities 
and explore bacterial co-occurrence in the Tibetan lakes.

Biogeographical Patterns of the Core and 
Satellite Communities
In this study, our results showed that both of the core and 
satellite bacterial sub-communities displayed significant DDRs 
(Mantel p < 0.05; Figure  4). This implies that the core and 
satellite bacterial sub-communities were not a random collection 
of taxa (Liu et  al., 2015). This was consistent with previous 
studies on freshwater lakes, reservoirs, and marine environments 
(Galand et  al., 2009; Liu et  al., 2015; Liao et  al., 2017) and 
provided further evidence from Tibetan lakes. However, within 
this general pattern, we  also observed that the DDR slope of 
the core sub-communities was steeper than that of the satellite 
sub-communities, suggesting that the spatial turnover rate of 
the core sub-communities is higher than the satellite counterparts. 
This finding is consistent with the research results on bacterial 
communities in the reservoirs and rivers (Liu et  al., 2015). 

A B

FIGURE 5 | Delineation of the assembly processes underlying the core (A) and satellite (B) bacterial sub-communities. The percentage of turnovers governed by a 
process is used to represent its relative importance in community assembly. Low percentage contributions (<1.5%) are not shown.
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However, our results are opposite to an earlier study which 
revealed that the satellite taxonomic communities had higher 
spatial turnover rates than core counterparts in Yongjiang river 
watershed of China (Hu et al., 2017b). This contrary conclusion 
might be  ascribed to the different research zones and habitat 
types. In Hu et  al. (2017b)’s study, 29 river surface water were 
consideration. However, in the present study, 30 Tibetan lakes 
were studied, which exhibited larger geographic gradient.

Ecological Processes Underlying the 
Assembly of the Core and Satellite 
Communities
Studies have shown that environmental filtering or dispersal-
related processes can generate the DDRs of bacterial 
communities (Lindström and Östman, 2011; Liu et al., 2015). 
The process of environmental filtering generally differentiates 
microbial composition among locations, which will tend to 
produce a distance-decay relationship. By contrast, high 
dispersal will weak or eliminate the distance-decay relationship 
by counteracting compositional differentiation and the 
distance-decay relationship should be stronger when dispersal 
is more limited (Hanson et  al., 2012). To identify the main 
reason underpinning the different DDR between the core 
and satellite sub-communities, we  used a null model that 
did not involve spatial and explanatory variables. Our results 
suggest that the heterogeneous selection was the most 
important process in structuring the core and satellite 
sub-communities (41.26% vs. 55.32%). In heterogeneous 
selection, the slope of the core sub-communities exhibited 
significantly higher (p < 0.05) than satellite sub-communities, 
while DDR controlled by dispersal limitation showed an 
opposite trend in the core and satellite sub-communities 
(Supplementary Figure S4). This could imply the important 
role of heterogeneous selection in shaping the different DDR 
slopes between the core and satellite sub-communities. A 
possible explanation for this might be  due to environmental 
heterogeneity and the capability differences in the response 
to environmental change (Morrissey et  al., 2019). Another 
possible explanation for this is that differences in species 

of the core and satellite sub-communities may form different 
cell size communities, generating the discrepant assembly 
mechanisms. Cell size has often been regarded as an important 
factor in affecting the metabolic versatility (Farjalla et  al., 
2012) and dispersal potential (Liu et al., 2019c) of organisms. 
The metabolic activities and dispersal abilities due to the 
effect of cell size may affect stochasticity or deterministic 
adequacy for explaining their community assembly (Zinger 
et  al., 2019; Gao et  al., 2020). Finally, the 21.74 and 27.38% 
undominated processes that contributed to the assembly of 
the core and sub-communities, indicating that these 
sub-communities were shape by a more complex assembly 
mechanism (Mo et  al., 2018).

Bacterial sub-communities with wider niche breadth may 
have greater potential for dormancy (Wu et  al., 2018; Mo 
et  al., 2020). Thus, differences in niche breadth due to 
different species taxa and abundance in the core and 
satellite sub-communities (Supplementary Figure S2; 
Supplementary Table S3) can produce different dormancy 
strategies. The core sub-communities with wider niche breadth 
are more susceptible to enter dormancy of their cells than 
the satellite sub-communities, and reducing the active taxa 
affected by deterministic processes. This is an important 
metabolic strategy for microbial cells to manage with 
environmental stress and less vulnerable to deterministic 
processes (Lennon and Jones, 2011; Masanori et  al., 2011; 
Nemergut et  al., 2013).

Co-existence Patterns of the Core and 
Satellite Communities
Co-occurrence networks can partially reveal complex interactions 
within microbial communities and have been considered to 
be  an important tools for investigating potential interactions 
within microbial food webs (Faust and Raes, 2012; Liu et  al., 
2019a; Du et  al., 2020). Network topology features can reflect 
the complex interactions between microorganisms in the 
community. The present study showed that the core 
sub-communities have significantly higher network topology 
than satellite (Figure  6B). This suggests that there are stronger 
and more complex webs of interaction in the core than in 
the satellite sub-communities. Specific properties promoted 
community stability in co-occurrence networks, and competition 
could also increase the stability of the community structure 
(Ghoul and Mitri, 2016). More complex network structure 
indicates stronger connections between competitors and more 
efficient resource transfer (Morriën et  al., 2017; Yao et  al., 
2019). The core sub-community network had higher connectivity 
than satellite networks (Supplementary Figure S5A), which 
suggests that it was more efficient at transferring information, 
energy, and resources. On the other hand, the simple network 
structure also reflects the fragility of the satellite bacterial 
sub-community structure in the case of ecosystem perturbations 
(Wang et  al., 2018). In addition, our study also supports to 
Ghoul and Mitri’s (2016) argument that increasing the 
complexity of a co-occurrence network leads to more stable 
co-existence patterns.

TABLE 2 | Topological properties of co-occurrence networks of the Tibetan lake 
bacterial communities and their corresponding random networks.

Network properties Value

Empirical network

 Nodes 518
 Edges 5,145
 Average clustering coefficient 0.58
 Diameter 9.73
 Average path length 5.99
 Average degree 19.86
 Modularity 0.64
 Power-law model 0.71

Random networks

 Average clustering coefficient 0.04 ± 0.001
 Average path length 2.41 ± 0.001
 Modularity 0.19 ± 0.003

www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Yan et al. Bacterial Biogeography and Co-occurrence

Frontiers in Microbiology | www.frontiersin.org 9 September 2021 | Volume 12 | Article 695465

CONCLUSION

In summary, this study has provided a better understanding of 
assembly mechanisms and co-occurrence patterns of the core and 
satellite bacterial sub-communities across multiple Tibetan lakes. 
Our results demonstrated that the core bacterial sub-communities 
exhibited similar biogeographic patterns to the satellite counterparts, 
but their patterns were generally shaped via different assembly 
mechanisms. For the core sub-communities, stochastic processes 
played important roles, while deterministic processes are of 
importance in shaping the satellite sub-community assembly. The 
co-occurrence pattern of the core sub-communities was more 
complex and more stable. Therefore, in future studies, bacterial 
community should be  distinguished by traits of taxa in order to 
obtain comprehensive understanding of the biogeography and 
co-occurrence patterns of lake bacterial community.

Although the ecological model used can provide the in-depth 
results on the community assembly mechanisms, we acknowledge 
some limitations in the study. For example, the null model relies 
more on phylogenetic tree and lacks an explanation of the results 
through environmental factors. Therefore, it is necessary to use 
the null model and environment factors analysis at the same 
time in the subsequent research in order to obtain richer conclusions.
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FIGURE 6 | Properties of the correlation-based network among the core and satellite sub-communities. (A) Network of inter-taxon associations within and 
between core and satellite sub-communities. A connection stands for a strong (Spearman’s ρ > 0.6 or ρ < −0.6) and significant (p < 0.01) correlation. The size of each 
node is proportional to the degree of the OTU. Numbers represent the nodes and edges of the core and satellite sub-communities. (B). Comparison of node-level 
topological features between two different sub-communities. “**” indicates significant differences (p < 0.05), determined by the Kruskal-Wallis test.
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