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Although co-culture of paddy fields with aquatic animals is lucrative, the ecological
impacts of high-protein content entering the agricultural soil via animal pellet feed and
feces have not been well studied. Moreover, the effects of dietary protein on soils and
soil microbes remain unclear. To elucidate this, we examined soil bacterial and fungal
community composition and temporal changes in paddy fields subjected to different
protein-content diets via 165/18S rRNA gene amplicon sequencing analysis with a
high-throughput next-generation sequencer. MiSeq sequencing revealed that protein
content significantly impacted fungal community structure. High-protein diets reduced
bacterial community diversity and relative abundance in both July and October. The
phylum-level bacterial taxonomic composition was not affected by diet treatment, while
in fungi, a major phylum-level shift was evident. Hierarchically clustered analysis showed
that high-protein diets significantly reduced the relative abundance of Brevundimonas
in both July and October. Saprotrophic macrofungal diversity was negatively related to
dietary protein content. Considering microbial community structure and environmental
factors, ca. 15% protein content is appropriate for the rice-crab co-culture system that
we studied.

Keywords: MiSeq, rice crab coculture system, soil bacterial community, dietary protein content, soil fungal
community, soil community structure, nutrient translocation, alpha diversity

INTRODUCTION

Rice is a staple food for over half of the global population, and its production has increased
in the last two decades due to technological advances, including the use of pesticides and
chemical fertilizers. Although improving grain yield and rice quality are important goals for
many governments, minimizing chemical fertilizer and pesticide inputs is important for long-
term agricultural and environmental sustainability (Yao et al., 2017; Stuart et al., 2018). Rice fields
can provide a habitat mosaic of temporary and more permanent waters and sustain populations
of various aquatic species, including carp, crabs, crayfish, soft-shelled turtles, and frogs (Lawler,
2001). Rice-aquatic-animal co-culture has been widely studied; such systems can contribute to
the ecological intensification of agriculture by providing multiple ecosystem services, promoting
biological pest control, reducing the use of pesticides, improving soil quality, and enhancing crop
yields (Xie et al., 2011; Hu et al., 2016; Sha et al., 2017; Wan et al., 2019). Moreover, such systems
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increase protein production for human consumption and reduce
water use and environmental pollution (Bashir et al., 2020). Thus,
co-culture systems have gained increasing attention in recent
years because of their benefits.

In China, the government has established many projects to
help farmers develop diverse paddy field co-culture models,
including rice-duck, rice-fish, rice-crayfish, and rice-crab.
However, high-protein diets widely used in pond aquaculture
are also used in rice-aquatic animal co-culture. Undigested
protein-rich feed and feces are excreted into the bottom soil
of paddy fields, potentially causing severe nitrogen pollution of
the soil and irrigation water. However, studies have shown that
rice-animal co-culture can enhance nutrient use efficiency and
reduce nutrient loss to the environment via the complementary
use of nutrients by aquatic animals and rice (Hu et al,
2020). Nonetheless, the relationships between high-protein
diets and paddy field soil conditions in co-culture systems
remain unclarified.

Rice-crab co-culture is the characteristic rice-based ecological
aquaculture system used in northern China (Song et al,
2019; Wang et al., 2019). It improves soil nutrient levels and
increases soil-to-rice nutrient translocation capacity (Bashir et al.,
2021). Although high-throughput sequencing (e.g., Illumina)
is increasingly used to analyze rice soil microbial diversity
and community structure, the microbial response to different
rice-crab co-culture systems is yet to be adequately studied.
Determining soil bacterial community structure in rice-crab
co-culture systems can provide key initiatives for improving
aquaculture. Moreover, the soil bacterial community structure
has a strong influence on the bacterial microbiota of crabs.
The relationships between rice-crab co-culture soil microbiota
communities and dietary protein content have not previously
been studied. Therefore, we examined these dynamics and aimed
to provide a theoretical reference for these relationships.

MATERIALS AND METHODS

Ethics Statement

Our study did not involve endangered or protected species. In
China, breeding and catching Chinese mitten crabs, Eriocheir
sinensis, in rice fields does not require specific permits. All
efforts were made to minimize animal suffering and discomfort.
The experimental protocol was approved by the Animal Ethics
Committee of Shenyang Agriculture University.

Field Description and Experimental

Design

The experiments were performed in 12 paddy fields (each
6 x 7 m?) at Panjin Guanghe Crab Industry Co., Ltd., Panjin,
Liaoning Province, China, during the 2020 rice-growing season
(over 5 months). In total, 30,000 late megalopa-stage Chinese
mitten crabs (average weight was 6.25 £+ 1.21 mg) were
obtained from Panjin Guanghe Crab Industry and were randomly
distributed in the 12 fields (2,500 crabs/field). Three different
protein-content diets were formulated (15, 30, and 45% crude
protein). As a control, no supplemental food was provided

(Table 1). During the experiment, crabs were fed at 10% of body
weight per day (at 08:00, 12:00, and 18:00) for 5 months.

Sample Collection

Soil samples were collected on July 15, 2020, during the tillering
stage (15 days after crab introduction), and October 1, during the
ripening stage (100 days after seed sowing). For each plot, five
soil samples (diameter 2.5 cm and depth 0-20 cm) were pooled
to obtain one biological replicate. After removing rice roots and
stones, the pooled soil sample was placed in a sterile plastic bag
in an icebox until transport to a laboratory for further sample
storage and pH analysis. pH was quantified using a PHS-3C pH
meter (Shanghai, China) with 1:2.5 vol soil/H,O solutions.

DNA Extraction and Purification

Soil samples were homogenized, and a 0.8-g subsample of soil
was used for total genomic DNA extraction. DNA was extracted
using the OMEGA Soil DNA kit (Omega Bio-Tek, Norcross,
GA) according to the manufacturer’s instructions and stored
at —20°C before further analysis. The quantity and quality of
the extracted DNA were evaluated using a NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA)
and agarose gel electrophoresis, respectively.

16S rRNA Gene and ITS Amplicon
Sequencing

The V5-V7 regions of the bacterial 16S ribosomal RNA
genes were amplified by PCR using the forward primer 799
F (5-AACMGGATTAGATACCCKG-3') and reverse primer
1193R (5'-ACGTCATCCCCACCTTCC-3'). The forward primer
ITSE (5'-CTTGGTCATTTAGAGGAAGTAA-3") and reverse
primer ITSR (5-GCTGCGTTCTTCATCGATGC-3') were used
to amplify the fungal ITS regions.

Thermal cycling consisted of initial denaturation at 98°C
for 5 min, followed by 28 cycles of denaturation at 98°C for
30 s, annealing at 55°C for 30 s, and extension at 72°C for
45 s, with a final extension of 5 min at 72°C. Amplicons were
extracted from 2% agarose gels, purified using Vazyme VAHTS
DNA Clean Beads (Vazyme, Nanjing, China) according to the
manufacturer’s instructions, and quantified using the Quant-iT
PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA). The
soil sample bacterial community diversity and composition were
analyzed based on the raw sequencing data obtained using the
Mumina MiSeq platform at Shanghai Personal Biotechnology
Co., Ltd. (Shanghai, China), according to standard protocols.

Bioinformatics and Statistical Analysis

After sequencing, raw FASTQ data were processed using
QIIME2 and R v. 3.2.0, with slight modifications according
to the official tutorials'. Briefly, the raw sequence data
were demultiplexed, quality filtered, denoised, and merged,
and the chimeras were removed using the DADA2 plugin.
Amplicon sequencing variant (ASV)-level alpha diversity
indices (Chaol richness estimator, observed species, Shannon

'https://docs.qiime2.0rg/2019.4/tutorials/
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TABLE 1 | Composition and nutrient levels of the basal diet (as-feed basis, %).

Groups and sample time

Pellet content

Nutritional composition

July 15th October 1st Fish meal (%) Soybean meal (%) Wheat meal (%) Fish oil (%) Others (%) Crude protein (%) Crude lipid (%)
JTD_0 OTD_0 - - - _ _ _
JTD_15 OTD_15 6 3 72.59 7.5 10.91 15.01 9.13
JTD_30 OTD_30 27 13.5 43.09 5.5 10.91 30.49 9.27
JTD_45 OTD_45 a7 23.5 15.09 3.5 10.91 45.21 9.31

diversity index, Simpson index, Faith’s phylogenetic diversity
index, Pielou’s evenness, and Good’s coverage) were calculated
using the ASV table in QIIME2 and were visualized using
box plots. Taxonomic composition and abundance were
investigated using MEGAN and GraPhlAn, respectively. A Venn
diagram was generated using the R package “VennDiagram”
to visualize the shared and unique ASVs among samples or
groups, based on the occurrence of ASVs across samples
and groups, regardless of their relative abundance. The
raw reads have been deposited with the NCBI (BioProject
number PRINA693650).

RESULTS

Analysis of Pyrosequencing Data

In total, 55,522 bacterial and 75,786 fungal non-singleton
sequences were obtained from all 24 samples (Supplementary
Table 1), with average read lengths of 248 bp for bacterial
sequences (ranging 78-431 bp) and 358 bp for fungal sequences
(ranging 135-441 bp) (Supplementary Figures 1, 2). After
sequence processing and quality filtering, 88,281 bacterial
OTUs and 4,356 fungal OTUs were identified (Supplementary
Figures 3, 4). The observed and estimated community structure
indices were higher for bacterial than for fungal OTUs
(Supplementary Table 2). The pH data of those soil samples are
shown in Supplementary Table 3.

Bacterial and Fungal Community

Structure
The ten most abundant soil bacterial phyla were Proteobacteria,
Chloroflexi, Bacteroidetes, Acidobacteria, Actinobacteria,
Firmicutes, Gemmatimonadetes, Nitrospirae, Patescibacteria,
and Verrucomicrobia (Supplementary Figure 5A). The phylum-
level bacterial taxonomic composition was not affected by diet
treatment, while in fungi, a major phylum level shift was evident
(Figure 1A). Five bacterial phyla (Proteobacteria, Chloroflexi,
Bacteroidetes, Acidobacteria, and Actinobacteria) accounted for
90% of the sequences.

Regarding the fungal communities, 10 phyla
observed in the soil samples: Ascomycota, Basidiomycota,

were

Mortierellomycota, Rozellomycota, Chytridiomycota,
Basidiobolomycota, = Zoopagomycota,  Blastocladiomycota,
Mucoromycota, and  Aphelidiomycota  (Supplementary
Figure 5B). Fungal community composition underwent

major phylum-level shifts between July and October (Figure 1B):
Ascomycota dominated in October (especially in the control

group), and Basidiomycota comprised a large proportion of the
fungal community in the OTD_15, _30, and _45 groups.

Microbial Alpha and Beta Diversity
Table 2 shows the bacterial and fungal within-habitat (alpha)
diversity. According to the Chaol analysis. The bacterial richness
was highest in the JTD_0 group and lowest in the OTD_45 group.
The rarefaction curves show that bacterial community diversity
was lower in the diet treatment groups than in the control group
(Supplementary Figure 6). However, soil bacterial diversity and
evenness were not different between samples obtained under
the different treatments in July and October (Supplementary
Figure 7). Regarding fungal communities, the Chaol, Shannon,
and Simpson indices were higher in the JTD_30 and OTD_30
groups than in the other groups (Supplementary Figure 8).
Between-habitat (beta) diversity was evaluated via Principal
coordinate analysis (PCoA), Non-metric Multidimensional
scaling (NMDS), and cluster analysis. The PCoA based on
Bray-Curtis distances accounted for 30.7% of the bacterial
community variability and 47.9% of the fungal community
variability (Figure 2A,B). For the fungal community, the July
samples were separated from October samples in the PCoA
(Figure 2B). According to the NMDS analysis, the bacterial and
fungal communities had the same stress values (0.126 and 0.157,
respectively); only fungal communities were different between
July and October soils (Figure 2C,D).

Soil Microbial Community Taxonomic

Differences and Biomarkers

Hierarchically clustered genus-level heat-map analysis was used
to identify high-dimensional biomarker taxa with significantly
different abundances among the four diet treatments, comparing
the samples collected in July and October. The clustering
of these groups into two groups (“JTD_0 and JTD_15"
and “JTD_30 and JTD_45") revealed that the bacterial and
fungal taxa showed similar patterns (Figure 3). Compared
to other groups, Bacteroidetes sp. and SJA-15 sp. were more
abundant in the JTD_45 group in both the July and October
samples (Figure 3A,B). However, although A4b, SB-5, and
Brevundimonas were less abundant in JTD_30 and JTD_45
in the July samples, they were dominant in OTD_30 and
OTD_45 (Figure 3A,B). In terms of fungal genera, the
relative abundance of Phialemoniopsis, Pseudaleuria, and Echria
decreased with increased protein content in both July and
October (Figure 4A,B), whereas that of Pichia, Schizothecium,
and Pseudeurotiumn was higher in October than in July.
In JTD_45, although Malassezia and Mortierella had lower
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FIGURE 1 | Relative abundance of bacterial group (A) and fugal group (B) under different protein content diets treatments in July and October.
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TABLE 2 | Soil bacterial and fungal within habitat diversity index based on the llumina Miseq sequencing data from July and October under different crude protein diets.

Soil samples Microbe Chao1 Goods_coverage Observed_species Pielou_e Shannon Simpson
July JTD_0 Bacteria  5119.98 &+ 1558.71 0.9717 £ 0.0149 4606.83 + 1328.89 0.8731 £0.013 10.59 £ 0.2 0.9978 + 0.0004
JTD_15 4251.91 +£ 155.71 0.9801 £+ 0.0015 3849.57 + 152.21 0.8797 + 0.0065 10.48 + 0.04 0.9978 + 0.0004
JTD_30 4099.02 £+ 419.12 0.9802 + 0.0028 3694.13 + 322.66 0.8722 + 0.0077 10.33+£0.2 0.9976 + 0.0002
JTD_45 4049.1 £+ 305.11 0.9815 + 0.005 3743.6 + 151.92 0.8653 + 0.0035 10.27 £ 0.07 0.9976 + 0.0002
October OTD_0 4090.84 + 429.28 0.9799 + 0.0025 3637.1 + 343.27 0.8581 + 0.023 10.15 + 0.39 0.996 + 0.0024
OTD_15 4296.99 + 309.15 0.9788 + 0.0024 3842.73 £ 221.75 0.8676 + 0.0095 10.33+0.18 0.9969 + 0.0006
OTD_30 4074.2 £ 196.42 0.9823 + 0.0013 3750.67 + 213.86 0.8749 + 0.0161 10.39 + 0.26 0.9974 + 0.001
OTD_45 3861.73 +£ 347.4 0.9822 + 0.003 3515.4 £ 218.55 0.8656 + 0.009 10.2+£0.18 0.9974 + 0.0002
July JTD_0 Fungi 102.09 + 53.43 0.9977 + 0.0007 91 + 64.6149 0.43 +0.36 2.9967 + 2.5825 059+ 0.5
JTD_15 102.8 £ 18.8 0.9983 + 0.0005 98.9667 + 17.5799 0.55 £ 0.02 3.6495 + 0.0095 0.81 £0.04
JTD_30 205.13 £ 147.3 0.9925 + 0.0109 174.4 + 101.9428 0.64 £0.17 4.5775 £1.0317 0.85+0.12
JTD_45 98.18 + 8.84 0.9988 + 0.0001 95.6333 + 8.2851 0.68 + 0.05 4.4956 + 0.3902 0.89 +£0.04
October OTD_0 49+ 194 0.9973 + 0.0007 36.1667 + 19.4921 0.1 £0.1 0.5528 + 0.6199 0.13+0.17
OTD_15 93.93 + 51.84 0.997 + 0.0015 84.1 +52.8512 0.26 + 0.24 1.7478 +1.7091 0.35+0.34
OTD_30 141.37 £ 76.47 0.9968 + 0.003 132.3 + 68.9519 0.59 + 0.05 4.095 + 0.5988 0.83 +£0.03
OTD_45 94.57 + 13.75 0.9983 + 0.0011 90.6667 + 10.2627 0.49 +£0.14 3.1819 + 0.8991 0.72 £0.17
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FIGURE 2 | Effect of different protein content diets on soil bacterial community composition. Principal coordinate analysis (PCoA) of soil bacterial (A) and fungal (B)
communities using weighted UniFrac distance metrics. Non-metric multidimensional scaling (NMDS) ordination plot of soil bacterial (C) and fungal (D) communities
based on the number of OTUs detected by pyrosequencing.
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relative abundance in July, they were dominant in October
(Figure 4A,B).

DISCUSSION

As an important part of the paddy ecosystem, the soil microbial
community enhances paddy nutrient cycling and soil health and
protects the environment (Bruggen et al., 2015). However, it is
highly sensitive to the effects of external agricultural chemicals
such as fertilizers and pesticides (Itoh et al., 2003; Zhong and
Cai, 2007; Tang et al.,, 2020). Rice-fish co-culture can reduce
chemical application by improving land productivity and soil
fertility; this is because the excreta of aquatic animals provide
sufficient nutrients for the growth of soil microorganisms, which,
in turn, alter the oxygen conditions of paddy surface soil (Xie
et al,, 2010; Wang et al,, 2019). To examine these dynamics
further, we compared the soil microbial community in a rice-crab
co-culture paddy under different dietary protein treatments in
July and October.

Our findings indicate that bacterial communities are more
diverse than fungal communities. Similar results have been
reported in rice-rotation systems (Ma et al., 2020; Maguire
et al.,, 2020) and other rice co-culture systems (Li et al., 2018;
Hou et al., 2021). Compared to fungi, bacteria may be more
abundant in these systems because their range of metabolic and
nutritional strategies enables them to adapt to more complex
ecological niches and habitats. This explains why bacteria are
more abundant than fungi in soils with complex environments.
Although the rice-crab co-culture system can increase aquatic
food supply and farmer income and help sustain rice production,
the challenge of sustaining rice yield without increasing the
use of fertilizer-N, pesticides, and other costly inputs is on the
increase. Our results may provide referential experiences for
several other countries (e.g., Egypt, India, Indonesia, Thailand,
Vietnam, the Philippines, Bangladesh, Myanmar, and Malaysia)
that are practicing rice co-culture.

Co-culture systems involving rice and aquatic animals
cause nutrients such as carbon, nitrogen, and phosphorus
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to accumulate in the paddy soil, increasing its nutrient
load (Wan et al., 2019; Bashir et al, 2020). However, in
our study, phylum-level bacterial community composition
did not change significantly with culture time, and soil
bacterial diversity and evenness were not different between
the July and October samples. Xu (2020) found that soil
microbial biomass does not change significantly over years
of co-culture (Xu, 2020). Our study site at Panjin city,
which has over 30 years of co-culture history, had a higher
comprehensive index of soil nutrients and decomposing bacteria
(Proteobacteria and Chloroflexi) than other locations in China
(Bashir et al., 2021), suggesting that Proteobacteria, Chloroflexi,
and Bacteroidetes play important roles in structuring the rice-
crab co-culture soil flora.

However, our beta diversity analysis revealed that the fungal
community differed between the July and October samples.
To our surprise, the soil mycobiota were dominated by

relatively few saprotrophic fungal species instead of hundreds
of bacterial taxa. Saprotrophic macrofungi such as Ascomycota
and Basidiomycota are key regulators of soil nutrient cycling
and decomposition. In the present study, Ascomycota was
dominant in the control group, whereas Basidiomycota was
the most abundant in the protein-diet treatments. Although
soil macrofungi are generalists and occur in heterogeneous
environments, their diversity and richness can be impacted
by indiscriminate feeding during aquaculture (Crowther et al.,
2012). Additionally, fungal alpha diversity indices (Chaol,
Shannon, and Simpson) were higher in the JTD_30 and OTD_30
groups than in the low-protein treatment groups, indicating
that saprotrophic macrofungal diversity was negatively related
to dietary protein content. Although a high protein diet
can effectively promote the growth performance and digestive
physiology level of mitten crab, it can decrease soil pH from the
rice-crab coculture system and negatively impact soil bacteria
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community diversity. Moreover, formulated feed does not make
up a larger portion of the diet of E. sinensis, and excess
formulated feed added to the rice-crab system sinks to the
bottom of field, which may lead to water pollution (Guo et al,,
2015). Therefore, a lower dietary protein level such as ca.
15% is appropriate for the rice-crab co-culture system both
environmentally and economically.

In both July and October samples, the high-protein groups
(JTD_30, JTD_45, OTD_30, and OTD_45) had greater relative
abundances of Bacteroidetes and Thiobacillus than the control
and low-protein groups (JTD_0, JTD_15, OTD_0, and OTD_15).
We hypothesize that high-protein feeding might gradually reduce
soil pH while promoting organic matter, nitrate nitrogen,
phosphate, and other nutrient accumulation. This hypothesis is
supported by previous findings that the relative abundance of
Bacteroidetes and Thiobacillus increases during biogas irrigation
(Yuge et al., 2014). The occurrence of these bacteria in the rice
soil microbiota may reflect its physiological and biochemical
conditions, such as its high organic matter, protein content,
and pH. Therefore, soil pH may play a critical role in driving
the topological structure of the co-occurrence network for soil
microbiota, and the network was the most stable at neutral pH
(Chen et al., 2021).

Brevundimonas, as a plant growth-promoting rhizobacterial
genus, enhances the yield and growth of rice (Singh et al., 2016),
potato (Naqqash et al, 2020), and wheat (Anuj et al, 2012),
thereby allowing reduced application of chemical fertilizers and
causing minimal environmental impact. We found that high-
protein diets (JTD_30 and JTD_45) significantly reduced the
relative abundance of Brevundimonas in both the July and
October samples.

CONCLUSION

In conclusion, we evaluated how the soil microbial community
of a rice-crab co-culture system responded to different
dietary protein levels using partial 16S/18S rRNA gene
analysis. A number of dominant and rare bacterial phyla
(groups) were detected. Our results indicated that bacterial
community structure was not affected by diet treatment,
while in fungi, significant community structure change
was evident. Moreover, high-protein diets reduced Chao
1 index and the Observed_species index in both July and
October. Low-protein diet soils displayed greater bacterial
diversity than high-protein diets soils, which reveal that
a dietary protein level of ca. 15% is appropriate for this
rice-crab co-culture system. Owing to the limited sampling
and restricted sampling area (Panjin City, northern China),
these conclusions cannot be generalized to other locations.
However, our findings represent an important step toward
understanding how diet alters soil microbial communities in
rice—crab co-culture systems. In the future, we will conduct a
more comprehensive study of the interaction between feeding
patterns and soil microbial communities in rice-crab co-culture
systems to formulate more accurate recommendations for this
co-culture model.
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