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Raman spectroscopy (RS) is a widely used analytical technique based on the detection of 
molecular vibrations in a defined system, which generates Raman spectra that contain unique 
and highly resolved fingerprints of the system. However, the low intensity of normal Raman 
scattering effect greatly hinders its application. Recently, the newly emerged surface enhanced 
Raman spectroscopy (SERS) technique overcomes the problem by mixing metal nanoparticles 
such as gold and silver with samples, which greatly enhances signal intensity of Raman 
effects by orders of magnitudes when compared with regular RS. In clinical and research 
laboratories, SERS provides a great potential for fast, sensitive, label-free, and non-destructive 
microbial detection and identification with the assistance of appropriate machine learning 
(ML) algorithms. However, choosing an appropriate algorithm for a specific group of bacterial 
species remains challenging, because with the large volumes of data generated during SERS 
analysis not all algorithms could achieve a relatively high accuracy. In this study, we compared 
three unsupervised machine learning methods and 10 supervised machine learning methods, 
respectively, on 2,752 SERS spectra from 117 Staphylococcus strains belonging to nine 
clinically important Staphylococcus species in order to test the capacity of different machine 
learning methods for bacterial rapid differentiation and accurate prediction. According to the 
results, density-based spatial clustering of applications with noise (DBSCAN) showed the 
best clustering capacity (Rand index 0.9733) while convolutional neural network (CNN) topped 
all other supervised machine learning methods as the best model for predicting Staphylococcus 
species via SERS spectra (ACC 98.21%, AUC 99.93%). Taken together, this study shows 
that machine learning methods are capable of distinguishing closely related Staphylococcus 
species and therefore have great application potentials for bacterial pathogen diagnosis in 
clinical settings.

Keywords: Raman spectroscopy, surface enhanced Raman spectroscopy, convolutional neural network, long 
short-term memory neural network, machine learning
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INTRODUCTION

The genus Staphylococcus includes many commonly encountered 
and clinically important pathogenic species in nosocomial 
infections, such as Staphylococcus aureus and Staphylococcus 
epidermidis, etc. (McGavin and Heinrichs, 2012). Some of these 
Staphylococcus species could cause severe infectious diseases, 
especially in immune-compromised patients with the use of 
catheters and other medical implants (Schlievert et  al., 2016). 
Therefore, it is crucial to develop rapid diagnostic methods 
for pathogenic bacteria. Raman spectroscopy (RS) is a widely 
used non-destructive, vibrational spectroscopic technique in 
the fields of biology and medicine, such as cell-drug interactions 
(Buckley and Ryder, 2017) and cancer diagnosis (D’Acunto 
et  al., 2020), etc., which normally generates spectra of the 
analytes that can be further used for quantitative and qualitative 
analyses (Das and Agrawal, 2011). The basic principle of Raman 
spectroscopy relies on the photons in elastically scattered after 
interacting with vibrating molecules within the sample. Since 
molecular vibrations are distinct for each molecule, the vibrational 
Raman spectrum for a sample is therefore unique with 
characteristic peaks that are often termed as molecular 
fingerprints. However, the major drawback for traditional RS 
is its inherent weakness of signals, hence very low detection 
sensitivity (Jones et  al., 2019). In addition, it is very difficult 
for RS to obtain reliable spectra due to its comparatively poor 
reproducibility (Dong and Zhao, 2017).

Recently, enhanced Raman spectroscopic techniques have 
emerged, such as surface enhanced Raman spectroscopy (SERS) 
and tip-enhanced Raman scattering (TERS; Jones et  al., 2019). 
SERS is a surface-sensitive technique that can enhance the 
intensity of Raman scattering at the level of several orders of 
magnitude by exploiting surface plasmons (SPs) of metallic 
nanostructures (Pérez-Jiménez et  al., 2020), also known as 
SERS substrate, which is sufficient to analyze bacterial samples 
at single-cell resolution (Weiss et al., 2019). Common examples 
for SERS substrates include silver and gold nanoparticles (NPs) 
since they do not have any Raman active modes (Bora, 2018) 
and show outstanding SERS enhancements (Pérez-Jiménez et al., 
2020). Comparatively speaking, silver colloidal nanoparticles 
(AgNPs) has a high molar extinction coefficient from visible 
to near infrared region, whereas gold is commonly used for 
red and near infrared regions; in addition, AgNPs show higher 
plasmon quality than that of gold NPs (Wei et al., 2018; Pérez-
Jiménez et  al., 2020). Therefore, AgNPs have been widely 
employed for bacteria detection in SERS studies, which are 
also the case in this study for the differentiation and identification 
of Staphylococcus species.

Due to the complexity of bacterial composition, large datasets 
are regularly acquired during SERS analyses, which make the 
classical linear methods no longer sufficient for data processing 
(Lussier et  al., 2020). Machine learning (ML) methods focus 
on constructing models via learning patterns from large sets 
of data and improving the accuracy of models over time, which 
belongs to the field of artificial intelligence (AI). ML algorithms 
have been successfully applied in classification, clustering, 
and prediction tasks over large, high-dimensional datasets 

(Marsland, 2014). In fact, ML algorithms have found many 
applications in Raman spectroscopy, especially for the 
differentiation and identification of bacterial pathogens 
(Rebrošová et  al., 2017; Chen et  al., 2019; Ho et  al., 2019; 
Uysal Ciloglu et al., 2020). For example, Rebrošová et al. (2017) 
recruited three classical supervised learning methods, linear 
discriminant analysis (LDA), one nearest neighbor (1NN), and 
support vector machine (SVM), to analyze 16 Staphylococcus 
strains, according to which, 1NN achieved the highest accuracy 
(99.3%). In addition, Ho et  al. (2019) used the state-of-the 
art deep learning model convolutional neural network (CNN) 
to address low signal-noise-ratio (SNR) one-dimensional Raman 
spectral data for the first time, which not only achieved more 
than 82% prediction accuracy for bacterial identification, but 
also successfully differentiated methicillin-resistant (MRSA) and 
methicillin-susceptible S. aureus (MSSA) with 89 ± 0.1% accuracy.

Currently, there is little study focusing on the systematic 
comparison of performances of different machine learning 
methods in terms of both supervised and unsupervised learning 
algorithms. Here, we  applied three unsupervised learning 
algorithms and 10 supervised learning algorithms to analyze 
2,752 Raman spectra generated from 117 Staphylococcus strains 
belonging to nine Staphylococcus species. According to the 
comparative study of the three unsupervised learning methods, 
density-based spatial clustering of applications with noise 
(DBSCAN) had the best capacity for clustering Staphylococcus 
species into different groups (Rand index 0.9733). We  also 
compared the prediction capacity of 10 supervised learning 
algorithms, which showed that CNN was the best predicting 
model for analyzing Staphylococcus Raman spectra with accuracy 
(ACC) at 98.21% and area under curve (AUC) at 99.93%. 
Taken together, we  concluded that machine learning methods 
were efficient for the differentiation and identification of 
pathogenic Staphylococcus species, which showed promising 
potentials for rapid and non-invasive clinical diagnostics of 
bacterial pathogens in near future.

MATERIALS AND METHODS

Chemical and Biological Materials
A total of 117 Staphylococcus strains belonging to nine 
Staphylococcus species were included in this experiment: 12 
strains of S. aureus (N = 531), 12 strains of S. capitis (N = 282), 
30 strains of S. epidermidis (N = 649), 18 strains of S. haemolyticus 
(N = 360), 20 strains of S. hominis (N = 550), six strains of 
S. kloosii (N = 80), three strains of S. sciuri (N = 70), eight strains 
of S. warneri (N = 140), and eight strains of S. xylose (N = 90). 
A total of 2,752 surface enhanced Raman spectra were collected, 
which was denoted by the letter N within the parentheses for 
each species. All the strains were clinical isolates stored in 
the Department of Laboratory Medicine, the Affiliated Hospital 
of Xuzhou Medical University, Xuzhou, Jiangsu Province, China. 
All of the strains were identified and confirmed through 
biochemical methods plus Matrix-assisted laser desorption/
ionization-time of flight (MALDI-TOF) mass spectrometry (MS) 
and stored in Thermo-Fisher freezer at −80°C. Before Raman 
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spectroscopy, all the strains were thawed, inoculated onto 
Mueller-Hinton agar plates (Sigma-Aldrich), and cultivated for 
24 h at 37°C. Colonies were randomly selected and mixed 
with negatively-charged silver nanoparticle substrate for SERS.

Preparation of Negatively-Charged Silver 
Nanoparticle Substrate
About 200 ml of deionized water (ddH2O) and 33.72 mg of 
AgNO3 (Sinopharm, Beijing, China) was added to a clean and 
sterile Erlenmeyer flask, which was then gently mixed and heated 
on a magnetic stirrer. After boiling, 8 ml of 1 wt% sodium citrate 
was added into the mixture, which was heated for 15 min at 
the stirring rate of 650 r/min. Stop heating, continue stirring, 
and wait for the mixture to cool down to room temperature. 
The final volume was set to 200 ml. Then, take 1 ml of the final 
solution and place it in a sterile Eppendorf tube, centrifuge the 
tube at 7,000 r/min for 7 min, discard the supernatant after 
centrifugation, and resuspend the solution with 100 μl of ddH2O 
to obtain a uniform milky gray solution. The solution is the 
negatively-charged silver nanoparticle substrate. Store the solution 
in the dark at room temperature for later use.

Surface-Enhanced Raman Spectroscopy
After cultivation, a single colony of a Staphylococcus species 
was inoculated into 15 μl phosphate buffer saline (PBS) and 
well mixed via vigorous vortexing, which was then well mixed 
with 15 μl negatively-charged silver nanoparticle substrate solution. 
The mixed solution was dropped onto silicon wafer for complete 
dry. The dried spot was then measured by commercial i-Raman® 
Plus Raman spectrometer BWS465-785H (B&W Tek, 
United  States) for Raman spectral generation. Measurement 
settings were described below. Laser power: 340 mW, nominal 
at exiting probe; 455 mW, nominal at laser port. Wavelength: 
785 nm. Detector type: high quantum efficiency CCD array. 
Raman shift range: 65–2,800 cm−1. Spectral acquisition: 20 s. 
Resolution: <3.5 cm−1 at 912 nm. Each spectrum consists of 657 
points measured in the range 519.56–1,800.81 cm−1.

Preliminary Analysis of Raman Spectra
Averaged Raman Spectra
Original data for each sample were sourced from Raman 
spectrometer via the software BWSpec 4.02 (B&W Tek, 
United  States) and saved in plain text format. For all spectral 
files in a Staphylococcus species, the columns Raman shift and 
Raman intensity were first extracted from 519.56 to 1,800.81 cm−1 
and then put together via in-house Python scripts. The 
re-organized data were further calculated for average intensity 
and standard deviation at each Raman shift and visualized 
via Origin (OriginLab, United  States).

Identification of Characteristic Peaks
The software LabSpec 6 (HORIBA Scientific, Japan) was used 
for processing and smoothing the averaged Raman spectra 
data. The parameters were first set at Degree = 4, Size = 5, and 
Height = 50, and then click the button “Smooth.” For baseline 
correction, use the following settings: Type = Polynom, Degree = 6, 

Attach = No, and then click the button “Auto.” After that, start 
to search the characteristic peaks. Function was set to GaussLoren, 
Level to 13%, and Size to 19 while other parameters were 
kept in default. Then, click on the “Search” button. Finally, 
use LabSpec 6 to normalize the spectra in order to better 
compare the curves from different Staphylococcus species. All 
the characteristic peaks were annotated with a black arrow. 
Common biopolymers, such as nucleic acids, proteins, lipids, 
and carbohydrates, etc. have been widely studied by Raman 
spectroscopy, which has led to the assignment of the Raman 
characteristic peaks to various molecular vibrations as 
summarized in Table  1. Dot matrix plot was also drawn to 
visualize the distribution of characteristic peaks among the 
nine Staphylococcus species in Supplementary Figure  1.

Machine Learning Methods
Data Preprocessing
Principal component analysis (PCA) was used to reduce the 
dimensionality of each Staphylococcus Raman spectra. According 
to PCA analysis, a few meaningful dimensions were identified, 
which were mainly determined by the degree of dispersion 
(variance) of all observations in each dimension. Total variance 
contribution rate (≥99%) was used as an indicator in this 
study. The results showed that 10 principal components were 
found. In order to avoid different units from affecting the 
results of data analysis, all data were normalized by column 
to improve the accuracy and accelerate the convergence speed 
of subsequent supervised and unsupervised machine 
learning algorithms.

Unsupervised Learning
Three clustering algorithms, K-means clustering algorithm 
(K-means), agglomerative nesting (AGNES), and DBSCAN, 
were used in this study to analyze the pre-processed Raman 
spectral data via PCA. In particular, we  set the K value (n_
clusters) in the K-means algorithm to 9, and divided each 
point into the cluster represented by the nearest cluster center 
point. After all points were allocated, these points in the cluster 
were re-calculated in terms of the center point of the cluster 

TABLE 1 | Band assignments of characteristic peaks to potential metabolites in 
Raman spectra of Staphylococcus species.

Raman shift (cm−1) Band assignment References

555–562 Guanine/Thymine/Uridine Mert et al., 2015
649–654 Guanine Ahmed et al., 2013
727/730/732 Nucleic acids Chao and Zhang, 2012
856 Tyrosine Chaturvedi et al., 2016
957/958 C=C Ahmed et al., 2013
1,003 C-H Chaturvedi et al., 2016
1,048 P-O Chen et al., 2015
1,089/1,093 Phenylalanine Ahmed et al., 2013
1,242 Amide III Chisanga et al., 2018
1,323–1,330 Adenine ring Chisanga et al., 2018
1,370–1,383 Amide III Perez-Guaita et al., 2016
1,445–1,466 N=N aromatic and aliphatic Nguyen et al., 2013
1,577–1,582 Guanine/Adenine Chisanga et al., 2018
1,689–1,697 C=O, C=C Nguyen et al., 2013
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FIGURE 1 | Schematic illustration of convolutional neural network (CNN) data flow during processing surface enhanced Raman spectra of Staphylococcus 
species. In specificity, a particular strain was first mixed with silver colloidal nanoparticles (AgNPs) and then smeared on the silicon chip. Raman spectrum 
fingerprinting data in the smearing area were then generated. In-house python scripts were used to perform principal component analysis (PCA) for dimension 
reduction and spectral normalization, which was then processed through alternating convolutional layers and pooling layers via different activation functions in order 
to classify and predict the nine Staphylococcus species.

by taking the average value. Thus, the center point of the 
cluster was iteratively re-allocated and updated until the center 
point of the cluster changed little or reached the specified 
iteration frequency. As for the AGNES hierarchical clustering 
algorithm, we  also set the K value (n_clusters) to 9, and the 
linkage mode was set to “ward,” that is, minimization of the 
differences in all clusters in terms of sum of squares. By using 
the bottom-up strategy, each object was initially treated as a 
cluster. Then, these atomic clusters were merged into a larger 
cluster until all objects were in the same cluster or met the 
termination condition. In terms of DBSCAN algorithm, the 
minimum rough value (min_samples) was set to 9, and the 
density radius was set to 0.7. By using the scikit-learn library 
in Python (Pedregosa et  al., 2011), we  calculated the adjusted 
Rand Index with a value between [−1, 1] so as to measure 
the degree of agreement between the clustering results and 
the real situation. The closer the value is to 1, the better the 
clustering effect is.

Supervised Learning
According to the spectral characteristics of Staphylococcus 
species, we  used eight types of traditional supervised machine 
learning methods that are K-nearest neighbors (KNN, 
KNeighbors), decision trees (DT, DecisionTree), random forest 
(RF, RandomForest), gradient boosting (GB, GradientBoosting), 
SVM, adaptive boosting (AdaBoost), Gaussian naive Bayes 
(GNB, GaussianNB), quadratic discriminant analysis (QDA, 
QuadraticDiscriminantAnalysis), and two deep learning methods, 
namely, CNN and long short-term memory neural network 

(LSTM) to process one-dimensional Raman spectral 
fingerprinting data via scikit-learn library (Pedregosa et  al., 
2011). For all the algorithms, the sample data were divided 
into 70% of the training set and 30% of the test set. We  then 
converted previously defined labels into a hot encoding form 
that could be  easily recognized by the computer. Encapsulated 
classifier functions in the scikit-learn library were called for 
the analysis while the corresponding parameters were set, 
accordingly. For example, we  set the kernel function of SVM 
to rfb, the penalty parameter C = 0.8, and the kernel function 
parameter gamma = 20. As for the two deep learning algorithms, 
CNN consisted of one initial input layer, three alternative 
convolutional layers, and three pooling layers, plus one fully 
connected layer and output layer (Figure  1). The three 
convolutional layers contained 16, 64, and 64 convolution filters 
of different sizes. A single training iteration (epochs) was set 
to 5, the number of batches (batch_size) for each training 
was set to 10, and adam was selected for the optimization 
algorithm of the loss function.

In this study, LSTM contained an input layer, two hidden 
layers, two regularization methods, and a fully-linked neural 
layer. The two hidden layers used the relu and sigmoid activation 
functions, respectively (Figure  2). The optimization algorithm 
used for the loss function was adam while the single training 
iteration (epochs) was set to 50.

Whether using supervised machine learning algorithms for 
regression, classification, or clustering, quantitative indicators for 
testing the effects of supervised machine learning models are 
inevitable and important. Therefore, all these algorithms were 
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scored by the accuracy rate (ACC), recall rate (Recall), F1 score 
(F1-score), Matthews correlation coefficient (MCC), precision 
(Pre), and KAPPA coefficient (kappa). In order to compare the 
stability of the selected models, this study also used 5-fold cross-
validation to evaluate the constructed models. Briefly, in each 
independent test, the whole data set was randomly divided into 
five subsets, four of which were used as training data sets while 
the remaining one was used as a verification dataset. The 
verification process could be  repeated for different times to 
evaluate the stability of the model. The average accuracy of all 
verification segmentations was taken as the overall accuracy. In 
addition, in order to estimate a classifier’s ability to predict a 
certain sample at a specific threshold, receiver operating 
characteristic (ROC) curves were drawn for all the machine 
learning methods. The closer the ROC curve was to the upper 
left corner, the higher the true correct rate (TPR) of the test, 
and the lower the false correct rate (FPR). Therefore, the point 
on the ROC curve closest to the upper left corner had the 
largest sum of sensitivity and specificity. Finally, the classification 
and prediction results were visualized using a confusion matrix 
for CNN model. Rows corresponded to bacterial species identified 
by standard biochemical tests and MALDI-TOF MS (true class) 
while columns corresponded to bacterial identification predicted 
by the CNN algorithm. For a detailed procedure of machine 
learning analysis of Staphylococcus Raman spectra in this study, 
please refer to Figure  3.

RESULTS

Raman Spectra for Staphylococcus 
Species
Average Raman Spectra
Average Raman spectra with SE (shaded error bands) could 
clearly and quantitatively display the general trend and also reflect 
the data variance in the Raman spectra, which were present in 

Figure  4 for all the nine Staphylococcus species explored in this 
study. It was noteworthy that we  used 20% of the SE at a given 
Raman shift for the visualization of the error bands. Since band 
shape was important for identifying characteristic peaks, we  also 
used Savitzgy-Golay smoothing algorithm (also known as moving 
polynomial method) to preserve the band shape, which worked 
better than other methods such as moving average algorithm 
and Fourier filter that might lead to the loss of spectral information 
(Radzol et  al., 2014).

Characteristic Peaks of Raman Spectra
Since each Raman spectrum contained multiple peaks, it was 
rather difficult to recognize the individual contributions of the 
numerous peaks. Thus, the average Raman spectra of the nine 
Staphylococcus species were analyzed by Gauss-Loren function 
via LabSpec software (Tagliaferro et  al., 2020), through which 
characteristic peaks for each average Raman spectrum were 
identified and were marked with black arrows in Figure  4. 
According to previous studies, spectral peaks could be assigned 
to known metabolites; however, due to the complexity of the 
Raman spectra, identities of the metabolites could only 
be  speculated (Nguyen et al., 2013). As for the Raman spectral 
results in this study, different peak combinations were observed 
for each Staphylococcus species (Table  1).

In specificity, all the species had prominent peaks at 
555–562 cm−1 (Guanine/Thymine/Uridine) except for S. aureus 
(Mert et  al., 2015). As for Raman shift from 649 to 654  cm−1 
(Guanine), all the species had characteristic peaks within this 
region except for S. warneri (Ahmed et al., 2013) while S. warneri 
had unique peak at 856 cm−1 (Tyrosine; Chaturvedi et al., 2016). 
In addition, characteristic peaks at 727/730/732 cm−1 (nucleic 
acids) were also present in all Staphylococcus species (Chao 
and Zhang, 2012). As for the C=C double bond (957 and 
958 cm−1), this characteristic peak was also identified in the 
Raman spectra of all Staphylococcus species (Ahmed et al., 2013). 
In the strains S. warneri, S. hominis, and S. kloosii, a unique 

FIGURE 2 | Schematic illustration of long short-term memory neural network (LSTM) analysis of Staphylococcus Raman spectra. The one-dimensional Raman 
spectra data were first normalized and then used as input for LSTM. After a fully connected layer and regularization operation, different activation functions were 
used to improve the accuracy of the model. After going through a fully connected neural layer, Raman spectral data of Staphylococcus species were 
correspondingly classified and predicted.
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characteristic peak 1,003 cm−1 (C-H) was identified in all of 
them while other strains did not have this peak (Chaturvedi 
et  al., 2016). It was also observed that P-O (1,048 cm−1) was 
only present in S. warneri (Chen et  al., 2015). In terms of 
phenylalanine (1,089, 1,093 cm−1), only S. xylose and S. sciuri 

showed the reported peaks (Ahmed et  al., 2013). In addition, 
all strains had the peak of adenine ring (1,323–1,330 cm−1; 
Chisanga et  al., 2018) while S. haemolyticus, S. epidermidis, 
S. xylose, S. kloosii, and S. aureus had a unique peak at 1,370–
1,383 cm−1 for the amide III (Perez-Guaita et  al., 2016). It was 

FIGURE 3 | Schematic illustration of the generation and analysis of SERS spectra for the nine Staphylococcus species, which involve clinical sample collection and 
bacterial culture (blue square), AgNO3 silver nanoparticle solution preparation (red square), bacteria and AgNO3 solution mixture, Raman spectroscopy (yellow 
square), Raman spectra raw data pre-treatment (dark green square), and unsupervised and supervised machine learning algorithms (light green square).
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noteworthy that S. aureus also had amide III at the characteristic 
peak 1,242 cm−1 (Chisanga et  al., 2018). The identification of 
peaks in the range of 1,445–1,466 cm−1 in all the Staphylococcus 
species was indicative of N=N aromatic and aliphatic substance 
(Nguyen et  al., 2013). In addition, guanine and adenine peaks 
(1,577–1,582 cm−1) were observed in all the species except for 
S. warneri strains (Chisanga et al., 2018). Finally, the characteristic 
peak for the combination of C=O and C=C bonds in the 
range of 1,689–1,697 cm−1 was seen in S. capitis, S. xylose, 
S. sciuri, and S. kloosii (Perez-Guaita et  al., 2016).

Unsupervised Machine Learning Methods
Unsupervised learning algorithms aim to seek the representations 
of a mixed dataset by splitting the data into well-separated 

groups called clusters. Thus, unsupervised methods are mainly 
used for clustering data without a priori knowledge (Sikirzhytski 
et  al., 2010). In this study, we  employed three commonly used 
unsupervised machine learning algorithms for clustering surface 
enhanced Raman spectra of Staphylococcus species, which 
included K-means, DBSCAN, and AGNES. K-means partitions 
data into k distinct clusters based on distance to the centroid 
of a cluster, which have been successfully applied to the analysis 
of Raman spectra from biological samples such as breast cancer 
(Kothari et  al., 2021), colonic cancer (Beljebbar et  al., 2009), 
and macromolecules (Pahlow et al., 2018). As for the DBSCAN 
algorithm, it is a density-based clustering that looks for high-
density areas and extends clusters from them (Guyeux et  al., 
2019). Thus, the pre-set number of clusters is not required. 

FIGURE 4 | Averaged surface enhanced Raman spectra of nine clinical Staphylococcus species. For each Raman spectrum, multiple spectra were used, that is, 
Staphylococcus aureus (n = 531), Staphylococcus capitis (n = 282), Staphylococcus epidermidis (n = 649), Staphylococcus haemolyticus (n = 360), Staphylococcus 
hominis (n = 550), Staphylococcus kloosii (n = 80), Staphylococcus sciuri (n = 70), Staphylococcus warneri (n = 140), and Staphylococcus xylose (n = 90). The X-axis 
represented Raman shift that ranged from 519.56 to 1,800.81 cm−1 while the Y-axis represented Raman intensity in arbitrary unit (a.u.). For each spectrum, characteristic 
peaks were marked with black arrows and numbered with the corresponding Raman shift. Shadow region for each spectrum represented 20% of Raman shift SD.
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In terms of AGNES, it uses hierarchical agglomerative approach 
to divide a dataset into clusters via successive fusions of the 
individual objects (Oyelade et  al., 2016). However, the three 
methods are rarely used for Raman spectral analyses. In this 
study, all the clustering results were visualized in Figure  5 
via Python scikit-learn library, from which a clear picture of 
clustering effects could be  observed. In order to obtain a 
qualitative comparison of the performance of the three methods, 
Rand Index, a metric for the assessment of cluster algorithm 
performance, was calculated (Rand, 1971). According to the 
result, DBSCAN had the highest score of 0.9733 while Rand 
indices for K-means and AGNES are 0.933 and 0.9291, 
respectively. In sum, the result suggested that the discrimination 
of Staphylococcus species via unsupervised machine learning 
analysis of surface enhanced Raman spectra was plausible, 
which had the potential to be  applied in clinical settings.

Supervised Machine Learning Methods
Comparison of 10 Supervised Machine Learning 
Algorithms
Supervised learning is to use an algorithm to learn the mapping 
function Y = f(X), where X is an input variable while Y is an 
output variable. The purpose of the learning process is to use 
unknown input data X to accurately predict its output Y. Briefly, 
supervised learning algorithms aim to establish a correlation 
between known input variables and dependent variables (labels) 
via data training in order to predict the outcomes of new 
input variables (Xu and Jackson, 2019).

In this study, we compared 10 commonly encountered methods, 
which were KNN, DT, RF, GB, SVM, AdaBoost, GNB, QDA, 
CNN, and LSTM, in terms of their capacities in the analysis 
of Staphylococcus Raman spectral data. Through calculating and 
comparing the machine learning scores, that is, ACC, Recall, 
F1-score, MCC, Pre, and KAPPA, we  revealed that the deep 
learning algorithm CNN had the best prediction accuracy (98.21%), 
together with the largest AUCs (99.93%). Recently, Ho et  al. 
(2019) also compared the performance of classic machine learning 
methods, that is, logistic regression (LR) and SVM, with the 

deep learning algorithm CNN, which showed a similar result. 
In particular, LR and SVM achieved accuracies of 75.7 and 
74.9%, respectively, while CNN had an average isolate-level 
accuracy of 82.2 ± 0.3% (Ho et  al., 2019). Except for CNN, 
another deep learning algorithm LSTM that was rarely used 
for Raman spectral analysis also performed well with high ACC 
(94.33%) and AUC (99.83%) values. In addition, classic methods, 
such as KNN, RF, DT, and GB also achieved good prediction 
accuracies while SVM, AdaBoost, QDA, and GNB were not 
recommended for the analysis of Raman spectra of Staphylococcus 
species. Predication performance of the 10 supervised machine 
learning methods is present in Table  2.

Since CNN achieved the highest prediction accuracy and 
largest AUC value, we  investigated into data analysis procedure 
in order to explain how the algorithm was refined in this study. 
In specificity, For the CNN model, it can automatically extract 
features from things without artificial intervention, avoiding 
complex data preprocessing procedures. In addition, the 
convolutional layer and the pooling layer in the CNN algorithm 
are alternately applied, using different convolution kernels and 
the entire range of data for convolution. Thus, the algorithm 
greatly simplified the amount of data, improved computing 
efficiency and robustness, and completed nonlinear multi-
classification through the fully connected layer task. In this study, 
we  used the classic deep learning model LeNet-5, with six 
convolutional layers, three pooling layers, and two fully connected 
layers, while the size of the convolution kernel is set to 3*1. 
Then, each Raman spectrum was input into the CNN in the 
form of one-dimensional data. The Raman shift ranged from 
519.56 to 1,800.81 cm−1, leading to the generation of a total of 
667 Raman shifts. ReLU activation function was used to avoid 
the problems of gradient explosion and gradient disappearance, 
which speeded up the model convergence. The Adam loss function 
was used to avoid the model from falling into a local minimum. 
Since the recognition target format is in One-Hot Encoding 
form, categorical_crossentropy was used as the loss. In order 
to facilitate the orderly linking of neurons in the network, Flatten 
Layer was used to stretch the data into one column, followed 

A B C

FIGURE 5 | Clustering results of nine Staphylococcus species via (A) K-means, (B) density-based spatial clustering of applications with noise (DBSCAN), and 
(C) agglomerative nesting (AGNES). The PCA score plot showed the two directions of largest variance in the data and provided valuable insights into the nature of 
the surface enhanced Raman spectra of Staphylococcus species. Each color corresponded to one group of Staphylococcus species as denoted in the figure legend.
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by the Softmax output layer in order to realize multi-class 
identification of pathogenic bacteria samples.

Receiver operating characteristic curves compare sensitivity 
and specificity across a range of values for the ability of 
supervised machine learning methods to predict a dichotomous 
outcome while the area under the ROC curves (AUCs) mean 
overall accuracies in distinguishing Staphylococcus species among 
each other (Florkowski, 2008). Thus, ROC curves are a graphical 
demonstration of true positives and false-positives across a 
range of cut-offs. In this study, we  compared the ROC curves 
of 10 supervised machine learning methods, together with the 
corresponding AUCs, which clearly showed that the top three 
methods with the best performances were CNN, LSTM, and 
KNN (Figure  6).

Confusion Matrix for CNN Algorithm
Confusion matrix is a table that describes the classification 
results in detail, including true class and predicted class. Since 
CNN performed best in terms of Staphylococcus species prediction 
in this study, we calculated the corresponding confusion matrix 
of binary classification, which provided further classification 
details (Figure  7). In this matrix, the vertical axis denoted 
the true classes (actual classes of samples via standard biochemical 
tests and MALDI-TOF MS) while the horizontal axis represented 
the predicted classes. In addition, we  classified the samples 
into nine categories, that is, nine Staphylococcus species. Using 
the confusion matrix, we  evaluated the performance of the 
CNN model on each species. According to the matrix, the 
CNN model had the lowest accuracy for predicting S. hominis 
(75%) that was misclassified as S. epidermidis in 17% and as 
S. aureus in 8% of all the cases. On the other hand, the model 
had 100% accuracy in predicting the species S. aureus, S. kloosii, 
S. haemolyticus, and S. warneri.

DISCUSSION

Conventional methods such as medium culture and biochemical 
reactions for bacterial species differentiations and phenotype 
profilings are sometimes laborious and time-consuming (Palomino, 
2005) while commonly used molecular methods like PCR and 
enzyme-linked immunosorbent assay (ELISA) either require 
specially designed primers or have comparatively high false 

positive rates due to the instability of some antibodies (Sakamoto 
et  al., 2017). As for the newly developed high-throughput 
sequencing technology, although the sequencing costs have 
dropped significantly, the complex data analysis pipeline and 
traditional clinical laboratory procedures somewhat restrict its 
wide application in clinical diagnosis (Bertelli and Greub, 2013). 
Compared to the above-mentioned methods, Raman spectroscopy 
is a fast, sensitive, low-cost, label-free, and non-destructive 
microbial detection and identification technique (Maruthamuthu 
et  al., 2020), which has great potential in facilitating the 
improvement of the clinical diagnosis (Wang et  al., 2021). In 
fact, a variety of studies has already used Raman spectroscopy 
for the identification of Staphylococcus species. For example, 
Samek et al. (2008) analyzed the Raman spectra of S. epidermidis 
related to medical device-associated infections, based on which 
different S. epidermidis clones were discriminated via combinational 
analyses of characteristic peaks. Later, Rebrošová et  al. (2017) 
used three supervised learning methods, LDA, 1NN, and SVM, 
to analyze 16 Staphylococcus strains in order to differentiate 
between S. aureus and S. epidermidis strains.

Due to the low signal-to-noise ratio of Raman spectroscopy 
from bacterial species and phenotypes, it is difficult to quickly 
and accurately characterize these biological samples (Zhu et al., 
2019). Thus, SERS was developed to enhance Raman scattering 
effects. For example, Chen et  al. (2019) performed the SERS 
through positively charged silver nanoparticles and successfully 
identified MRSA S. aureus with almost 100% accuracy. However, 
it is noteworthy that silver nanoparticles are toxic to bacterial 
organisms, which would affect the experimental results and 
cause the variation of Raman spectra (Cui et  al., 2015). In 
this study, we  used the same amount of AgNPs (15 μl) to mix 
with the 15 μl solution of selected colonies of Staphylococcus 
species, which will generate similar impacts on bacterial 
metabolism and physiology. In addition, for the same species, 
we  have multiple strains for Raman spectral analyses, which 
would be  considered as biological replicates and reduce the 
intra-group variations. During the computational analysis of 
Raman spectra, the whole spectra rather than specific peaks 
were analyzed, which would also reduce the influences of small 
variations in the fingerprinting spectra caused by the 
toxicity of silver nanoparticles. Characteristic peaks could not 
only reflect the unique patterns of Raman spectra but also 
correspond to specific compositions of bacterial species 

TABLE 2 | Comparison of 10 machine learning algorithms in terms of their capacities in the analysis of Staphylococcus Raman spectral data.

Classifier ACC Pre Recall F1 KAPPA MCC 5-fold CV AUC

CNN 98.21 98.61 95.83 98.62 N/A 95.32 97.44 99.93
LSTM 94.33 91.61 90.03 91.67 89.47 89.85 92.5 99.83
KNN 96.22 96.2 94.05 96.19 95.25 95.26 93.9 98.03
RF 94.55 94.53 90.32 94.45 93.14 93.16 91.89 97.01
DT 90.32 90.3 88.13 90.32 87.87 87.89 88.7 94.59
GB 94.55 94.55 90.66 94.41 93.13 93.16 92.47 89.05
SVM 34.95 94.93 15.81 24.28 9.97 14.26 34.02 89.05
AdaBoost 27.24 27.3 20.29 16.69 8.04 10.32 31.51 73.81
QDA 31.77 31.6 28.92 25.83 13.68 15.21 37.35 61.01
GNB 13.46 13.43 32.9 9.35 6.85 8.7 14 56.22
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(de Siqueira E Oliveira et  al., 2020). Thus, it was biologically 
meaningful to analyze the characteristic peaks of Raman spectrum 
for each Staphylococcus species. Currently, a variety of 
computational tools like LabSpec 6 (HORIBA Scientific, Japan), 
and algorithms like occlusion-based Raman spectra feature 
extraction (ORSFE) have been developed for identifying 
characteristic peaks in Raman spectra (Lu et  al., 2020), all of 
which could perform well on Raman spectra for feature extraction.

In addition, Raman spectra are rather complex and classical 
linear methods are no longer sufficient for data processing 
(Lussier et  al., 2020). Thus, advanced computational methods 
are essential in processing these sophisticated data. In this study, 
we  compared the capacities of machine learning methods in 
discriminating and predicting bacterial species through the 
analyses of the SERS spectra of nine Staphylococcus species. For 
unsupervised machine learning analysis of Raman spectra, previous 
studies have successfully applied PCA and hierarchical cluster 
analysis (HCA) on bacterial pathogens such as meningococcus 
and mycobacteria (Harz et al., 2009; Stöckel et al., 2015). However, 
clustering algorithms, such as K-means, DBSCAN, and AGNES 
are rarely used. Our quantitative comparison shows that DBSCAN 
has the best clustering performance for the SERS spectra of 
nine Staphylococcus species. In particular, DBSCAN is a very 

typical density clustering algorithm. Compared with K-means 
and AGNES that are generally suitable for convex sample sets, 
DBSCAN can be applied to both convex and non-convex sample 
sets. The significant advantage of the DBSCAN algorithm is 
that the clustering speed is fast and it can effectively deal with 
noisy points and find spatial clusters of arbitrary shapes. Raman 
spectroscopy data have different signal intensities at different 
Raman shifts. In this study, Raman spectra were first passed 
through data preprocessing procedures, including curve smoothing, 
baseline correction, polynomial fitting, and intensity normalization. 
The DBSCAN algorithm then calculates the average Euclidean 
distance between the Raman shift and the signal intensity of 
each sample and each cluster, and selects the smallest distance 
to divide the clusters. Parameters were manually adjusted and 
the key parameters used in the DBSCAN algorithm were set 
to min_sample = 9 and eps = 0.7.

Besides discriminating bacterial species into different groups, 
we  also compared supervised learning algorithms for the 
predictions of bacterial species. A variety of supervised machine 
learning methods have been used for Raman spectral analyses, 
such as SVM (Moawad et  al., 2019), RF (Ren et  al., 2017), 
CNN (Wang et  al., 2020), KNN (Uysal Ciloglu et  al., 2020), 
and DT (Uysal Ciloglu et al., 2020), etc. Although many supervised 

FIGURE 6 | Comparison of receiver operating characteristic (ROC) curves used for the evaluation of the performance of 10 supervised machine learning 
algorithms. The closer the ROC curve is to the upper left corner, the higher the true correct rate (TPR) and the lower the false correct rate (FPR) of the test. 
According to the comparison, CNN achieved the best performance [area under curve (AUC) = 0.9993] than all other algorithms.
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learning methods have been used for various bacterial species, 
which leads to comparatively high prediction accuracies, there 
are rarely comparative studies of the performance of supervised 
machine learning methods in surface enhanced Raman spectral 
analysis. In this study, we compared 10 commonly used supervised 
learning algorithms for their capacities in Raman spectral analysis, 
among which CNN and LSTM topped other algorithms and 
performed the best. Other methods, such as KNN, RF, DT, and 
GB also achieved high level of prediction accuracies but did 
not surpass CNN and LSTM. In particular, Raman spectroscopy 
generates fingerprinting spectra that are difficult to avoid the 
influence of various objective factors during the acquisition 
process. Thus, it is necessary to clean and preprocess the spectral 
data. After that, we compared eight traditional supervised learning 
algorithms and two deep learning algorithms. According to the 
results, KNN has the highest accuracy among traditional machine 
learning algorithms, with an accuracy of 96.22%, which can 
effectively distinguish nine different Staphylococcus species. 

The accuracy of RF and DT is slightly lower than that of KNN, 
and the accuracy is up to 90%.

For those who are not familiar with the preprocessing process 
of Raman spectroscopy of pathogenic bacteria, the process of 
spectral preprocessing is a complicated process. Thus, in this 
study, we  applied two deep learning methods, CNN and LSTM, 
to remove complex pre-processing procedures through 
automatically extracting spectral features based on the construction 
of convolutional layers, pooling layers, fully connected layers, 
and activation functions. The accuracy rates of CNN and LSTM 
reached 98.21 and 94.33% while the AUC values reached 99.93 
and 99.83%, respectively. In order to reflect the generalization 
ability of the deep learning algorithm, this study also used a 
5-fold cross-validation method to objectively evaluate the 
robustness of the model. The cross-validation results for CNN 
and LSTM reached 97.44 and 92.5%, respectively, which showed 
that deep learning algorithms had strong classification and 
prediction ability in the identification of bacterial pathogen 

FIGURE 7 | Confusion matrix of 5-fold cross-validated Staphylococcus species identification via CNN model. Rows corresponded to bacterial species identified by 
standard biochemical tests and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS; true class) while columns 
corresponded to bacterial identification predicted by the CNN algorithm (predicted class). Numbers in the confusion matrix stood for the percentage of correctly 
classified (diagonal) or mis-classified (off-diagonal) spectra, respectively.
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identification through Raman spectra. However, these results 
were only based on laboratory cultures of Staphylococcus species. 
Further studies will be  focusing on direct discrimination and 
prediction of bacterial pathogens from clinical samples, such as 
sputum, urine, and blood, etc., which, despite a very challenging 
question, will greatly facilitate the real world applications of 
Raman spectroscopy in clinical settings.

CONCLUSION

Raman spectroscopy has been widely used in the diagnosis of 
bacterial pathogens in terms of species differentiation, antibiotic 
resistance detection, and virulence factor identification (Rebrošová 
et  al., 2017). In this study, we  explored both unsupervised and 
supervised machine learning algorithms in terms of their capacities 
to discriminate and predict pathogenic Staphylococcus species 
via SERS spectra. According to the results, DBSCAN showed 
the best clustering effect while CNN was the best prediction 
model for the SERS spectra of nine Staphylococcus species. However, 
there are many machine learning algorithms that have not been 
explored, which may be  appropriate for the analysis of Raman 
spectra and worthy of further investigation. Moreover, machine 
learning algorithms should also be applied for more sophisticated 
situations, such as identifying bacterial species directly from 
clinical samples, rather than relying on isolated and cultured 
bacterial colonies. Specialized Raman spectral database for clinically 
important bacterial pathogens should also be  constructed, which 
could greatly improve the implementation of Raman spectroscopy 
in clinical settings. Taken together, this study showed the great 
potential of Raman spectroscopy in culture-free pathogen 
identification that could facilitate the fast and accurate clinical 
diagnosis and swift control of infectious diseases.
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