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Bacillus mycoides SeITE01 is an environmental isolate that transforms the oxyanion 
selenite ( SeO3

2- ) into the less bioavailable elemental selenium (Se0) forming biogenic 
selenium nanoparticles (Bio-SeNPs). In the present study, the reduction of sodium selenite 
(Na2SeO3) by SeITE01 strain and the effect of SeO3

2-  exposure on the bacterial cells was 
examined through untargeted metabolomics. A time-course approach was used to monitor 
both cell pellet and cell free spent medium (referred as intracellular and extracellular, 
respectively) metabolites in SeITE01 cells treated or not with SeO3

2- . The results show 
substantial biochemical changes in SeITE01 cells when exposed to SeO3

2- . The initial 
uptake of SeO3

2-  by SeITE01 cells (3 h after inoculation) shows both an increase in 
intracellular levels of 4-hydroxybenzoate and indole-3-acetic acid, and an extracellular 
accumulation of guanosine, which are metabolites involved in general stress response 
adapting strategies. Proactive and defensive mechanisms against SeO3

2-  are observed 
between the end of lag (12 h) and beginning of exponential (18 h) phases. Glutathione and 
N-acetyl-L-cysteine are thiol compounds that would be mainly involved in Painter-type 
reaction for the reduction and detoxification of SeO3

2-  to Se0. In these growth stages, thiol 
metabolites perform a dual role, both acting against the toxic and harmful presence of 
the oxyanion and as substrate or reducing sources to scavenge ROS production. Moreover, 
detection of the amino acids L-threonine and ornithine suggests changes in membrane 
lipids. Starting from stationary phase (24 and 48 h), metabolites related to the formation 
and release of SeNPs in the extracellular environment begin to be observed. 5-hydroxyindole 
acetate, D-[+]-glucosamine, 4-methyl-2-oxo pentanoic acid, and ethanolamine phosphate 
may represent signaling strategies following SeNPs release from the cytoplasmic 
compartment, with consequent damage to SeITE01 cell membranes. This is also 
accompanied by intracellular accumulation of trans-4-hydroxyproline and L-proline, which 
likely represent osmoprotectant activity. The identification of these metabolites suggests 
the activation of signaling strategies that would protect the bacterial cells from SeO3

2-  
toxicity while it is converting into SeNPs.
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INTRODUCTION

Bacillus mycoides SeITE01 is an aerobic rod-shaped endospore-
forming Gram-positive bacterium belonging to the Firmicutes 
phylum that was isolated from the rhizosphere of the 
Se-hyperaccumulator plant Astragalus bisulcatus grown in 
seleniferous soils (Vallini et  al., 2005). SeITE01 strain shows 
the ability to withstand high concentrations of SeO3

2-  (up 
to 25 mM), reducing this oxyanion into the insoluble and 
less bioavailable elemental selenium (Se0) with the generation 
of biogenic selenium nanoparticles (Bio-SeNPs) (Lampis 
et  al., 2014; Piacenza et  al., 2019; Bulgarini et  al., 2020). 
In recent years, SeNPs have been the subject of great interest 
due to their attractive characteristics. These nanostructures 
can be  used in both the technological and industrial fields 
thank to their special physical features, such as semiconducting, 
photoelectric, and X-ray-sensing properties (Wadhwani et al., 
2016). At the same time, it was shown that Bio-SeNPs can 
exert an efficient and high antibacterial activity against 
human pathogens, such as Escherichia coli, Pseudomonas 
aeruginosa, and Staphylococcus aureus (Zonaro et  al., 2015; 
Cremonini et  al., 2016; Piacenza et  al., 2017) and inhibit 
the formation of bacterial biofilms on medical-hospital devices 
(Sonkusre and Cameotra, 2015).

While there has been progress in establishing mechanisms 
of metal ion toxicity to bacteria (Lemire et  al., 2013), a 
complete understanding of all the biochemical processes from 
various metal(loid) ion exposures is far from complete. Various 
“-omics” approaches can be employed to help fill the knowledge 
gaps. The use of metabolomics to elucidate cell responses 
to metal exposure began about a decade ago (Booth et  al., 
2011a). Metabolomics are a relatively recent addition to the 
“-omics” toolbox with the advent of improvements in 
technologies, allowing it to be  a growing discipline in the 
field of biological systems (Dettmer and Hammock, 2004). 
Complementing other “-omics”, this powerful tool studies 
the turnover of biochemicals in living cells (Villas-Bôas et al., 
2007; Baidoo et al., 2012). Since metabolites are subjected 
to continuous turnover, their levels and distributions can 
have enormous spatial and temporal variability. Some 
metabolites can accumulate within cells and be highly abundant 
(in the range of mM), while others may be quickly transformed 
and/or consumed and be  present only in small traces (in 
the order of pM; Warwick and Ellis, 2005; Baidoo et al., 
2012). Consequently, the metabolite concentration and flux 
through various biochemical networks can provide integrative 
information on the physiological state and response to stress 
of a living organism. Several studies have been conducted 
to examine the metabolic responses of different bacterial 
strains exposed to metals, such as cadmium (Cd), copper 
(Cu), aluminum (Al), gallium (Ga) (Beriault et  al., 2006; 
Lemire et  al., 2008; Booth et  al., 2011a; Zhai et  al., 2018), 
and the metalloid oxyanion tellurite ( TeO3

2- ) (Tremaroli 

et  al., 2009). These investigations analyzed the relationship 
between the metal stress and the bacterial behavior comparing 
free swimming planktonic populations with surface-attached 
biofilms (Booth et al., 2011b) or wild-type cells with mutants 
(Tremaroli et  al., 2009). These studies have revealed multiple 
effects exerted by metals into bacterial cells in terms of 
biochemical changes and reconfiguration of cell metabolism 
(Beriault et  al., 2006; Lemire et  al., 2008; Tremaroli et  al., 
2009; Booth et  al., 2011b; Zhai et  al., 2018). Although the 
results obtained have demonstrated the ability to distinguish 
and describe the diverse strain phenotypes in response to 
the exposure of different metals, these metabolomics analyses 
used an end-point approach. In fact, most attention has 
been given to the quantitative end-point study of metal(loid) 
resistance and tolerance of different microbial strains (Beriault 
et  al., 2006; Lemire et  al., 2008; Tremaroli et  al., 2009; Booth 
et  al., 2011b; Zhai et  al., 2018) and less work has asked 
how the different metal(loid) ions exert their toxic effects 
(Lemire et  al., 2013).

In the present study, SeITE01 cells growing in the presence 
of SeO3

2-  were evaluated at different stages of growth. Liquid 
Chromatography Mass Spectrometry (LC-MS) (Haggarty and 
Burgess, 2017; Kamphorst and Lewis, 2017; Kamal and Sharad, 
2018) was used to find metabolite changes in B. mycoides 
SeITE01 cultures treated or not with Na2SeO3 in order to 
evaluate the effect of SeO3

2-  oxyanion on bacterial cells while 
they are reducing it with the generation of Bio-SeNPs along 
a 48-h time course.

MATERIALS AND METHODS

Culture Media, Chemicals, and Solutions
Oxoid™ Nutrient Broth (NB) and Oxoid™ Agar 
Bacteriological were provided by Thermo Fisher Scientific™ 
(Ontario, Canada). Chemicals at the analytical grade were 
purchased from Merck KGaA (Ontario, Canada). Na2SeO3 
was prepared as a 500 mM stock solution in deionized water 
and sterilized by filtration (0.2 μm; Sarstedt Inc., Fisher 
Scientific™). Phosphate-buffered saline (PBS) solution was 
prepared at the final concentration of 100 mM and pH = 7.4, 
while methanol and double distilled water (MetOH-ddH2O) 
have been mixed in a v/v ratio 1:1.

Bacterial Strain and Growth Conditions
Bacillus mycoides SeITE01 was aerobically pre-cultured for 24 h 
at 27°C on an orbital shaker (150 rpm; G10 Gyrotory Shaker, 
New Brunswick Scientific CO., Inc.) in 50-ml Erlenmeyer flasks 
containing 20 ml of the rich medium NB. Na2SeO3 stock solution 
(500 mM) was added to the culture media at the final 
concentration of 2.0 mM. Bacterial growth was carried out in 
250-ml Erlenmeyer flasks containing 100 ml of NB supplied 
or not with 2.0 mM SeO3

2-  (namely, SeO3
2- -treated and 
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untreated, respectively) and inoculated with pre-cultured cells 
at an optical density (OD600; Hitachi U-2000 Spectrophotometer) 
of 0.01. All microbiological experiments were conducted in 
biological triplicates (n = 3).

Evaluation of Bacterial Growth and SeO3
2-  

Depletion
Growth profiles of SeITE01 cultured in presence or absence 
of Na2SeO3 were evaluated at different time points, namely, 
after 3, 6, 9, 12, 18, 24, and 48 h of incubation. Growth was 
monitored by Colony Forming Units (CFU) counting on Nutrient 
Agar plates and reported as the logarithm of the CFU per 
milliliter (Log10 CFU/ml) of culture with standard deviation 
(SD). SeO3

2-  depletion in the medium was determined 
spectrophotometrically (Varian Cary® 50 Bio UV–Vis) as 
previously described (Kessi et  al., 1999; Lampis et  al., 2014). 
SeO3

2-  concentration was evaluated by measuring the absorbance 
of the organic phase at 377 nm of the Se-2, 3-diaminonaphthalene 
complex in cyclohexane, using a 1-cm path length quartz 
cuvette (Hellma® Analytics) against a calibration curve 
(R2 = 0.9876) calculated as average value (n = 3) and constructed 
by using 0, 50, 100, 150, and 200 nmol of SeO3

2-  dissolved 
in liquid NB medium.

TEM Analysis
The imaging of SeITE01 cells was performed using a Hitachi 
H-7650 120 kV transmission electron microscope (TEM) as 
described elsewhere (Piacenza et  al., 2018). Aliquots (500 μl) 
of bacterial cultures either supplied or not with SeO3

2-  were 
recovered at the same incubation times chosen for the 
metabolomics analysis (3, 12, 18, 24, and 48 h) and centrifuged 
at 16,000 g for 10 min at 4°C. The obtained cell pellets were 
diluted in 10 μl of ddH2O to reach a final CFU/ml value of 
4 × 104, deposited on CF300-Cu-Carbon Film Copper grids, 
and air dried for 24-h prior to their observation.

Metabolite Extraction
Samples from untreated and SeO3

2- -treated cultures were 
collected at 3, 12, 18, 24, and 48 h of bacterial growth. Preparation 
of SeITE01 intracellular samples for both experimental conditions 
was always started from the same number of CFU equal to 
2 × 106/ml. Cell pellets were centrifuged at 16,000 g for 10 min 
at 4°C, washed once with cold PBS solution, and immediately 
stored at −80°C until use. The metabolite extraction protocol 
involved taking and re-suspending the cell pellets in 100 μl of 
a pre-cooled (−20°C) mixture of MetOH-ddH2O, followed by 
1 min of vortexing and 10 min of centrifugation at 16,000 g at 
4°C. 80 μl of the suspensions was then transferred into clean 
glass vials and analyzed. A different approach was adopted 
for the extracellular samples. 500 μl of each sample was collected, 
centrifuged at 16,000 g for 10 min at 4°C to remove residual 
bacterial cells, transferred in new and clean tubes, and stored 
at −80°C until use. 50 μl of the chilled supernatants was then 
added to 950 μl of the cold MetOH-ddH2O in order to reach 
a dilution equal to 1:20. The suspensions were vortexed for 

1 min, centrifuged again at 16,000 g for 10 min at 4°C, and 
ultimately, 800 μl was analyzed by LC-MS.

LC-MS Acquisition
Metabolites present in the extracts were separated using ultra 
high-performance liquid chromatography on a Thermo Scientific 
Vanquish Horizon UHPLC system. A binary mixture of 20 mM 
ammonium formate at pH 3.0  in water (Solvent A) and 0.1% 
(v/v) formic acid in acetonitrile (Solvent B) was used in 
conjunction with a Syncronis™ HILIC LC column 
(100 mm × 2.1 mm × 2.1 μm; Thermo Scientific). The following 
analytical gradient was used (with respect to percentage of 
solvent B) to achieve chromatographic separation: 100% from 
0 to 2 min; 100 to 80% from 2 to 7 min; 80 to 5% from 7 
to 10 min; 5% from 10 to 12 min; 5 to 100% from 12 to 
13 min; and 100% from 13 to 15 min. High-resolution mass 
spectral data were obtained on a Thermo Scientific Q-Exactive™ 
HF Hybrid Quadrupole-Orbitrap mass spectrometer coupled 
to a Thermo Scientific Ion Max-S API Source. Data were 
acquired in negative ion full-scan mode from 50 to 750 mass 
to charge ratio (m/z) at 240,000 resolution with automatic 
gain control target of 3 × 106 ions and a maximum injection 
time of 200 ms. Identification and relative quantification of 
both intracellular and extracellular metabolites were carried 
out with the open source software Metabolomic Analysis and 
Visualization ENgine (MAVEN; Melamud et al., 2010). Metabolite 
peak assignments were determined by matching the previously 
established m/z and retention time (RT) of authentic standards 
with observed metabolite signals.

Statistical Analysis
Graphic representation of the clustered heat maps of raw data 
for the intracellular and extracellular dataset was obtained with 
R-3.3.3 software.1

Identification of metabolites whose concentration varied 
significantly between treatment conditions from the analysis 
of their temporal changes was performed with two advanced 
statistical approaches. They were carried out with the open 
source platform for statistical computing and graphics R (version 
3.6.0) run under the free integrated development environment 
RStudio (version 1.0.153).2 The first method exploited multivariate 
empirical Bayes statistics to test the null hypothesis that the 
two expected profiles were the same. A T2 statistics equivalent 
to the two-sample Hotelling T2 statistics have been derived 
by considering a degree of moderation of the variance-covariance 
matrices toward a common matrix which retained the temporal 
correlation structure of the data (Tai and Speed, 2006). A 
ranking of metabolites’ profiles that varied at most in time 
between the cultures supplemented and not with SeO3

2-  was 
then computed. The top  10% of compounds in this ranking 
were considered for further analyses. The full algorithms are 
available in the time-course R package (Tai, 2019). The second 
approach was instead developed in-house. Data analysis started 

1 https://mirror.rcg.sfu.ca/CRAN/
2 https://rstudio.com
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by considering each metabolite a multidimensional vector of 
time-course data samples, exploiting Principal Component 
Analysis (PCA) to identify the temporal dimensions where 
the samples varied at most. The vectors deriving from the 
Euclidean distances between untreated and SeO3

2- -treated 
samples were expected to follow a Rayleigh distribution that 
therefore defined the null hypothesis for statistical comparisons 
(fitdistrplus package, Delignette-Muller and Dutang, 2015). A 
conservative significance threshold was set at p < 10−4 for the 
rejection of the null hypothesis. Ultimately, metabolites identified 
by these statistical approaches were compared using Venn 
diagrams and used for the reconstruction of the final clustered 
heat maps. One further concern was that the raw data showed 
narrow peaked distributions with very long tails. To prevent 
a few metabolites from dominating the statistical comparisons 
because of high leverage, bestNormalize package was used to 
search for the best normalization procedure (Peterson, 2019). 
Intracellular metabolites were then normalized applying the 
BoxCox parametric transform (Zar, 2010) implemented in the 
geoR package (Ribeiro and Diggle, 2018), whereas for extracellular 
metabolites were used the Ordered Quantile normalization 
transformation (Bartlett, 1947) provided by the orderNorm 
function implemented in the bestNormalize package.

RESULTS

Growth Under SeO3
2-  Exposure

Evaluation of the growth of B. mycoides SeITE01 exposed or 
not to 2.0 mM Na2SeO3 is shown in Figure  1A. Bacterial 
cultures in absence of SeO3

2-  displayed a short lag phase of 
3 h, while stationary phase was reached after about 18 h. On 
the other hand, the growth dynamics and final cells yield were 
negatively affected by the presence of SeO3

2- . An extended 
lag phase between 6 h and 12 h was observed, and both 
exponential and stationary phases were delayed to around 18 h 
and 24 h, respectively. Moreover, in the SeO3

2-  exposed samples, 
the death phase was reached after 48 h, while in the untreated 
ones, an extended stationary phase up to 96 h was observed. 

Data description is congruent with that previously presented 
in Vallini et  al. (2005) and Lampis et  al. (2014).

Upon evaluating the SeO3
2-  levels in the spent medium 

with time, SeO3
2-  oxyanion initially added was primarily 

depleted by cells after the stationary phase was reached (24-h 
time point) as shown in Figure  1B. Data obtained from both 
the growth curves and SeO3

2-  consumption allowed us to 
identify specific time points to be  used for metabolomics 
investigation in order to capture relevant metabolic changes 
experienced by SeITE01 cells in SeO3

2- -treated conditions and 
during the oxyanion bio-reduction process.

Cells Morphology Analysis in Presence of 
SeO3

2-  and Bio-SeNPs Detection
Temporal evolution of the morphology of untreated and 
SeO3

2- treated SeITE01 cells was investigated by TEM microscopy 
(Supplementary Figures  1 and 2). Untreated cells revealed 
expected development during the entire time course 
(Supplementary Figures  1A–E), exhibiting a rod-shaped 
morphology, which is typical of Bacillus sp. (Lampis et  al., 
2014). Growth in presence of SeO3

2-  (Supplementary Figure 2) 
induced, instead, some changes in cell morphology, especially 
in the early stages of growth (Supplementary Figures  2A–C). 
The typical rod-shaped morphology was reached by stationary 
phase (24 h). At this time point, it was possible to observe 
nanostructures (spherical black or dark gray spots due to their 
electron dense nature) in both intracellular and extracellular 
space (Supplementary Figure  2D), which were not detected 
in untreated cell samples collected at the same time point, 
and that can be  ascribed to SeNPs. By 48 h, a considerable 
increase in the number of nanoparticles was found outside 
the bacterial cells (Supplementary Figure 2E). The appearance 
of Bio-SeNPs correlated with the depletion of SeO3

2-  observed 
between 24 and 48 h as shown in Figure  1B.

Metabolomics Investigation
Our experiments were outlined to study the change of the 
biochemical state of SeITE01 cells at different points along 
the growth curve, namely, at beginning (3 h) and end (12 h) 

A B

FIGURE 1 | Panel (A) shows the growth profiles of Bacillus mycoides SeITE01 supplied or not with 2.0 mM Na2SeO3. Panel (B) displays SeO2
3

−  consumption by 
B. mycoides SeITE01 culture over time. Dotted arrows indicate the time points chosen for metabolomics investigation.
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of lag phase, at early (18 h) and late (24 h) exponential phase 
and, finally, once they had reached stationary phase (48 h) 
(Figure  1). Following metabolomic analysis, 125 compounds 
associated with the bacterial cell pellets (intracellular metabolites; 
Supplementary Figure  3A) and 124 recurring in the cell free 
spent culture medium (extracellular metabolites; 
Supplementary Figure  3B) were initially identified. Graphical 
representations of the clustered heat maps underlined the 
complexity of the data. To identify significant variations in 
bacterial strain SeITE01 metabolism associated with SeO3

2-

-exposure during the time course, data were analyzed by two 
robust statistical approaches: the combination of PCA with 
the Squared Euclidean Distance (Supplementary Figure  4, 
Supplementary Table 1) and the integration of Bayesian Inference 
with the T2 statistics (Supplementary Table  2). These analyses 
provided two lists of 16 and 19 statistically relevant metabolites 
from the intracellular and extracellular samples, respectively. 
Data were then compared through Venn diagrams to graphically 
identify metabolites in common with the two statistical 
approaches (Supplementary Figure  5) and used for the 
reconstruction of the final clustered heat maps (Figure  2). 
The two categories of samples showed distinct differences in 
both their trends during the time course and the metabolic 
pathways they are involved in.

Intracellular Metabolites
Two key temporal responses can be observed within intracellular 
compounds of SeO3

2- -treated cells: an early (3 h) and a late 
response (48 h). Metabolites associated with the first response 
were 4-hydroxybenzoate (4-HB) and indole-3-acetic acid (IAA), 
while L-proline and trans-4-hydroxyproline belong to the second 
one. In the case of untreated bacterial cells, it was not possible 
to identify families of metabolites showing a definitive temporal 
trend. However, attention must mostly be  paid to glutathione 
(GSH) and N-acetyl-L-cysteine (NAC), which are lacking in 
SeO3

2- -treated cells (Figure  2A).

Extracellular Metabolites
Distribution of metabolites belonging to the extracellular 
dataset showed a characteristic behavior pattern of metabolites 
consumed or produced (Figure  2B). Compounds in the 
lower part of the clustered heat map displayed an identical 
temporal evolution between the two treatments (i.e., L-serine, 
L-aspartate, and 5-oxo-D-proline), while in the upper portion, 
differences are recognizable with some metabolites present 
only in the untreated samples (i.e., N-α-acetyl-L-lysine and 
succinate), while others are observed only in SeO3

2- -treated 
cultures (i.e., mono methyl glutarate, 3-dehydroshikimate, 
and D-ribose). Analysis of the most significant metabolites 
detected under SeO3

2-  exposure underlined the presence 
of four main classes of macromolecules: thiol redox and 
signaling molecules [e.g., GSH, NAC, and 
5-hydroxyindoleacetate (5-HIAA)]; purine derivative, such 
as guanosine; amino acids (e.g., L-threonine and L-ornithine) 
and amino compounds (e.g., ethanolamine phosphate and 
D-[+]-glucosamine); and α-keto acid as 4 methyl-2-oxo 
pentanoic acid.

DISCUSSION

Metabolomics can be  considered a powerful tool for 
understanding and providing clues toward hypothesis for 
describing a given phenotype. Nevertheless, it is very sensitive 
to experimental design, sample preparation, statistical data 
analysis, and interpretation. Here, our statistical evaluation 
of both intracellular and extracellular datasets was complex. 
Cell culturing in rich NB medium would lead to a variety 
of metabolic pathways active, while the use of three different 
variables (untreated and SeO3

2- -treated cultures, and time) 
prevented an ease use of classic statistical approaches so 
far applied for metabolomics studies. The challenge was to 
evaluate not only a possible difference in metabolites between 
SeO3

2- -treated and untreated cultures, but also to see how 
this difference varies over the time course, possibly recognizing 
metabolites involved in SeO3

2-  bio-reduction process. The 
analysis of clustered heat maps deriving from the statistical 
processing of datasets (Figure  2) together with the graphic 
representation of the statistically relevant metabolites 
corresponding to different growth states allowed for the 
identification of the biomolecules that changed in the cell 
pellets (intracellular metabolites; Figure  3) and cell free 
spent medium (extracellular metabolites; Figure  4) samples. 
It is important to mention that interpretation of extracellular 
metabolites and identification of a possible relationship 
between these compounds and SeO3

2- -oxyanion effect requires 
considerably more caution than the elucidation of the 
intracellular pool. Extracellular compounds, in fact, can 
be  the result of selective nutrient import, active efflux of 
metabolites from the cytoplasm, cell membrane leakage due 
to osmotic stress, or cell death leading to complete release 
of all cell constituents. Below follows the time course of 
the experiment of growth of SelTE01 under selenite  
exposure.

Lag phase of growth shows the initial uptake of SeO3
2-  

by SeITE01 cells can be  traced back to the earliest stage 
of growth, the 3-h time point. The oxyanion’s transport 
into cellular compartments is accompanied by a change in 
cell morphology (Supplementary Figure  2A), an increase 
in intracellular levels of 4-HB and IAA (Figures  3A,B), 
and the extracellular accumulation of guanosine (Figure 4A). 
4-HB is a precursor of the primary electron transport chain 
carrier ubiquinone (Q) also involved in gene regulation and 
oxygen radical scavenging (Søballe and Poole, 1999). Its 
accumulation in SeO3

2- -treated cells suggests an oxidative 
stress role induced by SeO3

2- , acting as antioxidant molecule 
and ROS scavenger. Moreover, Sévin and Sauer (2014) have 
demonstrated that the intracellular accumulation of ubiquinone 
in E. coli can elicit osmotic-stress tolerance through the 
modification of cell membrane composition. IAA is an 
ubiquitous signaling molecule responsive to different stress 
conditions (Somers et  al., 2005; Bianco et  al., 2006; Zarkan 
et  al., 2020). Finally, we  see guanosine, which can play 
regulatory roles in stress response, biofilm formation, and 
cellular damage protection (Cornforth and Foster, 2013; 
Rowlett et  al., 2017; Bange and Bedrunka, 2020). Thus, the 
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observations at this growth phase suggest the cells elucidating 
general stress response adapting to the SeO3

2-  
loaded environment.

From the end of the lag (12 h) and exponential (18 h) growth 
phases under selenite exposure, we  see SeO3

2-  uptake but no 
conversion to Se0 (Figure  1B), and cells continue to present 
structural malformation (Supplementary Figures  2B,C). 
However, the detection of reductive thiol (RSH) compounds 
only in untreated samples and their total absence in the exposed 
ones allows us to hypothesize that SeO3

2-  has started reactions 
with these types of molecules, as expected. GSH (Figures 3C, 4B) 
and NAC (Figures  3D, 4C) were found at high levels both 
intracellularly and extracellularly for untreated samples, yet 
essentially absent from SeO3

2-  exposed ones. It is recognized 

that GSH and related thiol compounds are notoriously challenging 
to accurately quantify (Lu et  al., 2017). Besides, it is known 
that RSH molecules are important for chalcogen chemistry 
through involvement in Painter reduction reactions of SeO3

2-  
to Se0. In this way, the total absence of GSH and NAC in 
SeO3

2- -treated samples throughout the entire time course 
supports the literature observations that these metabolites are 
rapidly consumed (Painter, 1941; Ganther, 1971; Kessi et  al., 
1999; Kessi and Hanselmann, 2004; Kessi, 2006) and they may 
be  involved in proactive toxicity. Furthermore, they act as a 
substrate or reducing sources to scavenge ROS produced as 
a consequence of SeO3

2-  reactions and cell damage, playing 
a defensive role (Turner et  al., 1998). Extracellularly, we  see 
the amino acids L-threonine (Thr) and ornithine (Orn) changing 

A

B

FIGURE 2 | Clustered heat maps of the most statistically relevant intracellular (A) and extracellular (B) metabolites of B. mycoides SeITE01 identified by the two 
statistical approaches.
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(Figures  4D,E). Orn is of interest as it plays numerous roles 
in cells as a biosynthetic precursor of arginine linked to the 
urea cycle (Stalon et  al., 1987; Reitzer, 2009). It is also a key 
to the biosynthesis of polyamines, a class of compounds involved 
in a variety of cellular processes, such as gene expression, cell 
growth, survival, and stress response (Gevrekci, 2017). 
Additionally, Orn can be used for the synthesis of phosphorus-
free ornithine lipids, which are alternative membrane lipids 
activated under stress and widespread among eubacteria 
(Sohlenkamp and Geiger, 2016; Sohlenkamp, 2019). Combining 
these growth phase observations, we can postulate that SeO3

2-  

is reacting with RSH molecules, and subsequent stress response 
may be  in part dealt with changes in membrane lipids.

Stationary phase (24 h) marks the beginning of the SeNPs 
formation and extracellularly accumulation and the cells adapting 
a normal rod-shape morphology (Supplementary Figure  2D). 
5-HIAA is an indole derivative with roles in virulence, cell 
cycle regulation, acid, pH and heat resistance, and a signaling 
molecule in biofilm formation (Hu et  al., 2010; Lee and Lee, 
2010; Zarkan et  al., 2020). Cellular survival in this stage of 
growth is deeply linked to both energy metabolism and stress 
resistance (Wang et  al., 2001; Hu et  al., 2010; 

A B

C D

E F

FIGURE 3 | Most relevant intracellular metabolites. This figure shows the intensity trends of metabolites from both untreated and SeO2
3

− -treated cells during the 
time course. Panels (A,B) show metabolites present in the earliest stage of growth (3 h). Panels (C,D) show metabolites accumulated during the end of lag (12 h) 
and beginning of exponential (18h) phases. Panels (E,F) show metabolites present late in stationary phase (48 h) and during Bio-SeNPs release.
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Gaimster  et  al.,  2014; Zarkan et  al., 2020). D-[+]-glucosamine 
(GlcN) and 4-methyl-2-oxo pentanoic acid are observed, 
increasing up to 24 h. GlcN is a non-acetylated amino sugar 
whose acetylated form is one of the two components of 
peptidoglycan (Vollmer et al., 2008). In other species of Bacillus, 
the presence of this metabolite followed the activation of defense 
responses against external agents (Psylinakis et al., 2005; Vollmer, 
2008). Under stressful conditions, bacterial cells can activate 
the peptidoglycan turnover, a phenomenon known as cell wall 
recycling (Reith and Mayer, 2011). In Bacillus species, the 
predominant fatty acid species of membrane lipids are represented 
by the branched-chain fatty acids (BCFAs) (de Mendoza et  al., 
2002; Tojo et  al., 2005), where this metabolite represents a 
precursor (Lowe et  al., 1983; Belitsky, 2015). Under adverse 
states, bacterial cells can adjust BCFA composition to regulate 
membrane fluidity, allowing survival in a wide range of physical 
and chemical environments (Singh et  al., 2008). Zhu et  al. 
(2014) demonstrated that both B. subtilis and S. aureus responded 
to carbon nanotubes (CNTs) toxic stress through changing 
their fatty acid composition. The modification helped to 

compensate for the fluidizing effect of nanostructures on the 
cytoplasmic membrane making it more “rigid” which conforms 
to the early theory of “homeoviscous adaptation” described 
by Sinensky (1974). These observations may reflect the signaling 
around the stress of release of Se atoms and SeNPs from the 
cytoplasm out of the cell where one can imagine would 
be  disruptive toward cell wall and membrane envelope.

Well after stationary phase (48 h), we see the full conversion 
of SeO3

2-  to Se0 and subsequent increase of SeNP sizes and 
quantity in the extracellular space (Supplementary Figure 2E). 
This is accompanied by intracellular accumulation of trans-
4-hydroxyproline (Hyp) and L-proline (Pro) (Figures  3E,F), 
which show osmoprotectant activity (Kim et  al., 2017), as 
well as extracellular accumulation of the amino compound 
ethanolamine phosphate (Figure 4I). Ethanolamine phosphate 
is in the phosphatidyl ethanolamine (PE) pathway for this 
key lipid head group (Kaval and Garsin, 2018). Both of 
these observations suggest further membrane adaptation and 
protection likely from the stress of releasing the SeNPs 
through the cell barrier.

A B C

D E F

G H I

FIGURE 4 | Most relevant extracellular metabolites. This figure shows the intensity trends of metabolites from both untreated and SeO2
3

− -treated cells during the 
time course. Panel (A) shows metabolite present in the earliest stage of growth (3 h). Panels (B–E) show metabolites extruded during lag (12 h) and exponential 
(18 h) stages. Panels (F–H) represent metabolites detected during stationary stage (24 h), while panel (I) describes metabolite secreted in late stationary phase (48 h).
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CONCLUSION

In the present study, untargeted metabolomics analysis was adopted 
to explore the effects of the oxyanion SeO3

2-  on the cells of 
the Gram-positive bacterium Bacillus mycoides SeITE01. This study 
suggests that this strain faces the toxic effect of SeO3

2-  by activating 
several stress defense systems during the growth and through 
SeO3

2-  exposure, reduction, and SeNPs production. The identified 
metabolites were consistent with the hypothesis of intracellular 
accumulation of osmo-protective solutes and antioxidants, the 
activation of ROS scavengers, as well as compounds that participate 
in stabilizing the cytoplasmic membrane. Furthermore, in the cell 
free spent medium (extracellular), there was a change in metabolites 
related to oxidative stress, signaling, stress linked amino acids 
and metabolites involved in modifications of bacterial membranes 
lipids and cell walls.
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