',\' frontiers
in Microbiology

ORIGINAL RESEARCH
published: 13 July 2021
doi: 10.3389/fmicb.2021.711377

OPEN ACCESS

Edited by:

Andrew S. Lang,

Memorial University of Newfoundland,
Canada

Reviewed by:

Giuseppe Arcangeli,

Experimental Zooprophylactic Institute
of Venice (IZSVe), Italy

Arshan Nasir,

Los Alamos National Laboratory
(DOE), United States

*Correspondence:
Benjamin Morga
Benjamin.Morga@ifremer.fr

1 These authors share first authorship

Specialty section:

This article was submitted to
Virology,

a section of the journal
Frontiers in Microbiology

Received: 18 May 2021
Accepted: 21 June 2021
Published: 13 July 2021

Citation:

Morga B, Jacquot M, Pelletier C,
Chevignon G, Dégremont L, Biétry A,
Pepin J-F, Heurtebise S,

Escoubas J-M, Bean TR, Rosani U,
Bai C-M, Renault T and Lamy J-B
(2021) Genomic Diversity of the
Ostreid Herpesvirus Type 1 Across
Time and Location and Among Host
Species. Front. Microbiol. 12:711377.
doi: 10.3389/fmicb.2021.711377

Check for
updates

Genomic Diversity of the Ostreid
Herpesvirus Type 1 Across Time and
Location and Among Host Species

Benjamin Morga'*t, Maude Jacquot't, Camille Pelletier', Germain Chevignon’,
Lionel Dégremont’, Antoine Biétry', Jean-Francois Pepin?, Serge Heurtebise’,
Jean-Michel Escoubas?, Tim P. Bean+5, Umberto Rosani¢, Chang-Ming Bai?,
Tristan Renaulté and Jean-Baptiste Lamy’

! lfremer, RBE-SGMM-LGPMM, La Tremblade, France, ? Ifremer, ODE-Littoral-Laboratoire Environnement Ressources des
Pertuis Charentais (LER-PC), La Tremblade, France, ° IHPE, CNRS, Ifremer, Université de Montpellier — Université de
Perpignan Via Domitia, Montpellier, France, * The Roslin Institute and Royal (Dick) School of Veterinary Studies, University

of Edinburgh, Midlothian, United Kingdom, ° Centre for Environment, Fisheries and Aquaculture Science, Weymouth,

United Kingdom, ¢ Department of Biology, University of Padua, Padua, Italy, ” Yellow Sea Fisheries Research Institute, CAFS,
Qingdao, China, ¢ Ifremer, RBE, Nantes, France

The mechanisms underlying virus emergence are rarely well understood, making the
appearance of outbreaks largely unpredictable. This is particularly true for pathogens
with low per-site mutation rates, such as DNA viruses, that do not exhibit a large amount
of evolutionary change among genetic sequences sampled at different time points.
However, whole-genome sequencing can reveal the accumulation of novel genetic
variation between samples, promising to render most, if not all, microbial pathogens
measurably evolving and suitable for analytical techniques derived from population
genetic theory. Here, we aim to assess the measurability of evolution on epidemiological
time scales of the Ostreid herpesvirus 1 (OsHV-1), a double stranded DNA virus of which
a new variant, OsHV-1 pVar, emerged in France in 2008, spreading across Europe
and causing dramatic economic and ecological damage. We performed phylogenetic
analyses of heterochronous (n = 21) OsHV-1 genomes sampled worldwide. Results
show sufficient temporal signal in the viral sequences to proceed with phylogenetic
molecular clock analyses and they indicate that the genetic diversity seen in these
OsHV-1 isolates has arisen within the past three decades. OsHV-1 samples from France
and New Zealand did not cluster together suggesting a spatial structuration of the viral
populations. The genome-wide study of simple and complex polymorphisms shows that
specific genomic regions are deleted in several isolates or accumulate a high number
of substitutions. These contrasting and non-random patterns of polymorphism suggest
that some genomic regions are affected by strong selective pressures. Interestingly,
we also found variant genotypes within all infected individuals. Altogether, these results
provide baseline evidence that whole genome sequencing could be used to study
population dynamic processes of OsHV-1, and more broadly herpesviruses.
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INTRODUCTION

A common paradigm is that double-stranded DNA (dsDNA)
viruses, and particularly herpesviruses, are inherently stable
(Sanjuan et al., 2010; Sanjuan and Domingo-Calap, 2016)
making them unsuitable for analytical techniques derived from
population genetic theory. At the molecular level, this view
stems from low per-site mutation rates due to the high-fidelity
polymerases and error correction systems typical of these viruses.
However, recent progress has been made in understanding the
genomic diversity and evolution of mainly human herpesviruses,
driven by the rapid expansion and application of high throughput
sequencing (HTS), bioinformatics, and comparative genomics
in virology. The ability of dsDNA viruses to accrue standing
variation, and to undergo recombination with neighboring
genomes, creates many opportunities for selective pressures to
induce rapid genetic shifts (for a review of factors see Sanjudn
and Domingo-Calap, 2016). In the meantime, estimates of the
substitution rates of human herpesviruses and cytomegaloviruses
are substantially higher than previously though (Kitchen et al,,
2010; Jaramillo et al., 2013; Parsons et al., 2015; Renner and
Szpara, 2017) and evidences that several viral haplotypes can
be found within one infected host (at the individual scale)
have been provided (Renzette et al., 2011; Cudini et al., 2019).
Together, these data have reshaped our sense of the stability
of herpesvirus genomes. Because contemporary viral genomic
diversity is a result of the dynamic interaction of past ecological
and evolutionary processes (Retel et al., 2019), opportunities to
assess their evolution, at a genome-wide scale, to infer their
population dynamics from genomic data (Biek et al,, 2015)
offer new perspectives for better understanding and preventing
herpesviruses outbreaks.

Ostreid herpesvirus 1 (OsHV-1) is a dsDNA herpesvirus
and the unique member of the genus Ostreavirus (family
Malacoherpesviridae, order Herpesvirales). It was the first
herpesvirus isolated from invertebrates in the early 1990s
(Nicolas et al, 1992) and likely is the causative agent
of the last decades increased mortality events in Pacific
oysters, Crassostrea gigas and therefore responsible for dramatic
economic damages (EFSA, 2010; Segarra et al., 2010). Since
the appearance of the OsHV-1 pVar variant in 2008, we
have observed high mortality following the detection of this
variant, the means to fight against the infection of this virus in
oyster are limited.

Ostreid herpesvirus 1 infects mainly spat and juvenile C.
gigas and is currently detected in most oyster producing area
worldwide (Nicolas et al., 1992; Garcia et al, 2011; Paul-
Pont et al.,, 2013). Furthermore, this virus is able to infect at
least four more distantly related marine bivalve species (Ostrea
edulis, Chlamys farreri, Pecten maximus Cerastoderma edule, and
Anadara broughtonii; Arzul et al., 2001, 2017; Davison et al,
2005; Bai et al., 2015; Bookelaar et al., 2020). However, whether
viral populations infecting the different host species are the same
remains unknown.

The first variant of OsHV-1 was described on P. maximus
larvae and was named OsHV-1 Var but the associated disease
was not well documented (Arzul et al, 2001). Since 2008,

microvariants of OsHV-1 have been associated with increasing
mortality of C. gigas in France, and in a number of countries
across Europe, as well as in Australia and New Zealand (Segarra
etal, 2010; Jenkins et al., 2013). OsHV-1 pVar is a single variant
which differs from the reference genome published in 2005 by
Davidson (accession number NC_005881.2) mainly because of
sequence variations in a microsatellite locus upstream of the
Open Reading Frame (ORF) 4, in ORF4 and in ORF42/43. The
term “microvariants” is now used to refer to all haplotypes with
mutations in and upstream of ORF 4 and in ORF 42/43. Other
variants have also been described, for example OsHV-1-SB which
has been associated with mass mortalities of S. broughtonii in
China (Bai et al., 2015, 2016).

Following the emergence of OsHV-1 pVar, a number of
studies have been undertaken to investigate the diversity
of OsHV-1 using single- (Renault et al, 2014) or multi-
genomic regions (Renault et al, 2012). Three OsHV-1
genome sequences were obtained with bacteriophage lambda
libraries or genome walking procedures (Davison et al,
2005; Ren et al., 2013; Xia et al., 2015). More recently, three
additional OsHV-1 pVar genomes were sequenced using
Mlumina shotgun DNA-seq technology (Burioli et al., 2017;
Abbadi et al., 2018).

While sequencing allows us to characterize polymorphism
and genomic variation at the genome scale with unprecedented
power, in the case of OsHV-1, diversity has not yet been
explored at the genome scale, or across different dimensions
such as time, location and host species. Recently a study
of viral diversity was performed at the viral mRNA level,
which demonstrated viral populations differ depending on the
genetic background of their hosts. This result suggests a co-
evolution process between OsHV-1 L Var and oyster populations
(Delmotte et al., 2020).

Therefore, using a reference mapping approach from
historical collection of deep sequenced infected animals, we
aim to assess the measurability of evolution on epidemiological
time scales of OsHV-1. We also aim at characterizing the
potential of the approach to test (i) if infected individuals
belonging to different host species harbor different viral
populations with large genomic differences possibly due to
viral speciation and, (i) if infected individual from the
same host species but originated from different world region
harbor viral populations with the same genomic structure and
simple polymorphisms.

MATERIALS AND METHODS

Sample Collection

Samples analyzed in this study come from a combination of
sources, including an historical collection and the European
and National Reference Laboratory for Bivalve Mollusc Diseases.
For the rest of this paper, we refer to “isolates” in the sense
of viral populations isolated from infected individual host.
Most of the data derives from whole-genome sequencing of
infected individual host or pools of infected individual hosts
(Table 1). The 22 isolates in this study were collected from
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TABLE 1 | Description of the 22 sequenced libraries in this study: country of origin, host species, year of collection, sample stage, sequencing technology, and number
of reads aligned against Ostreid herpesvirus 1 (OsHV-1) reference genome (Accession number: NC_005881.2).

Sample’s ID Country of origin  Species Year Stage Sequencer, sequencing Aligned reads
protocol, platform

VIV46-2-m France Crassostrea gigas 2017 Juvenile HiSeq 4000, Paired-end 150 bp, 281,336
LIGAN-PM Genomics

VIV56-10-m France Crassostrea gigas 2017 Juvenile HiSeq 4000, Paired-end 150 bp, 346,491
LIGAN-PM Genomics

VIV48-4-m France Crassostrea gigas 2017 Juvenile HiSeq 4000, Paired-end 150 bp, 354836
LIGAN-PM Genomics

VIV49-5-m88 France Crassostrea gigas 2017 Juvenile HiSeq 4000, Paired-end 150 bp, 183,665
LIGAN-PM Genomics

VIV58-12-m France Crassostrea gigas 2017 Juvenile HiSeq 4000, Paired-end 150 bp, 155,976
LIGAN-PM Genomics

VIV47-3-m France Crassostrea gigas 2017 Juvenile HiSeq 4000, Paired-end 150 bp, 370,770
LIGAN-PM Genomics

VIV57-11-m99 France Crassostrea gigas 2017 Juvenile HiSeq 4000, Paired-end 150 bp, 49,985
LIGAN-PM Genomics

Poole-Harbour United-Kingdom Crassostrea gigas 2015 na MiSeq, Paired-end 150 bp 55,056

United Kingdom

LI France Crassostrea gigas 2010 Pool of larvae HiSeq 2500, Paired-end 100 bp, 400,021
GenoToul

PR France Crassostrea gigas 2008 Pool of juveniles HiSeq 2500, Single-end 100 bp, 344,852
GATC Biotech

MV France Crassostrea gigas 2010 Ripe Adult HiSeq 2500, Single-end 100 bp, 331,278
GATC Biotech

NZ New-Zealand Crassostrea gigas 2010 Pool of larvae HiSeq 2500, Single-end 100 bp, 341256
GATC Biotech

NZ16 New-Zealand Crassostrea gigas 2011 Adult HiSeq 2500, Paired-end 100 bp, 105,610
GATC Biotech

Nz17 New-Zealand Crassostrea gigas 2011 Adult HiSeq 2500, Paired-end 100 bp, 202,246
GenoToul

Nz18 New-Zealand Crassostrea gigas 2011 Adult HiSeq 2500, Paired-end 100 bp, 150,315
GenoToul

IRL15* Ireland Crassostrea gigas 2011 Adult HiSeq 2500, Paired-end 100 bp, 1,802
GenoToul

Jp2* Japan Crassostrea gigas na Adult HiSeq 2500, Paired-end 100 bp, 2,115
GenoToul

JP6* Japan Crassostrea gigas na Adult HiSeq 2500, Paired-end 100 bp, 3,280
GenoToul

NL4* Netherlands Crassostrea gigas  na Adult HiSeq 2500, Paired-end 100 bp, 4,143
GenoToul

SP16* Spain Crassostrea gigas ~ na Adult HiSeq 2500, Paired-end 100 bp, 1,259
GenoToul

SW3* Sweden Ostrea edulis 2012 Pool of larvae HiSeq 2500, Paired-end 100 bp, 1,839
GenoToul

SW6 Sweden Ostrea edulis 2012 Adult HiSeq 2500, Paired-end 100 bp, 402,082
GenoToul

Samples for which the ID starts by “VIV” are from research project Vivaldi and the remaining samples are from historical collections.

*Those samples did not pass the quality check and were discarded.

several countries around the world: France (eight infected
juveniles C. gigas, two pool of infected C. gigas oysters, and
one C. gigas adult), New-Zealand (one infected pool of C. gigas
larvae and three infected C. gigas adults), Ireland (one C. gigas
infected adult), Japan (two C. gigas infected adults), Sweden (two
pooled infected O. edulis larvae and one infected adult), United-
Kingdom (one C. gigas individual), Netherlands (one Crassostrea
gigas infected adult), and Spain (one C. gigas infected adult;
Table 1).

The historical samples were from moribund oysters collected
during mortality outbreaks. For spat, juvenile and adults, a piece
of mantle or gill was collected and stored in 90% ethanol until
DNA extraction. For larvae samples, a pool of individuals was
frozen (—20°C) and stored until DNA extraction.

All “VIV” oysters were sampled during a mortality outbreak
in July 2017 (Table 1). Briefly, spat were placed into the field
(17390 La Tremblade Ronce-les-Bains France, a sandbank called
“La Floride»: LAT 45.80° and LONG -1.15°). As soon as the
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onset of the mortality, spat were transferred in the laboratory and
checked twice a day (from 18/07/2017 to 21/07/2017) to sample
fresh moribund individuals.

Genomic Library Preparation and
Sequencing Runs

A range of 60-200 mg of pooled larval samples were mechanically
crushed using unique piston pellet before DNA extraction. About
50 mg of fresh tissue were collected from spat-juveniles-adults.
Nucleic acid extraction was performed using the QIAamp DNA
Mini Kit (Qiagen) according to the manufacturer’s handbook.
All extracted DNA samples were stored at —25°C to avoid any
degradation and DNA concentrations were measured with the
Nanodrop™ (Labtech, France). After storage, DNA quality was
assessed with Nanodrop™ and checked again by the sequencing
platform using fluorometric measurement of nucleic acids.

All the libraries were sequenced using Illumina technology,
with HiSeq 2000 sequencers on two platforms, GATC (Mulhouse,
France) and GenoToul (Toulouse, France), with the exception
of United Kingdom samples that were sequenced with MiSeq
on in-house sequencers, and the HiSeq 4000 for the most
recent samples on LIGAN (CNRS, Lille, France). Regarding
the sequencing protocols, three libraries were sequenced on
single-end protocol (1 x 100 bp) and remaining libraries were
sequenced with paired-end protocol (2 x 150 bp) (Table 1), with
the exception of the Miseq data, which was generated using V3-
600 Miseq specific cartridge. Raw sequence data are available on
the NCBI Sequence Read Archive (SRA) under the BioProject
ID: PRINA721248.

Bioinformatics and Genomic Framework
Read Mapping and Filtration

A reference mapping approach was used to explore the viral
genomic diversity within and between samples. This approach
has been extensively used for eukaryotic organisms and is best
suited to call single nucleotide polymorphisms (SNPs) and
genomic structural variation (SV) from a collection of individuals
or pooled libraries in comparison to the more widely used de
novo assembly strategies in the viral community (Baaijens et al,,
2017). All sequenced libraries were aligned against the OsHV-1
reference genome (Accession number: NC_005881.2) (Davison
et al., 2005) using BWA MEM v7.1.0 (Li and Durbin, 2009; Li,
2013). Only samples with a mean of coverage depth equal to or
above 100X have been included for polymorphism calling and
10X for haplotype reconstruction (Figure 1A).

Local Haplotypes Reconstruction

We first aimed to reconstruct local haplotypes. As far as we are
aware, no software dedicated to haplotype reconstruction is able
to manage long indels, as it is observed in OsHV-1 genomes,
with short reads (i.e., ~100 bp reads long). To circumvent this
limitation, we decided to make local haplotype reconstruction
on each gene coding DNA sequence (CDS) that were present
in every sample and outside of inverted and repeat regions.
Each CDS coordinate were extracted from the GenBank file
(Clark et al., 2016) and we use them to subset the bam file
for each sample (Locus_tag, Figure 1B). We feed QuasiRecomb

(Topfer et al., 2013), haploclique (Topfer et al, 2014), and
shorah (Zagordi et al., 2010, 2011) with CDS-split bam files
(Figure 1E). Only results from Shorah software are showed on the
main text because it represents the most conservative short read
local assembler, whereas the other software outputs are showed
in supplementary figures. Briefly, Shorah employs a model-
based probabilistic clustering algorithm to correct errors, infer
haplotypes and their frequencies, and estimate, using a Bayesian
approach, the quality of the reconstruction by computing the
full joint posterior probability distribution of all parameters of
interest (Zagordi et al., 2010).

Subsequent plotting were made in R Development Core
Team (2008) with basics functions and the ggplot2 package
(Wickham, 2016) (Figure 1H).

Short and Long Polymorphism Calling
The raw bam files were also processed with Freebayes
software (Garrison and Marth, 2012; Figure 1D) to call short
polymorphisms. Freebayes is one of the most versatile variants
calling software, particularly when the libraries included pool
of viral haplotypes as it is in the present study and has been
extensively tested and validated on various organisms with
different protocols (Olson et al., 2005; Wang et al., 2005). We
discarded genomic regions with low complexity (entropy > 1)
and regions with a high number of misalignments namely TRL,
IRL, IRS, and TRS genomic regions that are duplicated.
Variation of coverage depth and, when available, the
orientation of the paired-reads against the reference genome were
jointly analyzed to detect SV, deletions, duplications, insertions,
inversions, and translocations (Davison et al., 2005). We use
Sniftles to perform the SV detection (Figure 1C; Sedlazeck et al.,
2018), all the inferred structural variants were checked manually
and filtered out as soon as we suspected some alignments
artefacts. Most inferred deletions were visually checked with
IGV (Thorvaldsdéttir et al., 2013), the remaining types of SV
(insertions, duplications, inversions, and translocations) were
rare, difficult to check manually and consequently we did not
consider those in the rest of the paper. Information from both
VCEF files, short and long polymorphisms, were merged using
vcflib (Garrison, 2019).

Consensus Sequence Reconstruction

For each sample, we reconstructed a “consensus sequence”
based on the most frequent alleles for SNPs and short
insertions/deletions. Into this consensus, we also integrated all
long deletions found in the SV calling step, only all “large
deletions” inferred by Sniffles and visually checked (Figure 1C,
Supplementary Table 1, and Supplementary Figure 1). To create
these consensus sequences, we use a combination of bcftools
(Li et al., 2009; Li, 2011) and bedtools (Quinlan and Hall, 2010;
Figure 1F).

Phylogenomic Analysis of Consensus Sequence

We choose to work on the full-length genome
(Figures 1C,D,EG) because among the Malacoherpesviridae
family most of the transcripts and proteins have no
functional annotation.
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.bam files by CDS

E Local haplotype B
reconstruction (QuasiRecomb,
haploclique, Shorah)

i Public genome

H  visualization of viral fasta
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FIGURE 1 | Schematic illustration of bioinformatics framework. In summary, the right part is devoted to genome-wide phylogenetic approaches and the left part
aims to reconstruct local viral haplotypes. Sequences were aligned to reference genome (A) and consensus were used to detected haplotypes (B,E,H) and SNPs

(C,D,F). Multiple alignement were used to built phylogenies (G;l).

.bam

»C Structure variation >100 bp (sniffles) D
il .bedpe .vef

|

Consensus Variant-Aware Calling (bcftools, bedtools, vcflib)
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I Genome wide phylogeny (PhyML)
Time-scaled phylogeny (BEAST)

All consensus sequences for each samples, plus the publicly
available full length OsHV-1 genomes as of March 2021
(MF509813.1, NC_005881.2, KY242785.1, and KY271630.1)
and the genome of the acute viral necrotic virus (AVNV)
GQ153938.1 were merged and aligned with MAFFT (Katoh
and Standley, 2013; Figure 1G). For the multiple sequence
alignment, we did not perform any trimming or masking steps
as recommended in Tan et al. (2015).

We used a general time reversible evolutionary model with a
gamma distribution of the rate of variation among sites and a
proportion of invariable sites (GTR 4 I 4+ G) considered most
appropriate according to jModelTest v2.1.10 (Posada, 2008) and
based on the Akaike Information Criterion corrected for small
sample size (AICc).

We assessed whether there is sufficient temporal signal in
our data to proceed with phylogenetic molecular clock analysis
and checked there were no sequences whose genetic divergence
and sampling date were incongruent with TempEst v1.5.3
(Rambaut et al., 2016) from a maximum likelihood tree build
using PhyML v3.1 (Guindon et al,, 2010). Time-scaled Bayesian
phylogenetic trees were estimated in BEAST v1.10.4 (Suchard
et al., 2018) using a GTR + I 4+ G substitution model under a
relaxed molecular clock with a lognormal distribution of rates
(Figure 1I). A Gaussian Markov Random Field Bayesian skyride
coalescent model was used as the tree prior (Minin et al,

2008). A Monte Carlo Markov chain (MCMC) was run for the
number of generations needed to achieve stationary distributions
(200,000,000 generations) and sampling frequency adjusted
accordingly to yield 10,000 samples from the posterior. We used
Tracer v1.6 (Rambaut et al., 2016) to visualize the posterior
distribution of each parameter and to obtain an estimate of the
effective sample size (ESS) after removal of the initial 10% burn-
in. We assumed the run had reached sufficient mixing as the
ESS of all the parameters was above 200. A maximum clade
credibility (MCC) tree was produced after removal of the initial
10% burn-in based on common ancestor heights method (Heled
and Bouckaert, 2013) using the auxiliary program TreeAnnotator
included in the BEAST package.

Statistical Analysis
To test for the correlation between polymorphism and time, host
species and stage, we calculated a mean frequency of the targeted
polymorphism type (snp, deletion, and standardized on 1,000 bp)
across all genes for each individual (to avoid pseudo-replication).
We then used a generalized linear model with fixed factors with
the following syntax (we add into brackets information about
variable nature and modalities numbers).

Polymorphism (SNP or deletion) ~ sampling date
[continuous variable] + host species [factor with two modalities
C. gigas, O. edulis] + host stage [factor with three modalities:
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juvenile, pool_larvae, and adult]. All statistics were conducted
with R 3.4 (R Development Core Team, 2008) using the linear
model, built in “Im” function.

RESULTS

Data Quality Observations

As expected, the sequencing depth and the viral genome coverage
was correlated to the total number of reads for the different
libraries (data not shown). However, the sequencing of fresh
moribund individuals, or even better, a pool of infected larvae
(as the cost of losing information about the within-host dynamic
of viral haplotypes) improves coverage and depth of sequencing.
A pragmatic rule of thumb in order to have meaningful and
sufficient reads from the virus genome, when sequencing an
infected individual host, is to choose a fresh moribund oyster
(i.e., an adult, a juvenile or a pool of larvae) harboring more than
5.0 x 10% OsHV-1 copies/mg of fresh flesh and sequence it with
a yield of at least 10 x 10° reads per sample (Supplementary
Figure 1). This procedure enabled a mean coverage depth of 100X
of the whole viral genome for the following samples: LI, NZW17,
NZW18, SW6, VIV46-2-m, VIV47-3-m, VIV48-4-m, VIV49-5-
m88, VIV56-10-m, and VIV58-12-m. However, it should be kept
in mind that most of the reads from a library are from the host’s
genome (approximately 95-99%, although this could be as low as
70% in case of pooled infected larvae).

Viral Haplotype Diversity

The local reconstruction of haplotype diversity gives an estimate
of number of viral haplotypes segregating within one isolate
(Figure 2, and Supplementary Figure 2) between 1 and 4
haplotypes (on the CDS basis). As expected, libraries sequenced
with short reads and single end, namely PR, MV, and NZ, did
not bridge different mutations (SNP or indels) and jeopardize
the local assembler heuristics to disentangle sequencing error
from true mutations. The coverage depth has a deep impact of
the number of haplotypes that were reconstructed. For example,
all the VIV samples showed a higher number of reconstructed
haplotypes mainly due to a good sequencing depth. Indeed, it is
hard to compare the number of viral haplotypes between samples
from pool of larvae or juvenile and from one individual host.
In summary, the number of viral haplotypes that segregate into
infected individual is higher than unit except for samples Poole-
Harbor United Kingdom and VIV57-11-m, but both samples
have a rather low sequencing depth, and the Poole harbor isolate
had previously been passaged through an oyster in a controlled
environment. The variation of the number of haplotypes across
the viral genome is hard to interpret but some regions seem to
harbor more haplotypes nearly inverted and repeated regions.

Deletions, Substitution Rate and Most

Recent Common Ancestors

The linear regression analysis showed that the accumulation of
substitutions is correlated with time and not driven by a hidden
species effect (DF = 6/9, F = 98.68, p value = 1.07 x 1077,

time effect estimate = 0.12, time p value = 0.023). The greatest
modalities of the stage did not have any effect except for the
juveniles (or pool of juveniles), however, the unbalanced nature
of these factors precludes any serious inferences. In comparison,
accumulation of short deletions did not increase with time
(modell, DF = 6/9, F = 113.8, p value = 5.72 x 1078, time
effect estimate = 0.02, time p value = 0.68). It should be noted,
the accumulation of deletions is far above the accumulation of
substitutions and seems to be the main process of sequence
evolution over time (Figure 3). Our reference mapping approach
gives a biased picture of the insertion events into OsHV-1 genome
as only sequences which are present in the reference genome
can be detected and hence any new sequence inserts larger
than read length will be lost during alignment process. Despite
this limitation, 89 short insertions could be detected across 22
samples independently of the oyster species and the sampling
date. Another important feature of OsHV-1 genome evolution is
the presence of large deletions (Figure 3, Supplementary Table 1,
and Supplementary Figure 4). The closest sample (PR) in time
(and region) compare to OsHV-1 reference genome (Davison
et al., 2005) shows no deletion whereas the sample taken from
O. edulis in 2012 showed four large deletions (>>100 bp).
A careful visual examination of reads alignment (Figure 3
and Supplementary Figure 1) reveals numerous abrupt drop
sequencing depths associated with clipped reads in the CIGAR
motif. Both local sequencing depth variation and read clipping
were used to infer large deletions and other structural variations
(Supplementary Table 1). These large deletions do not seem to be
random across the genome, which means that between isolates,
deletions did not occur exactly at the same position but are
located in the same genomic regions (Supplementary Figure 3,
vertical reddish bands).

Regression of root-to-tip genetic distance against sampling
time (Supplementary Figure 5) exposed sufficient temporal
signal to proceed with phylogenetic molecular clock analyses.
BEAST (Drummond et al., 2012) estimate of the coefficient
of variation (CoV) was of 0.701 (95% HPD interval [0.4078,
1.0581]), indicating that strict clock-like evolution could
be rejected and validating our choice to use a relaxed
molecular clock. OsHV-1 viruses exhibited a mean evolutionary
rate of 6.787E-05 nucleotide substitutions per site per year
(95% HPD interval [3.5172E-05, 1.0335E-04]). The results
indicate that the present genetic diversity seen in OsHV-1
isolates has arisen within the past three decades (Figure 4).
Both herpesviruses found in C. farreri (GQ153938.1) and A.
broughtonii (MF509813.1) group together (Ren et al., 2013; Xia
etal., 2015). Their most recent common ancestor (MRCA) is very
recent (approximatively 2001) and both species live in sympatry.
The virus detected in O. edulis (SW6) is close to the reference
genome (NC_005881.2) and from the OsHV-1 isolate collected
from France in 2008 (PR) (Davison et al., 2005). PR and SW6
have their MRCA dated from 1993. Within the C. gigas host
cluster, viral isolates cluster by provenance and sampling year.
For example, all isolates from New-Zealand collected in 2010-
2011 group together and appear distinct from isolates collected
in Europe in 2010, 2015, and 2017 (MV, LI, Poole-Harbour
United Kingdom, and all VIV samples). OsHV-1 pVars cluster
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numbered from 1 to 127. The top panels above the plots represent the coverage depth across the viral genome. Low or no sequencing depth on a genomic region

could be interpreted as genomic deletion on the considered samples.

is represented by the LI and MV isolates from France in 2010
and by both pVar variant A and B (KY242785.1 and KY271630.1)
that were isolated from France and Ireland between 2010 and
2014 (Burioli et al., 2017). As expected, all samples from the same
epidemic event in 2017 clustered together.

DISCUSSION

Summary of the Main Findings

This study brings new insights about the diversity of OsHV-1
at the genomic scale. We show that the OsHV-1 genome has
accumulated a large number of mutations since the publication
of the reference genome in 2005 obtained from an infected oyster
sampled in 1999. Deletions dominate the mutational landscape
at the genome level, but our mapping reference approach is
much powerful to detect deletions rather than insertions. Our
phylogenetic analysis reveals that OsHV-1 diversity is structured

by the host species (pectinids, clams, and oyster species), the
geographical origin (Europe vs. Oceania) and most importantly
the sampling date.

OsHV-1, a Measurably Evolving
Pathogen

Examining the correlation between root-to-tip genetic distance
and time suggests OsHV-1 is a measurably evolving pathogen
when working at with whole-genome sequencing. The inferred
mean evolutionary rate of 6.787E-05 nucleotide substitutions per
site per year of OsHV-1 was higher than would be expected
under the theory of co-evolution with host species. Potential
biases inherent to the analysis conducted have been pointed out
(Ho et al., 2005; Emerson, 2007; Debruyne and Poinar, 2009).
In particular, it has been demonstrated that molecular rates
are accelerated at short timescales on population level studies
(Ho, 2005). The most likely explanation for this phenomenon is
the persistence of slightly deleterious mutations, which, through
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purifying selection, would have been eliminated over long
timescales (Ho et al., 2005, 2007a,b; Ho and Larson, 2006). While
conducting selective pressure analyses on a bigger sampling
would allow to test that our results were not a consequence of the
time dependency of the molecular clock due to short time range
of our dataset (i.e., >20 years), our findings are consistent with
studies supporting that the evolutionary rates of some dsDNA
viruses are comparable to those of RNA and single strand DNA
viruses (Hughes et al,, 2010; Patricio et al,, 2012). Although
we acknowledge current limitations of our study, mainly due
to the small sample size available, our results demonstrate the
feasibility of applying population genetic theory tools such as
phylodynamics to a larger and well-designed sampling including
virus from healthy animals (Burioli et al., 2016) of whole genome
sequences of OsHV-1 and other herpesviruses.

OsHV-1 Within Host Diversity:
Methodological Challenges and

Biological Explanations

Viral diversity within infected individuals host is still hard
to characterize because of two main biological viral features
(Baaijens et al., 2017): (i) the abundance of variants is unknown

and (ii) the great diversity and related high mutation rate
could challenge classical tools used in bioinformatics (variant
calling operations). This problem is even more acute when the
abundance of variants is close to the sequencing error rate.
Traditionally, in malacoherpesvirus literature, most of the studies
have used de novo assembly methods to unravel viral diversity
(Davison et al., 2005; Ren et al., 2013; Burioli et al., 2017; Bai et al.,
2019a). However, at January 2018, most of the available short read
assembly methods don’t manage the mixture of haplotypes well,
as they are not able to use the molecular phasing information
from the reads (Baaijens et al., 2017). Indeed, we choose a pure
mapping reference approach to describe viral diversity coupled
with local de novo assembly. This process allows us to uncover
the viral diversity within host. Our estimates about the true
number of viral haplotypes within infected individuals were
very conservative (lower bound) since we are not able to phase
variants above 150 bp. To explain the source of the diversity
within an infected individual, several non-exclusives hypotheses
could be formulated: First, diversity within host is due to a
multiple infection by several viral lineages. This means that
several OsHV-1 haplotypes could be found in sea water during
mortality outbreak. However, viral particles in sea water are hard
to detect even when using passive sensor systems [lab detection
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of virus in seawater (Vincent-Hubert et al., 2017) and Hubert in
prep (in situ detection of virus in sea water)]. Some alternatives
approaches using ultra-filtration of large sea water volume are
a promising way to check this hypothesis and we would help
in finding if various haplotypes are present at the onset of the
disease. Again, using ultra-filtration methods of sea water, we
could expect an increase of the number of variants during the
spread of the disease through a population. Such hypothesis
could also be tested throughout the genomic relatedness among
viral variants within individuals and variants from the previous
years. The last hypothesis concerns de novo mutations during
the infection process, viruses use host cellular machinery to
replicate, there are several mechanisms which could give arise
to de novo variants mediated by host antiviral defense systems
(Sanjuan and Domingo-Calap, 2016).

Recently, extensive anti-viral mechanisms were characterized;
Rosani et al. (2019) demonstrated that Adenosine deaminase
enzymes of the ADAR family are found in the Pacific oyster and
have the ability to post-transcriptionally modify OsHV-1 RNA in
the form of A-to-I conversions. Indeed, investigators showed that
viral genome have evolved to reduce the number of deamination
targets along most of OsHV-1 CDS. The life cycle of herpes
virus is also prone to mutation via recombination mechanisms
which have been demonstrated in other herpesvirus or close-
related as cytomegalovirus in human (Wilkinson and Weller,
2003; Norberg et al., 2007; Sijmons et al., 2015; Balloux et al,,
2016; Kolb et al., 2017; Tomer et al., 2019). Although two DNA

Recombination-Initiating Promoter Motifs have been reported
as enriched among Malacoherpesviridae (Rosani and Venier,
2017), the evidence of such mechanisms is yet to be characterized
in Malacoherpesviridae. The evolutionary advantage of having
multiple viral haplotypes within one infected individual is of
prime interest, since lethal or sub-lethal viral haplotypes could be
maintained in the population thank to genetic complementation
and be an additional reservoir of standing genetic variation
(Segredo-Otero and Sanjudn, 2019).

Large Genomic Deletions Are a Good

Markers of Virus Origin

In this study, we were able to compare the genomic structure of
various viral isolates from several host species. All isolates were
compared to the oldest reference genome published (Davison
et al., 2005) which is likely to be the ancestor of most of our
samples. Reads from all the samples were mapped to the Davison
reference genome, however, visual inspection of sequencing
depth and structural variant analysis reveals tremendous genetic
variation between virus isolates. Notably virus isolates from O.
edulis have two specific deletions in ORF101 (48 bp deleted)
and ORF105 (49 bp deleted) that are not shared with the
other isolates. We hypothesize that this particular haplotype
who is attached to O. edulis (named OsHV-1 SW6) is a virus
strain “adapted” to infect this species. If our expectation is
true, this haplotype will be found in other infected O. edulis
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population. In addition, isolates from New-Zealand (NZ16-
NZ17-NZ18) share only two of the three observed larges
deletions identified in France isolates (LI) probably because the
New-Zealand samples are from a different virus reservoir. The
exact molecular mechanism(s) of such deletion(s) are unknown,
but they are not deleterious for the viral replication as they
are maintained in the actual viral population. In addition,
deletions in the OsHV-1 are not completely random across the
samples they tend to occur in the regions 17,700-19,000 bp
(ORF11), 52,000-52,800 bp (ORF35, ORF36, and ORF37),
67,972-68,573 bp (mainly ORF48), 93,000-98,500 bp (ORF62,
ORF63, and ORF64). Burioli et al. (2017) observed the same
deletions as we observe in the LI and VIV samples. The scarcities
of annotation in these regions do not help us to formulate a
functional hypothesis.

Refining Malacoherpiviradae
Classification to Get a Better

Understanding of Viral Micro Evolution

Ostreid herpesvirus 1 is usually described as a generalist
herpesvirus that is able to infect various marine bivalves species
across the world (Arzul et al., 2001, 2017; Davison et al., 2005;
Gao et al., 2018; Kim et al., 2019). However, our phylogenetic
analysis shows that such view is probably too simple and more
elaborate hypothesis are needed. Recently, OsHV-1 found on
two other bivalve species (C. farreri and A. broughtonii mainly
in China) (Xia et al., 2015; Bai et al, 2017, 2018, 2019b)
seems to have a recent common ancestor, the MRCA is dated
from 1991 to 2006. In addition, there is a growing number
of report of OsHV-1 DNA in novel host species Scapharca
subcrenata and Agropecten irridians (Gao et al., 2018; Kim
et al,, 2019). In addition, we also observed a unique type of
deletion in this isolate (Figure 3, SW6 sample) compare to other
isolates from C. gigas. All these inferred host shifts could be
explained by two hypotheses: (1) We are revealing an old viral
diversity, i.e., various viral haplotypes are adapted to various host
species, but this diversity was not accessible to previous studies
because of technological limitations (MLST, gene concatenation,
microsatellite, and Sanger sequencing). However, this hypothesis
does explain why MRCA are so recent (less than 50 years).
(2) We are observing an ongoing specialization (speciation) of
a generalist virus [OsHV-1 census (Davison et al., 2005)] to
a specialized viral populations OsHV-1-SB on A. broughtonii,
AVNV on C. farreri, OsHV-1 Var on P. maximus, OsHV-1 L Vars
on C. gigas, and now OsHV-1 SW6 on O. edulis, a mechanism
possibly supported by the different host antiviral responses. For
the later haplotype, we hypothesize a host shift from C. gigas
to O. edulis and the estimated date of this shift (1992) which
is congruent with the history of the introduction of C. gigas in
Scandinavia (Wrange et al., 2010; Mortensen et al., 2016; Angles
d’Auriac et al., 2017). These recent host shifts could be explained
by two mechanisms well documented in other farming animal
and plants (Jones et al., 2013; Bai et al., 2015; Mineur et al,
2015). The first mechanism is the introduction of C. gigas (and
OsHV-1) world-wide for its extraordinary adaptive capacity and
the second is an intensification of C. gigas farming (imported

spat, spat from hatcheries, high field density, triploid’s oyster,
and extension of field surfaces). Indeed, OsHV-1 could reach
quite high number of genome copies per infection events since
the cultivated density of susceptible animals are much higher
than natural beds, leading to an increase of contact with a larger
number of bivalve’s taxa than ever. Host shift is likely to be just
a matter of time because of the abundant genomic viral diversity.
We postulate that OsHV-1 taxon is under specialization in novel
populations and/or bivalve species due to world-wide expansion
of C. gigas shellfish farming in the 1970s.

In order to discriminate between the first and the second
hypothesis regarding variants, we need more detailed study of
isolates from various bivalve species, most notably including
old and novel sympatric species of C. gigas. In fact, we need a
better understanding of how OsHV-1 is constrained, or not, to
a specific host species and how frequently it could jump from
one species to another species (Brito et al.,, 2021). Only well-
replicated phylogenetic studies encompassing the whole viral
genome information will help-us to better understand OsHV-1
ecology and evolution.

Conclusion and Perspectives
We have characterized the viral genomic diversity within an
infected individual; our estimates are probably lower bounds
of the exact number of haplotypes. To refine and notably
to understand complementation between haplotypes within
individuals new techniques, such as long read sequencing, will
be required (Bai et al, 2019a). The observed viral diversity
is generally well structured according to host species, then
geographical origins and finally sampling date. There is an
urgent need to assess the effect of some mutations on viral
phenotype namely pathogenicity (virulence and infectivity) for a
given host species and populations, including basic information
about which viral haplotype can infect which host species. These
crucial questions about virus ecology should be explored to be
able to understand the potential of OsHV-1 to jump from one
species to the next.

This study thus lays the groundwork for future studies to
further analyze the relationships between viral diversity and
pathogenicity across bivalve species and strains.
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