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Bacteriophages (phages) and their bacterial hosts were the most abundant and
genetically highly diverse organisms on the earth. In this study, a series of phage-
resistant mutant (PRM) strains derived from Vibrio alginolyticus were isolated and
Infrequent-restriction-site PCR (IRS-PCR) was used to investigate the genetic diversity
of the PRM strains. Phenotypic variations of eight PRM strains were analyzed using
profiles of utilizing carbon sources and chemical sensitivity. Genetic variations of eight
PRM strains and coevolved V. alginolyticus populations with phages were analyzed by
whole-genome sequencing and resequencing, respectively. The results indicated that
eight genetically discrepant PRM stains exhibited abundant and abundant phenotypic
variations. Eight PRM strains and coevolved V. alginolyticus populations (VE1, VE2,
and VE3) contained numerous single nucleotide variations (SNVs) and insertions/indels
(InDels) and exhibited obvious genetic divergence. Most of the SNVs and InDels in
coding genes were related to the synthesis of flagellar, extracellular polysaccharide
(EPS), which often served as the receptors of phage invasion. The PRM strains and the
coevolved cell populations also contained frequent mutations in tRNA and rRNA genes.
Two out of three coevolved populations (VE1 and VE2) contained a large mutation
segment severely deconstructing gene nrdA, which was predictably responsible for
the booming of mutation rate in the genome. In summary, numerous mutations and
genetic divergence were detected in the genomes of V. alginolyticus PRM strains and
in coevolved cell populations of V. alginolyticus under phage infection stress. The
phage infection stress may provide an important force driving genomic evolution of
V. alginolyticus.
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INTRODUCTION

Bacteriophages (phages) and their bacterial hosts are the most
abundant and genetically highly diverse organisms on the
earth (Suttle, 2005; Weitz et al., 2013; Batinovic et al., 2019).
Phages propagate through hijacking replication and metabolic
mechanisms of bacterial hosts and induce the lysis of bacterial
hosts, and thus bring a very strong selection stress for bacterial
survival and evolution (Thurber, 2009; Gómez and Buckling,
2013; Warwick-Dugdale et al., 2019), which results in the
occurrence of phage-resistant mutant (PRM) population. For
a long time, bacteria–phage interaction is believed as an
important driver of ecological and evolutionary processes for
both communities (Fuhrman, 1999; Koskella and Brockhurst,
2014; Shabbir et al., 2016; Hampton et al., 2020), however, studies
on genetic variations of PRM strains and genomic evolution of
coevolved bacterial populations with phages are very rare. Some
studies on comparative genomics between PRM and ancestor
strains revealed some genetic mutations, mainly focusing on the
effect of mutations on the expression of genes related to cell
surface structure, such as LPS and flagella (Kashiwagi and Yomo,
2011; Castillo et al., 2015; Lis and Connerton, 2016; Gonzalez
et al., 2018). Little is known about detailed genetic variations
of PRM strains on whole-genomic scale under phage infection
stress. Scanlan et al. (2015) first revealed that coevolution with
phage Phi2 drives genomic-wide host evolution and constrains
the acquisition of abiotic-beneficial mutations in Pseudomonas
fluorescens through whole-genome sequencing, and the isolates
with discrepant phenotypes in coevolved populations exhibited
much more numerous mutations and much higher genetic
divergence compared to these in evolved populations (Scanlan
et al., 2015). Resequencing provides a new approach to probe
into the genetic variations and mutation frequencies within cell
populations. However, so far as now, the technique was only
used to investigate occurrence frequencies of mutation sites from
the perspective of phage ϕ2 when it was coevolved with its host
P. fluorescens (Paterson et al., 2010).

Phages are the most abundant viruses in ocean, and it
is estimated that phages kill and lyse between 15 and 40%
of ocean’s bacteria every day, which poses a huge pressure
on the survival of marine bacteria (Danovaro et al., 2011).
Ocean contains the most abundant bacteria and phages on
the Earth, however, the research on the genomic evolution of
marine bacteria under phage infection stress has so far been
completely blank. Vibrio alginolyticus is one of the most common
bacterial species in estuary and marine environments (Luo et al.,
2012; Fu et al., 2016), and it is also a conditional pathogen
for human beings (Daniels and Shafaie, 2000; Slifka et al.,
2017) and many kinds of marine fish, shellfish, and crustaceans
(Pruzzo et al., 2006; Abdelaziza et al., 2017). In this study, we
first isolated numerous PRM strains derived from an ancestor
strain V. alginolyticus E06333 under phage infection stress.
The whole genomic sequences of several genetically divergent
mutants were analyzed focusing on single nucleotide variations
(SNVs) and insertions/deletions (InDels) and their potential
functions. Besides, resequencing of the evolved populations
of V. alginolyticus E06333 and the coevolved populations

with enriched phages at different periods were carried out to
characterize mutation sites and their frequencies of occurrence.

RESULTS

Screening of Phage-Resistant Mutant
Strains by Double-Layer Plate Method
A large number of PRM colonies derived from V. alginolyticus
E06333 appeared on double-layer plates, and the sizes and surface
morphologies of PRM colonies were very different from these
grown normally on LB plates without phages (Figure 1), which
implied that genetic variations harbored among these PRM
colonies. Totally 80 PRM strains of V. alginolyticus were acquired.

Infrequent-Restriction-Site-PCR
Exhibited Extensive Genetic Variations in
the Phage-Resistant Mutant Strains
Genotypes of 80 PRM strains were determined by IRS-PCR, and
the results indicated most PRM strains did not show obvious
genetic variations in this method except that 15 PRM strains
generated obvious discrepant and bright bands within the range
of 1500–3000 bp (Figure 2). Among them, 8 PRM strains were
singled out for subsequent experiments, and they were renamed
as VAM01–VAM08 (Figure 2).

Phenotypic Variations of the
Phage-Resistant Mutant Strains
Revealed by Biolog Assays
Biolog assays with GEN III microplates indicated that eight PRM
strains generated 32 differentiated reactions compared with the
ancestor strain E06333, among which 27 reactions were related
to carbon utilization and 5 reactions were related to chemical
sensitivity (Figure 3). Each PRM strain had a unique reaction
profile, but all PRM strains tended to lose some phenotypes rather
than to acquire some phenotypes (Figure 3). Among them, PRM
strain VAM01 lost the most 19 positive phenotypes of utilizing 19
carbon sources when compared with wild strain V. alginolyticus
E06333. All the PRM strains lost the ability to utilize L-Arginine
and became sensitive to sodium bromate. Eight PRM strains
only shifted to acquire 1–3 positive phenotypes of utilizing
carbon sources, and 6 out of 8 PRM strains obtained the ability
utilizing α-hydroxy-butyric Acid (Figure 3). Biolog assays clearly
indicated that eight PRM strains generated rich and obvious
phenotypic changes and these changes were not significantly
associated with anti-phage infection, which suggested the genetic
variations harbored in these PRM strains.

Discrepant Mutation Sites and Their
Related Genes in the Phage-Resistant
Mutant Strains of V. alginolyticus
Comparative genomics of V. alginolyticus E06333 and eight PRM
strains revealed numerous SNVs and InDels in eight PRM strains.
Eight PRM strains had discrepant numbers of SNVs and InDels
with different sizes (Figure 4). The PRM strain VAM04 harbored
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FIGURE 1 | The phage resistant colonies derived from V. alginolyticus E06333 and normal colonies V. alginolyticus E06333. (A) The phage resistant colonies
occurred on a double-layer plate with enriched lytic phages. (B) The normal colonies of V. alginolyticus E06333 on a LB plate.

FIGURE 2 | Genotyping of typical PRM strains derived from V. alginolyticus
E06333 by IRS-PCR. These PRM strains exhibit obviously different
fingerprints from the primary V. alginolyticus E06333. The numbers on the top
represent the strain numbers. The black triangles on the bottom present eight
PRM strains that are further selected for subsequent analysis. Eight PRM
strains were renamed (according to the order from left to right) as VAM01,
VAM02, VAM03, VAM04, VAM05, VAM06, VAM07, and VAM08, respectively.

the most SNVs and InDels including 242 SNVs and 42 InDels
while the PRM strain VAM05 harbored the least SNVs and InDels
including 20 SNVs and 15 InDels (Figure 4). The PRM strain
VAM03 harbored an only >10-bp insertion (11 bp), and each
PRM strain contained 1 or 2 big deletions that exceeded 100 bp
(actually >400 bp) except for the strain VAM03 (Figure 4).

Further identification of these numerous mutation sites
revealed that 15 mutation sites occurred within coding genes
of eight PRM strains, and these intragenic mutation sites
included 11 scattered non-synonymous SNVs, 3 InDels and one
large region containing concentrated SNVs, LCM1 (Table 1),
wherein 8 PRMs had discrepant SNV distribution. The PRM
strains, VAM01–VAM08, contained 3, 5, 7, 7, 4, 8, 4, and
4 SNVs and InDels within coding genes, respectively, and
each PRM strain had a unique mutation profile (Table 1).

15 mutation sites covered 12 genes involving in different
functions, including secretion of lectins and toxins, bacterial
outer membrane translocation and assembly, polysaccharide
synthesis, flagella synthesis and regulation, and aerotolerance
operon (Table 1). Among 12 genes, the mutations of fliF, flhA,
fleQ, epsD, ugdH, glyT, and ytfM were predictably related to the
phage resistance of the PRM strains in varying degrees (Table 1),
and they participated in the synthesis of flagellar, extracellular
polysaccharide (EPS) including capsular polysaccharides and
lipopolysaccharides (LPS). The mutations in flhA and fliF were
non-sense mutations, leading to the premature termination of
peptide synthesis. A 11-bp insertion gave rise to the change of
24 amino acids residues at the end of the espD gene. The SNVs
at nt2573434 and nt2573439 resulted the changes of two amino
acids residues (P/L and I/Y) in the translated protein, UGDH,
coded by ugdH, two changed amino acids located on conserved
sites of NADB Rossmann Superfamily. A 18-bp deletion in batB
of aerotolerance operon was the only mutation region shared by
eight PRM strains. The end of batB contained 55 core repeats
of “GCAACA,” and the deletion contained three core repeats
that resulted in truncated and altered amino acids in predicted
gene translocation. Six PRM strains (VAM02, VAM03, VAM04,
VAM06, VAM07, and VAM08) contained SNVs in omp1 coding
for a putative calcium-binding outer membrane-like protein
in T1SS system. Four strains (VAM02, VAM04, VAM06, and
VAM07) and 6 PRM strains (VAM01, VAM03, VAM04, VAM05,
VAM06, and VAM08) harbored large fragment mutations in rtx1,
and rtx2, respectively. The gene rtx1 encoded for a tandem-
95 repeat protein containing a cadherin-like domain, and the
gene rtx2 encoded a putative RTX toxin in T1SS system. Three
genes, omp1, rtx1, and rtx2, were featured by many tandem
repeats and large size (>10000 bp). Besides, it is little known
about the function of a gene, hyp1, in V. alginolyticus and
SNVs in batB were predicted not to have direct relations to
phage resistance.
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FIGURE 3 | Biochemical profiles of eight PRM strains and the primary strain E06333 from V. alginolyticus revealed by Biolog assays. The purple circles in boxes
represent a positive reaction (growth). The purple circles with blue background represent six PRM strains obtained the ability of utilizing α-Hydroxy-Butyric Acid. The
boxes with light green background represent five tests of chemical sensitivity.

FIGURE 4 | The numbers of different mutations in eight PRM strains from
V. alginolyticus. The mutations were classed into insertion (INS), deletions
(DEL), and single nucleotide variations (SNVs) according to the mutation types
and sizes. An 11-bp insertion in the PRM strain VAM03 was not shown in this
figure.

Mutations in DNA Regions Related to
Non-coding RNA Genes of the
Phage-Resistant Mutant Strains
It is notable that eight PRM strains also harbored 12 SNVs
and InDels in non-coding RNA genes (Table 2), including 5
big deletion regions (422–677 bp) and 3 concentrated SNV
regions (SNVs > 5 within the range of 400 bp), and 4 scattered
SNV regions, respectively (Table 2). Five big deletion regions
all occurred in the tandem repeat regions of tRNA genes. In
addition, 2 concentrated SNV regions and 4 SNVs occurred in the
16S or 23S rRNA genes. Each PRM strain had a different mutation

profile in non-coding RNA genes, which further exhibited genetic
divergence among eight PRM strains.

Divergent Evolution of Coevolved
V. alginolyticus E06333 Cell Populations
Revealed by Genomic Resequencing
Resequencing facilitates to reveal of the frequencies of mutations
in each bacterial cell population. The SNVs and InDels detected
by resequencing data were shown in Supplementary Table 1.
Totally, 14 SNVs and InDels were detected in the evolved
cell populations (VC1, VC2, and VC3) and the coevolved cell
populations (VE1, VE2, and VE3), including 4 SNVs, 10 InDels,
and 1 large region of 1260 bp containing concentrated point
mutations (LCM2) (Figure 5). Coevolved cell populations of
V. alginolyticus contained 8 unique SNVs and InDels (53%
of total numbers) while evolved cell populations only had
2 unique SNVs (13% of total numbers of mutation sites),
which manifested that most of mutation sites occurred in
coevolved cell populations with phages. It clearly indicated that
coexisting phages markedly raised detectable SNVs and InDels in
V. alginolyticus cell populations. Each coevolved cell populations
at different time points (VE1 at 2 h, VE2 at 13 h, VE3 at
22 h) had a unique mutation profile, and they were also very
different from the mutation profiles of evolved cell populations
(Figure 5). The result manifested that phage infection stress
drove and accelerated the divergent evolution of V. alginolyticus
cell populations.

Unique Mutation Sites in Coevolved Cell
Populations of V. alginolyticus and Their
Functions of Related Genes
Though the evolved cell populations harbored 2 unique SNVs
and 4 shared SNVs (Figure 5), here we only focused on
the unique mutation sites in coevolved cell populations of
V. alginolyticus and their predicted functions of related genes
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TABLE 1 | Mutation sites in coding genes of eight PRM strains derived from V. alginolyticus E06333.

Mutation sites Variation; AA
change

Gene Protein encoded by gene Protein function 1 2 3 4 5 6 7 8

498716 T/C; L/S rtX2 RTX toxin in T1SS toxin
√ √ √ √ √ √

731572 G/T; T/S Omp1 putative calcium-binding
outer membrane-like
protein

agglutinin
√ √ √ √ √ √

731573 C/G; T/S Omp1 putative calcium-binding
outer membrane-like
protein

agglutinin
√ √ √ √ √ √

737614 C/G; A/P Omp1 putative calcium-binding
outer membrane-like
protein

agglutinin
√

758419–759137 LCM1 rtX1 tandem-95 repeat protein
containing a cadherin-like
domain

unknown
√ √ √ √

1406251 C/A; E/* flhA polar flagellar biosynthesis
protein

flagellar
√

1421835 A/C; L/* fliF1 polar flagellar M-ring protein flagellar
√

1425623 G/A; V/A fleQ flagellar master regulator flagellar
√

2558866 11-bp insertion epsD glycosyl transferase domain
protein

EPS synthesis
√

2564097 A/-; frame shift glyT glycosyl transferase EPS synthesis
√

2573434 C/T; P/L ugdH UDP-glucose
dehydrogenase

LPS synthesis
√ √

2573439 G/T; I/Y ugdH UDP-glucose
dehydrogenase

LPS synthesis
√

2625978 G/A; A/T ytfM uncharacterized protein
YtfM precursor

outer membrane
√ √

91359–91376 (chr2) 18-bp deletion;
frame shift

batB TPR domain protein in
aerotolerance operon

aerotolerance operon
√ √ √ √ √ √ √ √

444588 (chr2) C/A; A/D hyp1 hypothetical protein unknown
√

LCM1 represents one large region containing concentrated SNVs, wherein 8 PRM strains had different SNV distribution. “1–8” at the right columns represent eight PRM
strains of V. alginolyticus, VAM01, VAM02, VAM03, VAM04, VAM05, VAM06, VAM07, and VAM08, respectively. “

√
” represent one strain has a corresponding mutation site.

“*” represents a stop codon.

TABLE 2 | Mutation sites in non-coding RNA genes of eight PRM strains derived from V. alginolyticus E06333.

Position (nt) Variations RNA genes PRM strains

1 2 3 4 5 6 7 8

12883–13390 508-bp deletion 3 tRNA genes
√ √ √ √ √ √

12883–13559 677-bp deletion 4 tRNA genes
√ √

1733939–1734456 518-bp deletion 4 tRNA genes
√

1828237 SNV (T-C) 16S rRNA gene
√ √

1938591 SNV (T-C) 16S rRNA gene
√

2040854–2041275 422-bp deletion 4 tRNA genes
√ √ √ √ √ √ √

2167079 SNV (T-A) 16S rRNA gene
√ √ √

2271277–2271509 2 SNVs in 362 bp 16S rRNA gene
√ √

2354021 SNV (G-A) 16S rRNA gene
√ √

2358245–2358420 21 SNVs in 176 bp 23S rRNA
√ √

3087203–3088807 473-bp deletion 4 tRNA genes
√ √

3088235–3088555 35 SNVs in 321 bp 4 tRNA genes
√ √

(Table 3). Among 8 unique mutation sites in the coevolved cell
populations of V. alginolyticus, 3 SNVs occurred in tsaA coding
for a tRNA (Thr-GGU) A37N-methylase, and one InDel occurred
in the upstream of glyS coding for a Glycyl-tRNA synthetase β

chain, and therefore these four mutation sites are closely related
to tRNA synthesis. An insertion of 11 bp (INS1) at nt2558866
resulted in a frameshift mutation of epsD, and this 11-bp insertion
also occurred in the PRM strain VAM03 (Table 1). The insertion
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FIGURE 5 | The distribution and the mutation frequencies of SNVs and InDels
in evolved and coevolved V. alginolyticus cell populations revealed by
resequencing. T0: the collected sample before grouping at the early
exponential stage (OD600 nm = 0.6–1); VC1: collected samples from evolved
cell populations at 2 h; VC2: collected samples from evolved cell populations
at 13 h; VC3: collected samples from evolved cell populations at 22 h; VE1:
collected samples from coevolved cell populations at 2 h; VE2: collected
samples from coevolved cell populations at 13 h; VE3: collected samples from
coevolved cell populations at 22 h. Mutation sites with yellow background
represent 2 unique SNVs in the evolved cell populations. Positions of mutation
sites with purple background represent 8 unique mutations in the coevolved
cell populations. Mutation frequencies of these sites are shown with different
colors.

gave rise to the change of 24 amino acids residues at the end. The
gene epsD is predicted related to the synthesis of extracellular
polysaccharides and catalyze the transfer of UDP-glucose or
UDP-galactose to lipid carriers, which is the first step in the
synthesis of oligosaccharides. The coevolved cell populations also
contained 2 SNVs (SNP1 and SNP2) in galE, and SNP2 caused
the premature termination of transcription of galE. The large
mutation region of 1260 bp (LCM2) in VE1 and VE2 populations
severely deconstructed gene nrdA, which blocked the synthesis
of ribonucleotide reductase (RNR). The mutation frequency of
this gene at the stage of VE1 reached at as high as 55% and
then dramatically declined to 13% at the stage of VE2 and below
detection limitation (<10%) at the stage of VE3.

DISCUSSION

Exploring the adaptive evolution of environmental microbes
represents an increasing interest under the background of the

extensively used high-through technologies, which facilitates us
to understand the history of bacterial genomic evolution and
bacterial genetic diversity. The arms race between bacteria and
their phage has been long believed to be an important force
for mutual evolution (Hampton et al., 2020; Safari et al., 2020),
but few details in terms of bacterial whole-genome scale have
been revealed. In three PRM strains, three variant genes related
to flagella synthesis and regulation, flhA, fliF, and fleQ, were
detected, among which the SNVs in flhA and fliF resulted
in the premature termination of flagella synthesis. Flagella are
often used as a receptor for phages to invade bacterial hosts
(Kropinski et al., 2012; Choi et al., 2013; Silva et al., 2016),
and therefore the inhibition of flagellin synthesis in the PRM
strains may affect the phage adsorption process. Besides, the
PRM strains displayed various mutations in ugdH and epsD,
and coevolved V. alginolyticus populations harbored unique
mutations in galE and epsD. The product of galE, GalE, was an
important enzyme for the synthesis of active carbohydrates. It
was frequently shared in a variety of EPS biosynthetic pathways
(Bahat-Samet et al., 2004; Schaper et al., 2019) and affected
the biosynthesis of a variety of bacterial lipopolysaccharides
(Bengoechea et al., 2002). Four genes involved in the synthesis of
extracellular polysaccharides including capsular polysaccharides
and lipopolysaccharides were thought to be responsible for phage
adsorption (Baldvinsson et al., 2014; Dang and Lovell, 2015;
Ha et al., 2019). Mutations in the genes encoding for flagellin
synthesis and extracellular polysaccharides were often reported
in phage-resistant mutants since these cell structures served as
the receptors of phages (Nesper et al., 2001; Gonzalez et al.,
2018; Cai et al., 2019; Schaper et al., 2019). From this regard,
generating mutations in the genes encoding for flagellin synthesis
and extracellular polysaccharides is likely a common strategy to
cope with phage infection in V. alginolyticus. Reduced virulence
was often observed in phage-resistance mutants as mutant
genes changed surface antigens that are crucial for both phage
adsorption and cellular invasiveness (Laanto et al., 2012; Castillo
et al., 2015; Sumrall et al., 2019; Markwitz et al., 2021). Except
these virulent genes involving in phage adsorption generated
mutations, a virulence-associated gene rtx2 coding for RTX toxin
in T1SS also generated mutations. Therefore, mutations under
phage infection stress are not limited within genes responsible
for phage adsorption. Besides, the functions of some genes
bearing mutations in the PRM strains and in the coevolved cell
populations remain unknown, and it is worthy to explore their
potential roles in phage infections in future.

It is generally recognized that rRNA genes unlikely
generate rapid and frequent changes as they perform the
most fundamental and important functions in life. Therefore,
the rRNA genes were once considered the ideal chronometer
to record the evolutionary history of life, potentially all the
way back to the last common ancestor (Woese, 1987, 1998),
and rRNA sequence comparisons led to the construction of a
“universal tree of life,” dividing all life on the Earth into three
equidistant domains: eukarya, bacteria, and archaea (Woese
et al., 1990). Until now, 16S and 23S rRNA gene mutations
were often observed in some antibiotic-resistant bacterial strains
(Bachir et al., 2018; Chen et al., 2018; Lauener et al., 2019),
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TABLE 3 | Mutant sites and related genes in evolved and coevolved V. alginolyticus cell populations.

Position Variation Mutation description Genes Protein name Protein function T0 VC1 VC2 VC3 VE1 VE2 VE3

338687 C/− frameshift deletion cheC CheC Flagella rotation
√ √ √ √ √

338693 C/− frameshift deletion cheC CheC Flagella rotation
√ √ √ √ √

338695 GCTT/− frameshift deletion cheC CheC Flagella rotation
√ √ √

1001705 TTT/− non-frameshift deletion ttdA Fumarate hydratase
class I, aerobic

Oxaloacetate reduction
√

1060100–1061359 LCM2 stopgain nrdA Ribonucleotide
reductase, α subunit

DNA replication and repair
√ √

1509698 −/G frameshift insertion tsaA tRNA (Thr-GGU)
A37N-methylase

tRNA synthesis
√ √

1509703 A/− frameshift deletion tsaA tRNA (Thr-GGU) A37
N-methylase

tRNA synthesis
√ √

1509705 GGGA/− frameshift deletion tsaA tRNA (Thr-GGU) A37
N-methylase

tRNA synthesis
√

1734565 A/G intergenic mutation – tRNA-Arg-ACG,
tRNA-Arg-ACG

tRNA synthesis
√

2041588 G/A intergenic mutation – tRNA-Gly-GCC,
tRNA-Met-CAT

tRNA synthesis
√ √ √ √ √

2173780 −/C frameshift insertion – tRNA methyltransferase RNA methylation
√

2285893 AT/- upstream glyS Glycyl-tRNA synthetase
β chain

Glycyl-tRNA synthesis
√ √ √

2558866 −/11-bp insertion frameshift insertion epsD Glycosyl transferase
domain protein

EPS synthesis
√

1355769 (chr2) T/A (SNP1) missense mutation galE UDP-glucose
4-epimerase

LPS synthesis
√

1356057 (chr2) C/T (SNP2) stopgain galE UDP-glucose
4-epimerase

LPS synthesis
√ √

LCM2 represents a large region of 1260 bp containing concentrated point mutations (LCM2). “
√

” represent one certain population of V. alginolyticus contained one detected mutation site.
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wherein antibiotics generally impact the normal functions of 16S
and 23S rRNA or their coupling ribosomes. It is obvious that the
mutations of 16S and 23S rRNA genes have not contributed to
bacterial resistance against phage. This study first demonstrated
that phage infection stress can change the sequences of highly
conserved rRNA genes, which complicate bacterial phylogenetics
based on rRNA genes, and thus phage infection stress has
a possibility to drive bacterial rRNA molecular evolution.
In addition, few mutations in tRNA genes or related DNA
regions were noticed in bacteria. However, it’s surprising that
frequent mutations of tRNA genes were also observed in
eight PRM strains. The rRNA- and tRNA-related mutations in
PRM strains of V. alginolyticus under experimental conditions
urge us to speculate that similar incidents may occur with a
certain frequency in natural bacterial communities due to the
prevalence of phages and strong selective stress by them. In
this study, we observed the reduced copy numbers of tRNA
genes (Table 2). For instance, the chromosomal site (Chr1:
nt12887–13817) of the primary strain E06333 contains six
tRNA-Tyr genes, but in the PRM VAM01 and VAM02 only
remained two tRNA genes. By Blast, we found that conspecific
strains not only vary copy numbers of tRNA genes [e.g.,
the strains VIO5 (AP022861.1) and YM19 (AP022863.1)] at
this chromosomal site but also contained variable sequences.
Yona et al. (2013) first carried out a systematic search in
hundreds of genomes that revealed tRNA gene mutations occur
throughout the tree of life. They further demonstrate that
mutation in tRNA genes is a common adaptive mechanism
when meeting new translational demands (Yona et al., 2013).
Until now, there are no evidences indicating direct correlation
between phage-resistant mechanisms and rRNA and tRNA
gene mutations. Hence, we speculated the variations in tRNA
pool as an adaptive mechanism to meet the new translational
demands in the PRM strains. Together, these results indicated
that phage infection stress can drive bacterial rRNA and
tRNA gene evolution.

It is notable that variations in coding genes and rRNA-
and tRNA- genes among these PRM strains lacked significant
correlation with the phenotypical shifts revealed by Biolog assays.
Therefore, it is reasonable to speculate some genetic changes
affecting phenotypic characteristics were not discovered. On
the other hand, though many mutation sites were detected
in the draft genomes of eight PRM strains, the gaps between
scaffolds potentially contained some mutation sites not detected.
As a result, the actual numbers of SNVs and InDels may
exceed our calculation. Numerous genetic variations in the
PRM strains and the coevolved populations also raised a
question whether phage infection stress induced the generation
of most observed mutations in V. alginolyticus and boost
the mutation rate. Through whole-genome sequencing, it is
estimated that spontaneous mutations in Escherichia coli, as a
typical representation of prokaryotes is 1.0 × 10−3 mutations
per genome per generation (Lee et al., 2016). According to
this spontaneous mutation rate, it is impossible to accumulate
numerous genetic variations in the genomes of the PRM strains
and coevolved populations of V. alginolyticus even at the
longest generation time of 22 h (about 66 generations) for VE3

populations. Therefore, increased genetic variations (mutations)
in the PRM strains and coevolved populations were not generated
by spontaneous mutations but mainly induced by phage infection
stress, which provides one important force driving genomic
evolution of V. alginolyticus and accelerate genetic divergence via
boosting mutation rate. Swings et al. (2017) found that mutation
rates of E. coli populations rise when cells experience higher
stress and decline again once cells are adapted, and they identified
cellular mortality as the major force driving the quick evolution
of mutation rates (Swings et al., 2017). Increased mutation rates
under environmental stress were also observed in some cases
(Bjedov, 2003; Galhardo et al., 2007; MacLean et al., 2013). All
these findings strongly supported the idea that mutation rate
variability plays a key role in adaptive evolution under selective
pressure (Engelhardt and Shakhnovich, 2019). Together, these
studies suggested that the role of environmental stress is not
limited to naturally select preexisting mutants and it is not the
whole story that all mutations are random and evolution is slow.
Therefore, it shed some light on the acknowledges of microbial
genomic evolution in a natural environment full of competition
and adverseness.

Interestingly, the coevolved populations VE1 were observed
to have a high-frequency (53%) large mismatch mutation in
nrdA coding for a ribonucleotide reductase (RNR) alpha subunit,
RNR1. RNR catalyzes the conversion of nucleoside diphosphates
(NDPs) into deoxynucleotides and is a key enzyme for DNA
replication and repair in all organisms (Cotruvo and Stubbe,
2008). The levels of the cellular dNTPs are tightly controlled, in
large part through allosteric control of RNR (Ahluwalia et al.,
2012; Zhu et al., 2017). Ahluwalia et al. (2012) found that a
set of RNR1 mutants of E. coli changed dNTP pools and the
mutation rate of bacteria also increases with the increase of the
dNTP change range. They further found that even relatively
modest dNTP pool deviations caused by one set of RNR1 mutants
gave rise to exceptionally strong mutator phenotypes (>1,000-
fold increases) (Ahluwalia et al., 2012). From this case, we
speculated that high-frequency and large mutation in nrdA likely
changed the dNTPs pool in V. alginolyticus and mainly contribute
to the booming of the mutations. The mutation frequency of
nrdA dramatically declined to 13% and below the detection
limit (<10%). This sharp decline in coevolved populations
was likely due to the adaptive evolution of V. alginolyticus
under phage stress at different stages. Once numerous phage-
resistant mutator phenotypes merged, it is necessary to regain
the normal intracellular environment to ensure accurate DNA
replication and stable propagation. Therefore, we speculated that
the occurrence of PRM strains containing numerous mutation
sites is likely the consequence of the dynamic change of nrdA
in a certain stage though the PRM strains did not harbor nrdA
mutation. The functions of RNR in V. alginolyticus need to be
further explored in future.

Bacteria and phages are locked in a constant arm race and
both are perpetually changing their tactics to overcome each
other (Hampton et al., 2020; Safari et al., 2020). Bacteria use
various strategies to overcome the invading phages, including
adsorption inhibition, restriction-modification (R/E) systems,
CRISPR–Cas (clustered regularly interspaced short palindromic
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repeats–CRISPR-associated proteins) systems, abortive infection
(Abi), etc (Safari et al., 2020). To counteract, phages employ
intelligent tactics for the nullification of bacterial defense systems,
such as accessing host receptors, evading R/E systems, and
anti-CRISPR proteins (Safari et al., 2020). However, if these
defense systems in bacteria do not exist or work, change
themselves through accelerated molecular evolution under phage
infection stress should be another strategy. Conversely, phages
can also generate mutation to increase their invasion ability.
For instance, the rate of molecular evolution in phage ϕ2 was
far higher when both P. fluorescens and the phage coevolved
with each other than when phage evolved against a constant
host genotype (Paterson et al., 2010). The most rapidly evolving
phage genes under coevolution were those involved in host
infection (Paterson et al., 2010). Continual natural selection for
adaptation and counter-adaptation drive molecular evolution
of interacting bacteria and their phages (Gómez and Buckling,
2011; Koskella and Brockhurst, 2014). In this study, the
distribution profiles of SNVs in coevolved cell populations were
discrepant at different development stages, and it implied that
coevolved cell populations adopted different adaptation strategies
to adapt to variable infection stress which may be caused by
genetically changed phages.

At last, we should point out that though totally 80 PRM
strains of V. alginolyticus were acquired mainly based on the
morphologies of resistant colonies, similar morphologies of
resistant colonies may harbor divergent mutants as some genetic
changes cannot be exhibited by the differences of common
phenotype characteristics. Therefore, genotyping by IRS-PCR
was adopted to first screen the genetically variable PRM strains
as the method is simple and time-saving. However, genotyping
by IRS-PCR cannot show all genetic changes of tested strains
due to the limitation of this method such as short amplification
fragments and the selection of restriction endonucleases, and
thus it is likely that some PRM strains that were not selected for
subsequent analysis may also harbor many genetic variations.

In summary, V. alginolyticus PRM strains exhibited abundant
genetic changes and genetic divergence under phage infection
stress. Resequencing revealed that coevolved V. alginolyticus
populations with phages had discrepant profiles of SNVs and
InDels at three coevolved stages, while most detected SNVs and
InDels occurred in the coevolved populations. Mutations were
observed within rRNA and tRNA genes in the PRM strains
and coevolved cell populations. Our results combining with
other findings indicated that phage infection stress can boost
mutation rates in V. alginolyticus genome and accelerate the
genetic divergence, and thus it is likely one driving force for the
bacterial genome evolution.

MATERIALS AND METHODS

The Primary V. alginolyticus Strain
E06333
Vibrio alginolyticus strain E06333 was isolated from marine fish,
Epinephelus coioides, in 2006, in Guangdong province, China, and
stored in our laboratory (Luo et al., 2018). The strain E06333

was cultured in LB plates and single colony was picked out for
subsequent experiments.

Enrichment of Mixed Phages Infecting
V. alginolyticus
Wastewater samples were collected from an outfall of shrimp
aquafarm in Maoming, Guangdong, China, and the water
samples were used to enrich mixed phages that can infect and
lyse V. alginolyticus E06333 cells. The samples were centrifuged
at 10,000 g for 10 min, and then the supernatants were filtered
using a sterile 0.45-µm filter. The filtrates were mixed with the
same volume of 2 × LB broth and then were added with 1%
overnight culture of V. alginolyticus E06333 cells followed by
incubation at 30◦C for 12 h. The lytic culture samples (which
remained transparent) were centrifuged, the supernatant was
pipetted out, and was then filtered through a sterile 0.22-µm
filter. The filtrate was used as enriched phages and was stored
at 4◦C.

Isolation of V. alginolyticus
Phage-Resistant Mutant Strains From
Phage-Resistant Colonies
The double-layer plates were used to isolate PRM colonies
(Carlson, 2005). Briefly, each of 0.5-ml cultures of V. alginolyticus
at OD600 nm = 0.6 was mixed with 0.5 ml of abovementioned
enriched phage fluid at an approximative multiplicity of infection
(MOI) of 30, and added into 4-ml LB broth (supplemented with
0.7% agar) preheated at 45◦C, and then immediately poured onto
the lower LB agar plate. The plates were incubated overnight at
30◦C and then PRM colonies with different morphologies were
picked and restreaked for the isolation of individual colonies
more than four times.

Genotyping of V. alginolyticus
Phage-Resistant Mutant Strains With
Infrequent-Restriction-Site-PCR
The HhaI adaptors (AH1 and AH2) and the XbaI adaptors (XbaI-
ad1 and AX2) were prepared as described previously (Ren et al.,
2008). The Primer PN-X was constructed to complement XbaI-
ad1. Sequences of the other four primers (PN-A, PN-T, PN-C, or
PN-G) were identical to that of PN-X except that an additional
base (A, T, C, or G, respectively) was placed at their 3’ ends.
The digestion and ligation of template DNA were carried out
as described previously (Mazurek et al., 1996). Less than 1 µg
genomic DNA was digested with 10 U of HhaI (TaKaRa) and
10 U of XbaI (TaKaRa) in 1 × T + BSA buffer (final volume,
20 µl) for 2 h at 37◦C. T4 DNA ligase (525 U), 10 × T4
buffer (3 µl), the XbaI adaptor (10 pmol), the HhaI adaptor
(10 pmol), and water were added for a total volume of 20 µl.
The mixture was incubated at 16◦C for 1 h to ligate the adaptors
to the digested DNA and then at 65◦C for 20 min to inactivate
T4 DNA ligase. The sample was digested with 5 U of XbaI
and 5 U of HhaI at 37◦C for 15 min to cleave any restriction
sites reformed by ligation. Amplification was performed in the
optimized conditions in which a 50 µl PCR mixture included
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25 ul of PrimeSTAR Max Premix (2×), 5 µl of restricted–
ligated DNA, 1 µl (10 µM) AH1 and 1 ul (10 µM) either
PN-X, PN-A, PN-T, PN-C, or PN-G, then sterilized distilled
water was added to 50 ul. Amplification condition consisted
of an initial denaturation of 98◦C for 3 min and 38 cycles of
10 s at 98◦C, 5 s at 60◦C, 30 s at 72◦C and a final extension
of 10 min at 72◦C. All the enzymes were bought from TaKaRa
Company (Japan). The sequences of primers and adaptors are
shown in Supplementary Table 2. The PCR products were loaded
into wells of a 8% polyacrylamide gel prepared from a 30%
acrylamide–bisacrylamide (29:1) solution in 1 × TBE buffer
(0.045 M Tris-borate, 0.001 M EDTA). After electrophoreses
for 5 h at 200 V, the gel was stained with ethidium bromide
(0.5 mg/ml) for 30–45 min, destained in water for 25 min, and
photographed with UV illumination.

The Analysis on Biochemical Profiles of
Selected V. alginolyticus
Phage-Resistant Mutant Strains
The GEN III microplates (BIOLOG, United States) assaying
the utilization of 71 carbon sources and the sensitivity to 23
chemical substrates were adopted to exhibit the potential shift
of biochemical profile in PRM strains singled out by IRS-
PCR. The cells of tested strains were suspended in inoculating
fluids, and the aliquots of 100-µl suspended cells were added
into the microplates. After 24–36 of hours incubation, the
microplates were analyzed by a Biolog Microstation System
(Biolog, United States).

Whole-Genome Sequencing of the
Selected Phage-Resistant Mutant
Strains
Genomic DNAs of PRM strains were sheared, then approximately
500-bp DNA fragments were selected. DNA fragments were
end repaired and ligated with Illumina universal adapters. After
adapter ligation, DNA fragments were further size-selected on
an agarose gel and PCR-amplified for 6–8 cycles using the
Illumina P1 and Index primer pair and Phusion R© High-Fidelity
PCR Master Mix (NEB, China). The final library was purified
using Agencourt AMPure XP beads and quality-assessed by
Agilent Bioanalyzer 2100 (DNA 7500 kit) to determine library
quantity and fragment size distribution before sequencing. The
genomes of the selected PRM strains were de novo sequenced
using the Illumina HiSeq2500 platform (GENEWIZ, China),
and the sequencing coverage depth ranged from 385× to 420×.
Reads by quality control were assembled using velvet (v1.2.10)
(Zerbino and Birney, 2008; Zerbino et al., 2009) and gap-filled
with SSPACE (v3.0) (Boetzer et al., 2011) and GapFiller (v1–
10) (Boetzer and Pirovano, 2012). Genome comparison between
the PRM strains and ancestor V. alginolyticus E06333 (GenBank:
CP071058-CP071059) was carried out by MAUVE (Darling
et al., 2004) software. The coding genes were annotated by
Glimmer (v3.02) (Delcher et al., 2007). GO (Gene Ontology)
database (Harris et al., 2004) and KEGG (Kyoto Encyclopedia
of Genes and Genomes) database (Kanehisa and Goto, 2000)
were used to annotate the functions of genes and pathways,

respectively. Non-coding RNA genes were predicted by Rfam
database (Nawrock et al., 2015).

Evolved and Coevolved Cell Populations
and Resequencing
Vibrio alginolyticus E06333 was cultured at the early exponential
stage (OD600 nm = 0.6–1), 5 ml of culture fluid was collected
and labeled as sample T0. At the same time, 40 replicates of
5 ml LB broth were inoculated with 60 µl of V. alginolyticus
E06333 culture fluid. Among them, 20 replicates were inoculated
with 20 µl of phage fluid at a multiplicity of infection (MOI)
about 10 to serve as coevolved populations, wherein bacterial
cells coevolved with enriched phages, and the other 20 replicates
were inoculated with 20 µl of LB broth without the addition of
phages to serve as evolved populations. Coevolved and evolved
populations were incubated at 30◦C in a shaker.

When OD600 nm of cultures in coevolved populations reached
about 0.4, 1.0, and 1.5, five replicates in coevolved populations
were mixed and labeled as samples VE1, VE2, and VE3,
respectively, and at the same timepoints five replicates in evolved
populations were mixed and labeled as samples VC1, VC2, and
VC3, respectively. The cells of all the samples were centrifuged
and collected for DNA extraction.

Genome resequencing of V. alginolyticus cell populations from
all the samples was carried out by Illumina HiSeq × 10 and
the sequencing coverage depth for each base site exceeded 230×
(most exceed 400×) Pass filter data were removed adaptors and
bases of low quality by Cutadapt (v1.9.1) to obtain clean data for
continuous data analysis. Alignment software BWA (v0.7.12) (Li
and Durbin, 2009) was used to map clean data to the reference
genome of V. alginolyticus E06333. The detection of SNV (single
base variation) and InDel (insert or deletion mutation) was
performed using Samtools (v1.1) (Li et al., 2009) and the Unified
Genotyper module of GATK (v3.4.6) software (DePristo et al.,
2011). Annotation for SNV/InDel was performed by Annovar
(Wang et al., 2010). Besides, InDels were detected and their
frequencies were calculated no matter how many bases they
consisted. Considering the accuracy of resequencing, only the
mutation frequencies >10% were counted.
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