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Laying and reproductive performance, egg quality, and disease resistance of hens
decrease during the late laying period. Exogenous enzymes promote nutrient digestibility
and utilization and improve the intestinal environment. However, the specific regulation
of the gut microbiome and metabolome by exogenous enzymes remains unelucidated.
This study was conducted to evaluate effects of dietary multi-enzyme supplementation
on egg and reproductive performance, egg quality, ileum microbiome, and metabolome
of breeders. Here, 224 Hy-Line Brown breeding hens (55 weeks old) were randomly
allocated to two groups: dietary controls fed basal diet (DC), and test hens fed 0.2 g/kg
corn enzyme diet (CE). Serum levels of total protein, globulin, immunoglobulin Y, and
antibodies against the Newcastle disease virus and avian influenza H9 strain were
significantly increased (p < 0.05). Egg albumen height, Haugh unit, and fertilization
and hatching rates were also significantly increased (p < 0.05) in the CE-fed group.
16S rRNA sequence analysis showed that CE strongly affected both a- and B-diversity
of the ileal microbiota. LEfSe analysis revealed that the potentially beneficial genera
Lactobacillus, Enterococcus, Faecalicoccus, and Streptococcus were enriched as
biomarkers in the CE-fed group. Microbial functional analysis revealed that the functional
genes associated with harmful-substance biodegradation was significantly increased in
the CE-fed group. Additionally, Spearman correlation analysis indicated that changes
in microbial genera were correlated with differential metabolites. In summary, dietary
multi-enzyme addition can improve egg quality, humoral immunity, and reproductive
performance and regulate the intestinal microbiome and metabolome in breeders.
Therefore, multi-enzymes could be used as feed additive to extend breeder service life.

Keywords: multi-enzyme, aged layers, immunity, reproduction performance, microbiome, metabolome

INTRODUCTION

With increasing age, physiological function and digestive enzyme activity decrease and are always
accompanied by gut microbiota disorder after the peak laying period in breeding hens, causing
significant economic loss (Liu et al., 2013; Jing et al., 2014; Gu et al,, 2021). Exogenous addition
of enzymes was considered to improve the degradation of harmful macromolecules and activity of
endogenous enzymes to assist in the degradation of starch and protein (Gu et al., 2021).

Starch is a complex polysaccharide composed of amylose and amylopectin (AP). AP accounts
for 70-80% of most starch sources and requires pullulanase for hydrolysis (Scott et al., 2013;
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Yin et al, 2018). Pullulanase is an important debranching
enzyme that originates from bacteria, plants, and less commonly,
fungi. Specifically, it could often attack a-1,6 linkages, thereby
efficiently converting branched polysaccharides into small
molecular sugars (Hii et al, 2012; Tomasik and Horton,
2012). In contrast to pullulanase, a-amylases split the a-1,4
glycosidic linkages in amylose to yield maltose and glucose
(Sarian et al., 2017). Studies have demonstrated that the addition
of a-amylase to a corn-soybean diet can release more feed
energy and significantly improve apparent nutrient digestibility,
digestive enzyme activity, and production performance of
poultry (Aderibigbe et al., 2020). Glucoamylase (also known as
amyloglucosidase or AMG) is an important digestive enzyme
that mainly saccharifies partially processed starch/dextrin to
glucose, which helps poultry absorb nutrients (da Costa Luchiari
et al., 2021). Previous research indicated that supplementation
with glucoamylase or protease combined with amylase could
improve starch digestibility and gut microbiota diversity and
promote the growth of broilers (Yin et al., 2018). Proteases can
enhance protein and amino acid digestibility and reduce the
adverse effects of heat-stabilized trypsin inhibitors or lectins, thus
improving forage quality (Cowieson et al., 2017; Walk et al,,
2018). A significant increase in the ileal digestibility of protein
and amino acids occurs with proteases in poultry diets (Romero
et al., 2014). Overall, exogenous enzymes can communicate
with the host by utilizing indigestible dietary components
and providing nutrients to regulate digestive, immune, and
antioxidant functions to facilitate production performance and
benefit the host (Pan and Yu, 2014; Cowieson and Kluenter, 2019;
Monier, 2020; Giacobbo et al., 2021).

The use of enzymes in poultry feed is not uncommon.
However, the role of enzymes in feed digestibility, productivity,
and health of chickens is influenced by several factors, including
the source, type, characteristics, dosage, and composition of
complex enzymes as well as the diet structure, composition, and
physiological status of chickens. In this study, we first evaluated
the effects of new multi-enzymes (proteases, pullulanase,
a-amylase, and glucoamylases) on laying performance, egg
quality, reproductive performance, and immunity of older
breeding hens and investigated the underlying mechanism
through in-depth microbiome and metabolome analyses. Our
objective was to develop a new nutritional strategy to improve
health and extend the service life of breeding hens in their
later laying stage.

MATERIALS AND METHODS

Birds, Diets, and Management

The Animal Welfare Policy has approved the bird management
and handling procedures. All animal procedures were performed
according to the principles of the Animal Care and Use
Committee of the China Agricultural University. A total of
224 Hy-Line Brown breeding hens (55-week-old) with similar
production performances and weights were randomly divided
into two treatment groups with seven replicates of 16 hens each
(4 hens per cage, 40 cm wide, 62 cm long, and 45 ¢cm high). One

is the dietary control fed with basal diet (DC), and the other
with 0.2 g/kg corn enzyme diet (CE). The CE diet contained
11,000 u/g proteases, 20 u/g pullulanase, 1,000 u/g a-amylase,
and 1,000 u/g glucoamylases, and was provided by the Wuhan
SunHY Biological Co., Ltd. All hens were handled following the
Hy-Line Brown Laying Hens Management Guide, and the hens
were housed at the HuaYu Poultry Breeding Co., Ltd. (Handan,
Hebei). All experimental hens were vaccinated with inactivated
Newcastle virus (NDV) plus avian influenza virus (H9 subtype)
strain vaccine by intermuscular injection at 55 weeks of age. The
essential diet is shown in Table 1 and meets the Chinese standards
of agricultural trade standardization (NY/T33-2004).

Laying Performance Parameters

Eggs were collected daily during the experiment. The number
of eggs laid, abnormal eggs, broken eggs, and egg weights were
recorded on a replicate basis. The feed intake for each repetition
was counted every 2 weeks. The average egg production rate,
average egg weight, broken egg rate, abnormal egg rate, and feed
egg ratio were calculated for 1-4, 5-8, and 1-8 weeks. Mortality
was recorded daily as it appeared.

Egg Quality Parameters

Ten eggs were randomly collected from each replicate (70
eggs/group) for internal and external quality analyses during
the last 2 days of the experiment. An egg-shaped index tester
was used to measure the egg length and shortest diameter. An
eggshell color tester was used to measure the eggshell color
value (Konicaminolta CM-2600d). A quasi-static compression
device (Robotmation, Japan) was used to measure the eggshell
breaking strength. After removing the inner shell membrane,

TABLE 1 | Ingredients and nutrient composition of basal diet.

Ingredients Percent Nutrient level® Percent
Corn (CP 8.3%) 64.00 ME (MJ/Kg) 16.01
Soybean meal (CP 44.0%) 20.93 CP (%) 16.04
Soybean ail 0.70 CF (%) 3.24
Wheat bran 3.00 Methionine (%) 0.24
Limestone 9.50 Lysine (%) 0.70
Calcium hydrogen phosphate 1.00 Calcium (%) 3.49
Sodium chloride 0.30 Total P (%) 0.32
DL-Methionine (98%) 0.10

L-Lysine HCL (78%) 0.07

Vitamin premix? 0.038

Mineral premix? 0.20

Choline chloride (50%) 0.15

Phytase 0.02

Total 100.00

aSupplied per kilogram of complete diet: vitamin A, 13,500 IU; vitamin D3, 4,500
U; vitamin E, 75 IU; vitamin K3, 3.6 mg; vitamin B1, 3.0 mg; vitamin B2, 9.24 mg;
vitamin B6, 6.0 mg; nicotinic acid, 66 mg; pantothenic acid, 16.8 mg; biotin,
0.54 mg; folic acid, 2.10 mg; vitamin B12, 0.08 mg; vitamin C, 135 mg; choline,
675 mg; ethoxyquinoline, 15 mg.

bMineral premix provided per kilogram of complete diet: iron, 80 mg; copper,
710 mg; manganese, 100 mg; zinc, 100 mg; iodine, 0.35 mg; selenium, 0.30 mg.
¢CP and CF were measured values, and the other nutrients were calculated values.
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the eggshell thickness was measured using a micrometer screw
gauge at three different locations (lower, middle, and upper
ends). Egg weight, albumen height, Haugh units, and yolk color
were measured using an automatic egg quality analysis device
(EMT-5200, Japan).

Blood Biochemical Parameters

Blood samples were collected for analyzing blood biochemistry
and detecting serum antibody titers for 1 day before the end
of the experiment. After fasting for 8 h, one hen per replicate
was randomly selected (a total of 7 hens/group), and whole
blood was collected from the wing vein using sterile blood
collection tubes. The blood was centrifuged at 3,000 rpm for
10 min. The serum was extracted into a sterile 2 mL centrifuge
tube and stored at —20°C until detection. Serum was used
to detect aspartate aminotransferase (AST), total protein (TP),
albumin (ALB), globulin (GLB), albumin/globulin, high-density
lipoprotein cholesterol (HDL-C), immunoglobulin Y (IgY), and
total antioxidant capacity (T-AOC). All indexes were tested
using kits purchased from the Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). Other serum samples were used to
detect antibody titers of NDV and avian influenza H9 strains by
hemagglutination and hemagglutination inhibition assays. The
virus, antigen, and positive control sera were purchased from
Qingdao Yebio Biological Engineering Co., Ltd.

Reproductive Performance

All hens were inseminated on days 49 and 50 for 2 consecutive
days of the formal phase. The semen was mixed and came from
the same 12 cocks to ensure consistent semen quality. Eggs
were collected on the 53rd-54th days. The total number of eggs
produced and eligible hatching eggs were recorded and placed
into pre-fumigated incubators. On the 18th day of incubation,
the number of fertilized eggs was recorded by candling, and the
eggs of identical replicates were placed in one string bag. On the
21st day of incubation, the number of newborn chicks in each
replicate was recorded. Lastly, the rates of fertilized eggs and
hatch of fertile (HoF) were calculated.

Gut Microbiota Sequencing

One hen per replicate was randomly selected (a total of 6
hens/group, one sample less than the number of replicates
was due to unqualified DNA amplification), and euthanasia
was performed using carbon dioxide on the last day of this
trial (56 days). The ileum contents from each bird were
collected and immediately frozen in liquid nitrogen until DNA
extraction. Microbial genomic DNA extraction was conducted
according to the manufacturer’s instructions using the QIlAamp
96 Powerfecal Qiacube HT Kit (5) (CatNo. 51531). DNA
purity and concentration were detected using a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
United States) and agarose gel electrophoresis. The purified DNA
targeted the V3-V4 region of the 16S rDNA gene according
to PCR bar-coded primers (343F: 5-TACGGRAGGCAGCAG-
3’ and 798R: 5'-AGGGTATCTAATCCT-3’). PCR was conducted
using the KAPA HiFi Hot Start Ready Mix (KAPA Biosystems,
Wilmington, MA, United States). Both reverse primers included

a barcode and an Illumina sequencing adapter. The PCR
products were visualized using 1% agarose gel electrophoresis,
purified, and quantified using Agencourt AMPure XP beads
(Beckman Coulter Co., United States) and Qubit dsDNA HS
assay kit (Thermo Fisher Scientific), respectively. Sequencing was
performed using an Illumina MiSeq platform with two paired-
end read cycles of 300 bases each (Illumina Inc., San Diego, CA;
OE Biotech Company, Shanghai, China).

Bioinformatic Analysis of the Microbiome
Microbiota data were subjected to bioinformatics analysis
using QIIME software (version 1.8.0) (Caporaso et al., 2010).
Data quality filtering, ambiguous bases, low-quality sequence
removal, paired-end read assembly, and detachment of chimeric
sequences were conducted using QIIME (Caporaso et al., 2010),
Trimmomatic (Bolger et al., 2014), FLASH (Reyon et al., 2012),
and UCHIME algorithms (Edgar et al., 2011), respectively. Reads
with a similarity threshold of > 97% were assigned to the same
operational taxonomic unit (OTU) using the Vsearch pipeline
(Rognes et al.,, 2016). Taxonomy was assigned to the OTUs using
the SILVA database (v.123) with the RDP classifier at a 70%
confidence threshold (Quast et al., 2012). Alpha diversity (Chaol,
Observed, Shannon, Simpson’s diversity) and beta diversity
(principal coordinate analysis; PCoA) were calculated using
QIIME 1.8 scripts.

Linear discriminant analysis (LDA) effect size (LEfSe) (Segata
etal., 2011)" was used to identify representative species. LDA was
performed from the phylum to genus level, and LDA scores > 4.0
and p-values < 0.05 were considered signature taxa and selected
for plotting and further analysis. The predicted metagenomic
functional content was determined using PICRUSt® software
by combining 16s rRNA data against the Greengenes database
and the normalized data were analyzed to predict metagenomes
using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Orthology database.” Pairwise statistical comparative analysis
(Welchs t-test, storey FDR correction) of microbial function
was performed using STAMP (V2.1.3) (Parks et al., 2014). The
microbial co-occurrence network analysis was performed using
the CCLasso, sparCC, and NAMAP with Spearman correlation
inference algorithm to elucidate gut microbiota interactions by
MetagenoNets with default parameters (Nagpal et al., 2020). Only
significant correlations (p < 0.05) based on the bootstrapping of
100 iterations were plotted.

Untargeted Metabolomics by Liquid

Chromatography-Mass Spectrometry

The ileal chyme (30 mg) was precisely weighed and transferred
to 1.5 mL microcentrifuge tubes (Eppendorf), to which two
3 mm stainless steel beads were added. Then, 20 pL of
L-2-chlorophenylalanine (0.3 mg/mL) and 17:0 Lyso PC (1-
heptadecanoyl-sn-glycero-3-phosphocholine, 0.01 mg/mL) were
used as the internal standard. Both were configured with
methanol. An internal standard mixed with 400 jLL of methanol

'http://huttenhower.sph.harvard.edu/galaxy/
Zhttp://picrust.github.io/picrust/
3https://www.genome.jp/kegg/ko.html
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aqueous solution (CH3OH: H,O, V: V = 4:1) was added
to each sample and pre-cooled at —20°C for 2 min. The
sample was then ground in a fully automatic sample fast
grinding machine (60 Hz, 2 min; Shanghai Jingxin Industrial
Development Co., Ltd., Shanghai, China) and placed in an
ultrasonic bath with ice water for 10 min. The sample was placed
in a —20°C refrigerator for 20 min before centrifugation at
13,000 rpm at 4°C for 10 min. The supernatant was removed
with a syringe and filtered by passing through a 0.22 pm-
membrane filter to an LC-MS vial and stored at —80°C for
subsequent analysis by LC-MS. Water, acetonitrile, formic acid,
and methanol were purchased from CNW Technologies GmbH
(Dtisseldorf, Germany). L-2-chlorophenylalanine was purchased
from Shanghai Hengchuang Bio-Technology Co., Ltd. (Shanghai,
China). LysoPC17:0 was purchased from Avanti (Avanti Polar
Lipids Inc., United States). All solvents and chemicals were of
analytical or high-performance LC grade.

Metabolomics analysis was conducted using the Dionex
U3000 UHPLC system (Waltham, MA, United States) coupled
to a high-resolution QE plus mass spectrometer (Thermo Fisher
Scientific) to analyze the metabolic profiles of the positive
and negative ion modes. The LC system was fitted with an
ACQUITY UPLC BEH C18 (100 x 2.1 mm, 1.7 um) and a
binary gradient elution system consisting of A) water (containing
0.1% formic acid) and B) acetonitrile (containing 0.1% formic
acid) by the following separation gradient: 0 min 5% B, 1 min
5% B, 11 min 100% B, 13 min 100% B, 13.1 min 5% B, and
15 min 5% B. The column temperature was 50°C, and the
flow rate was 0.35 mL/min. The injection volume was 5 pL,
and the samples were randomized to avoid systematic errors.
The mass spectrometer conditions and parameters were as
follows: spray voltage, 3,800 V in positive mode, and 3,000 V
in negative mode; capillary temperature, 320°C; aux gas heater
temperature, 350°C; sheath gas flow rate, 35 arbitrary units;
Aux gas flow rate, 8 arbitrary units; mass range: 70-1,000
m/z; full ms resolution, 70,000; MS/MS resolution, 17,500;
and NCE, 20 and 40.

LC-MS raw data were collected by UNIFI (version 1.8.1)
and then processed using Progenesis QI (version 2.3) with the
following threshold parameters: precursor tolerance of 5 ppm,
product tolerance of 10 ppm, and production threshold of
5%. Metabolites were identified by retention time, exact mass,
and tandem MS data against the Human Metabolome Project,*
Lipidmaps (v2.3)’ and METLIN® databases. All metabolites with
a percentage of missing values>50% and quality scores <30 were
discarded by qualitative screening.

Metabolome Bioinformatics Analysis

Metabolome data were subjected to bioinformatics analysis using
the SIMCA software (version 14.0, Umetrics, Umed, Sweden).
Principal component analysis (PCA) and orthogonal partial least
squares discriminant analysis (OPLS-DA) models and plots were
constructed using SIMCA. Volcano plots were plotted using the

*https://hmdb.ca/
Shttp://www.lipidmaps.org
Chttp://metlin.scripps.edu

R package ggplot2. The differential metabolites were converted
from names to KEGG compound IDs using MetaboAnalyst
software (version 5.0), CTS (Wohlgemuth et al,, 2010), and
MBRole software (version 2.0).* These IDs were used as input
files for metabolite set enrichment analysis using MetaboAnalyst
5.0 software [annotations: KEGG pathway; Organism: Homo
sapiens (human)] and MBRole 2.0 software [annotations:
KEGG pathway; Organism: Gallus gallus (chicken)]. We also
applied the pathway topology analysis [annotations: KEGG
pathway; Organism: G. gallus (chicken)] to verify our findings
using MetaboAnalyst with the default setting. Considering the
relative lack of lipid information in the KEGG database, the
differential metabolites that were annotated in the LipidMaps
database were enriched by LIPEA’ [annotations: KEGG pathway;
Organism: G. gallus (chicken)]. Spearman’s correlation between
the differential microbial biomarkers and metabolites and the
three identified metabolites and six microbial biomarkers were
analyzed using R software. Only correlation coeflicients with an
absolute value of | r| > 0.6 (Adj P-value < 0.05) were considered
a significant relationship. Network visualizations were performed
using Gephi software (version 0.9.2, The Gephi Consortium,
Paris, France) (Dalcin and Jackson, 2018).

Statistical Analysis

All graphs and data calculations were generated using R software
(version 4.0.2), Prism8 (GraphPad, United States) software, and
SPSS 24.0 (SPSS Inc., Chicago, IL, United States) software.
Measurement data are expressed as the mean and standard
error. A normal distribution and homogeneity of variance
were performed. Comparisons between the two groups were
performed using Student’s ¢-test when it conformed to normal
distribution and homogeneity of variance; otherwise, the non-
parametric Wilcoxon rank-sum test was performed. P < 0.05
were considered as significant and 0.05 < p < 0.1 was
considered a trend.

RESULTS

Production Performance and Egg Quality
The laying performance of breeding hens fed the CE diet is
presented in Table 2. Egg production, egg weight ratio, damaged
egg ratio, abnormal egg ratio, FCR, mortality, and feed intake
were not affected by CE administration at 55-59, 59-63, and
55-63 weeks (p > 0.05). The egg quality results are presented
in Table 3. CE administration significantly increased the egg
albumen height and Haugh unit (p < 0.05) but weakened the
yolk color (p < 0.05) compared with those in the DC-fed
group at week 63.

Blood Biochemical Parameters
Serum biochemical and antibody levels are physiological indices
commonly used to evaluate animal health and immunity.

“https://www.metaboanalyst.ca/
8http://csbg.cnb.csic.es/mbrole2/
“https:/lipea.biotec.tu-dresden.de/home
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TABLE 2 | Effect of supplemental multi-enzyme on the performance of aged breeding hens.

Item Egg production (%) Egg weight (g) Damaged egg (%) Abnormal egg (%) FCR? (g feed/g egg) Mortality (%) Feed intake (g/d/hen)
55-59 weeks

DCP 74.1 62.2 4.9 2.8 2.3 1.8 107.2
CE® 76.0 63.1 4.5 3.2 2.2 0.9 105.0
SEM 1.7 0.4 0.5 0.4 0.1 0.7 1.0
P-value 0.59 0.25 0.70 0.61 0.20 0.55 0.32
59-63 weeks

DCP 76.5 62.6 4.4 5.2 2.4 0.9 116.3
CE® 77.2 63.8 4.7 4.3 2.4 3.6 116.4
SEM 1.8 0.3 0.7 0.4 0.1 0.8 1.2
P-value 0.86 0.08 0.83 0.33 0.52 0.11 0.95
55-63 weeks

DCP 75.3 62.4 4.6 4.0 2.4 2.7 111.2
CE° 76.6 63.4 4.6 3.8 2.3 4.5 110.1
SEM 1.5 0.3 0.6 0.4 0.0 0.9 1.0
P-value 0.67 0.13 0.99 0.71 0.21 0.32 0.61

4FCR, feed conversion ratio.
bpe, dietary control (basal diet).
CCE, basal diet + 0.2 g/kg complex enzymes.

CE administration significantly increased serum TP, GLB,
IgY, HDL-C, and T-AOC levels. Serum AST levels were also
markedly reduced, and a non-significant trend of decreased
A/G (p = 0.055) was observed after supplementation with
CE (Figure 1A). Furthermore, CE administration could
enhance humoral immunity in hens by increasing serum-
specific antibody titers against NDV and avian influenza H9
strains (Figure 1B).

Reproductive Performance

Reproductive performance is a vital indicator in breeding poultry,
which affects the economic effectiveness of breeder companies.
Descriptive data on the reproductive performance of aged
breeder hens are shown in Figure 1C. The rate of fertilization and
hatching of fertile (HoF) value was significantly improved upon
CE supplementation (p < 0.05).

TABLE 3 | Effect of supplemental multi-enzyme on the egg quality of aged
breeding hens (n = 70/group).

Item pc’ CE? SEM P-value
Egg index 1.3 1.3 0.0 0.36
L 59.2 59.2 0.3 0.93
a 18.7 18.5 0.2 0.53
b 30.1 29.6 0.1 0.07
Shell strength (kg/cm?) 4.0 4.0 0.1 0.67
Egg weight (g) 61.1 61.7 0.4 0.48
Yolk color 7.72 7.0° 0.1 0.00
Egg albumen height 5.9° 6.22 0.1 0.02
Haugh Unit 75.0° 77.52 0.6 0.03
Eggshell thickness 0.4 0.4 0.0 0.67

abpijfferent superscript within a row means significantly different (P < 0.05).
'DC, dietary control (basal diet).
2CE, basal diet + 0.2 g/kg complex enzymes.

Intestinal Bacterial Richness, Diversity,

and Similarity

After size filtering, quality control, and chimera removal, an
average of 29,200 clean tags and 27,376 valid tags were harvested
from each sample for subsequent analysis through 16S amplicon
sequencing. The species accumulation curve (Figure 2A) and
alpha diversity rarefaction curve (Figure 2B) reached a stable
plateau under the sample size and sequencing depth. The alpha
diversity index reflects the richness and uniformity of the species
composition. The Chaol and Observed species indices are
estimators of phylotype richness, and Shannon and Simpson’s
diversity indices reflect both richness and community uniformity.
In this study, Shannon and Simpson’s diversity indices were
significantly enhanced (p < 0.05), while Chaol and Observed
species had a minimal effect on the addition of CE (Figure 2C).
The Venn diagram showed that 635 distinct OTUs were clustered
based on 97% sequence similarity, among which 258 were shared
by both groups (Figure 2D). PCoA based on weighted UniFrac
similarity showed a separation of each group (Figure 2E),
with 61.33, 19.76, and 10.34% variation explained by principal
components: PC1, PC2, and PC3, respectively (Adonis, p = 0.009,
R* =0.49).

lleal Microbial Community Structure
Firmicutes, Proteobacteria, and Bacteroidetes were the dominant
phyla in the aged breeder hens (relative abundance>1%),
accounting for more than 98% of the total bacterial community
(Figure 3A). The relative abundance of Proteobacteria increased
from 5.94 to 21.05%, and the proportion of Firmicutes decreased
from 90.79 to 75.87% with CE supplementation.

At the family level, the phyla of Firmicutes mainly contained

Lactobacillaceae,  Peptostreptococcaceae,  Enterococcaceae,
Erysipelotrichaceae, and Lachnospiraceae. Proteobacteria
consisted of  Helicobacteraceae,  Pasteurellaceae, and
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mitochondria, while Bacteroidetes specifically included
the Bacteroidales_S24_7_group  (Figure 3B) (relative
abundance>1%). Lactobacillaceae and Peptostreptococcaceae
were the dominant bacteria in the two groups, and their relative
abundances in CE and DC were 44.42 vs. 14.38% and 25.07 vs.
70.57%, respectively.

At the genus level, Romboutsia, Lactobacillus, Turicibacter,
Enterococcus, Gallibacterium, and Helicobacter were the
predominant genera in the two groups (Figure 3C) (relative
abundance> 1%). With the addition of CE, the relative abundance
of Lactobacillus and Enterococcus increased, while the relative
abundance of Romboutsia decreased.

Key Microbial Identification

LDA and effective size comparisons (LEfSe) were conducted
to identify the core taxa most likely to explain the differences
between the groups. The CE-treated samples appeared to be
dominated by Lactobacillus, Enterococcus, Faecalicoccus, and

Streptococcus, whereas DC samples showed Romboutsia,
Faecalibacterium, and Burkholderia as the dominant
genera (Figure 4A).

Predicted Functions of lleal Bacterial

Communities

Significant differences in the gut microbiota were observed
between the two groups; however, their functions remain
unknown. Hence, we performed a PICRUSt analysis to predict
the potential functions of the gut microbiota. All functional

genes were divided at level 3. When filtered for non-
bacterial functional pathway, the predicted metabolic functional
categories in the CE-fed group were related to pathways of
biodegradation and metabolism of several xenobiotics, such as
“polycyclic aromatic hydrocarbon degradation,” “aminobenzoate
degradation,” and “ethylbenzene degradation.” The CE group
was also enriched for pathways such as “glycosyltransferases;”
“carbohydrate digestion and absorption,” and “D-Arginine,
and D-ornithine metabolism.” Pathways such as “sporulation,”
“cyanoamino acid metabolism,” “biosynthesis of ansamycins,’
“thiamin metabolism,” and “methane metabolism” were enriched
in the DC group (Figure 4B).

Response of lleum Metabolomic Profiles

to Corn Enzyme Diet

The ileal metabolome was analyzed in both groups to investigate
the effect of multi-enzyme supplementation on the ileal chyme.
LC-MS detected 23,595 untargeted peaks, and 4,884 metabolites
were annotated. To reduce dimensionality, we applied PCA
and OPLS-DA to leverage both unsupervised and supervised
dimensionality reduction techniques to achieve this goal. Both
PCA and OPLS-DA showed separation and discrimination
(Figures 5A,B). The quality parameter values of the OPLS-
DA model were predicted to be [R2X (cum) = 0.733, R2Y
(cum) = 0.947] and fitness [Q2 (cum) = 0.698], which indicated
that the model had good reliability and predictability (Figure 5C).
The volcano plot indicated up-and downregulated differential
metabolites based on statistical values (p < 0.05, | log,FC| > 1),
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and p < 0.001, | logzFC| > 2 was considered to have higher
significance (Figure 5D).

Identification of Differential Metabolites

and Critical Metabolic Pathways

In total, 180 differential metabolites were assigned based on VIP
values (VIP > 1) and p-values (p < 0.05). The results of MBRole
and MetaboAnalyst (Figure 6A) showed that the differential
metabolites were enriched in the “aminoacyl-tRNA biosynthesis,”
“ABC transporters,” “D-glutamine and D-glutamate metabolism,”
and “arginine biosynthesis pathway.” Moreover, the “arginine
biosynthesis pathway” was the most prominent position in the

topological analysis (Figure 6B). The LIPEA results (Figure 6A)
indicated that the following pathways were significantly enriched
by inputting differential lipid metabolites: “glycerophospholipid
metabolism,”  “glycosylphosphatidylinositol ~ (GPI)-anchor
biosynthesis,” “autophagy—other,” “autophagy—animal,” and
“ferroptosis” pathways.

Co-occurrence Patterns of Microbial

Communities

To further explore the complex microbial community structures
in the DC and CE groups, we performed co-occurrence network
analysis by calculating CCLasso (Fang et al., 2015), sparCC
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(Friedman and Alm, 2012), and NAMAP with Spearman
correlation inference algorithm via MetagenoNets between
microbial taxa at the genus level based on 16S sequencing
(Nagpal et al, 2020; Figure 7A). The results showed that
the addition of CE significantly increased the interrelationship
between bacteria under all three algorithms [edges: 2,541 vs. 954;
815 vs. 425; 137 vs. 33, CE vs. DC (CCLasson, SparCC, Spearman,
respectively)], while the number of correlated nodes did not
change significantly [nodes: 91 vs. 90; 88 vs. 89; 47 vs. 39, CE
vs. DC (CCLasson, SparCC, Spearman, respectively)]. CCLasso
obtained the highest number of interrelationships, followed by
the SparCC and Spearman algorithms. All three algorithms
indicated that CE activated the interactions between bacteria.
Different algorithms have unique advantages and shortcomings.

SparCC (Friedman and Alm, 2012) is a microbial network
algorithm developed based on the log-ratio transformation
of compositional data, which solves the problem of poor
performance of the Spearman algorithm under the sparsity
condition of bacterial communities; however, it did not
consider the influence of errors in the compositional data
(Fang et al., 2015). CCLasso made improvements based on such
issues and had the characteristic of better edge recovery.

Correlations Among Differential

Microbiota and Metabolites
Constructing a network between differential microbiota and
metabolites is important for understanding their interaction

Frontiers in Microbiology | www.frontiersin.org 8

December 2021 | Volume 12 | Article 711905


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Liu et al.

Multi-Enzymes Modify Gut Microbiome and Metabolome

Faecalibacterium I
Burkholderiales [N
Enterococcaceae
I Enterococeus
R Campylobacterales
N Epsilonproteobacteria
N Streptococcus_pluranimalium
I Faccalicoceus
I Proteobacteria
N Lactobacillus_aviarius
I Lactobacillaceae
I Lactobacillus
I Lactobacillales
I Bacilli

[T e ey ey e S S S R T
-6.0 -48 -3.6 -24 -1.2 00 12 24 36 48 6.0
LDA SCORE (log 10)

= CE (=3 DC

Aminobenzoate degradation [

Limonene and pinene degradation |

Ethylbenzene degradation ff

Glycosyltransferases F

Cyanoamino acid metabolism B

Biosynthesis of ansamycins [y
MAPK signaling pathway - yeast |
Phosphatidylinositol signaling system f

Thiamine metabolism B
Methane metabolism B4
D-Arginine and D-ornithine metabolism |
Carbohydrate digestion and absorption |
Progesterone-mediated oocyte maturation |
Antigen processing and presentation |
Prostate cancer |
RIG-I-like receptor signaling pathway |
NOD-like receptor signaling pathway |
Stilbenoid, diarylheptanoid and gingerol biosynth... |
One carbon pool by folate B
Phenylalanine, tyrosine and tryptophan biosynthesis B4

Polycyclic aromatic hydrocarbon degradation ff

Sporulation B

lon channels |

General function prediction only P
ABCtransporters ), —o0——

w a: Enterococcus

s b: Enterococcaceae
e c: Lactobacillus

wm d: Lactobacillaceae
s e: Lactobacillales

e f: Romboutsia

g: Peptostreptococcaceae
h: Faecalibacterium
iz Clostridiales

j: Faecalicoceus

wm k: Bradyrhizobiaceae
wem |: Burkholderia

wm m: Burkholderiaceae
wm n: Burkholderiales
mm 0: Campylobacterales
wm p: Oceanospirillales

95% confidence intervals

o 0.041

0.041

0.041
1] 0.041
| | 0.041
0.041
o 0.041
o: 0.041
° 0.041
0.041
0.041
0.041
0.041
0.041
0.041
0.041
0.041
0.041
0.041
0.041
0.044
0.045
0.046
0.046
0.048

|
|
|

-0
°

o

g-value (Storey FDR corrected)

|

Feg -~ @a— 00 0 ©-0-0-0 0

0.0

conditions.

Mean proportion (%)

FIGURE 4 | DC and CE have differential bacteria composition and functional preferences (n = 6 hens/group). (A) LEfSe analysis was performed to identify the
bacteria that are differentially represented among the two groups. (B) Microbial functional analysis was conducted by PICRUSt software under different experimental

3.9 -1.0-0.8-0.6-0.4-0.20.0 0.2 0.4
Difference in mean proportions (%)

relationships. Spearman correlation analysis of six microbiota (by
LEfSe, LDA > 4, p < 0.05) and 180 metabolites (by p < 0.05,
VIP > 1) was conducted (Figure 7B). The results showed
that the bacteria enriched in CE were remarkably correlated
with the upregulated metabolites. In contrast, the bacteria
enriched in DCs were remarkably correlated with downregulated

metabolites, reflecting a clear differential interaction pattern. This
result further demonstrated a significant change in microbe-
mediated metabolic patterns after the addition of CE.

To further identify more specific and sensitive markers of
metabolites, we performed a more stringent threshold criteria
(p < 0.001, | FC| > 4, VIP > 1) (Figure 8A). The top focus
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metabolites were used to perform correlation analysis with the
signature microbiota (LDA > 4, p < 0.05) (Figure 8B). The
results showed that Lactobacillus was significantly positively
correlated with 6-hydroxy-5-methoxyindole glucuronide and
negatively correlated with doxycycline and cinchonidine, while
Romboutsia and Burkholderia had the opposite regulation pattern
to Lactobacillus. In addition, both Enterococcus and Faecalicoccus
were negatively correlated with cinchonidine, and Enterococcus
was also significantly positively correlated with 6-hydroxy-5-
methoxyindole glucuronide.

DISCUSSION

Enzyme supplementation of poultry feed is of great significance
in nutrition, economics, and the environment. Enzymes can
improve the utilization of carbohydrates, proteins, lipids, and
phytate phosphorus in feed to reduce the waste of fodder values
and pollutant emissions (Douglas et al., 2000; Doskovi¢ et al.,
2013). Our study showed that supplementation with multiple
enzymes had no significant effect on laying performance, which
contrasted with the results of previous studies. Studies by
Khan et al. (2011) showed that adding 2.0 g/kg multi-enzyme

preparation can increase egg production, egg weight, and egg
mass; and improve the feed conversion ratio and bodyweight
of layers without changing feed intake. Although enzymes
have a significant impact on the performance of poultry, their
application is greatly limited by the wide variety of enzymes
and harsh application conditions. A previous study showed that
the addition of complex enzymes (phytase, xylanase, cellulase,
a-amylase, and acid-protease) had little effect on the production
performance of aged hens (60-68 weeks old) but increased
intestinal enzyme activity and nutrient retention (Wen et al,
2012). Interestingly, adding enzymes to low-protein and low-
AME diets significantly improves hen and broiler performance
and digestive enzyme activities (Zhou et al., 2009; Zhu et al,,
2014; Rehman et al., 2018). Therefore, we supposed that adding
multi-enzyme preparations has little impact on production
performance, partly due to the balanced nutrition diet and the
health status of breeding hens.

Blood biochemical indices reflect the health status of hens. CE
administration increased the levels of TP and GLB in the serum.
This was probably due to the adequate degradation of proteins
promoted by the enzymes, which improve the absorption and
utilization of amino acids in the small intestine (Al-Homidan
etal., 2020).IgY is the primary serum antibody mainly distributed
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in poultry serum and egg yolk to protect the hens and
their offspring from pathogens (Thirumalai et al., 2019). The
improvement of in the titers of IgY and serum NDV and avian
influenza H9 strain antibodies was associated with enhanced
disease resistance. Enhanced humoral immunity was possibly
related to the immune-regulatory effects of some oligosaccharides
and beneficial microbiota in the gut after feeding with multiple
enzymes. Additionally, CE administration significantly increased
the serum HDL-C and T-AOC content and decreased the
AST content. The T-AOC reflects the cumulative effect of all
antioxidants in the blood and body fluids (Suresh et al., 2009;
Liu et al., 2021). Breeding hens frequently face oxidative stress
and ovarian aging problems in the later laying stage, which
considerably affect their performance and physiology (Liu et al.,
2018). AST is a sensitive marker for detecting liver injury,
and high levels of AST indicate liver damage (Yousefl et al.,
2005). HDL-C is considered “good cholesterol” and is associated
with cardiovascular health. It can accelerate lipid migration
from peripheral tissues to the liver, where cholesterol can be
metabolized into bile acids (Li et al., 2018; Duan et al., 2019).
Therefore, adding multiple enzymes to the diet enhances host

systemic immunity, improves antioxidant capacity, and has no
adverse effects on liver function.

Egg quality and reproductive performance, two important
economic traits for breeding hens, tend to decrease rapidly
because of the lower efficiency of absorption and immunity
with age (Liu et al, 2001; Bain et al, 2016). We found that
adding multiple enzymes can significantly increase albumen
height and Haugh unit, indicating that the addition of
multiple enzymes improves egg freshness. We then analyzed
reproductive performance and found that CE administration also
significantly enhanced the rate of fertilization and HoF value.
The improvement of these two reproduction indexes may be
related to the high-quality protein of the eggs and increased
deposition of IgY in the yolk, thereby improving the reproductive
performance of aged breeding hens (Thirumalai et al., 2019).
In summary, CE supplementation can effectively enhance egg
quality and reproductive performance of breeding hens.

To further discern the underlying mechanism of the enzyme
on the productive performance and immune function of hens.
The gut microbiota and metabolome after enzyme treatment
were analyzed. Our results showed that adding CE had minimal

Frontiers in Microbiology | www.frontiersin.org

December 2021 | Volume 12 | Article 711905


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Liu et al.

Multi-Enzymes Modify Gut Microbiome and Metabolome

effect on Chaol and Observed species, but significantly increased
Shannon and Simpson’s diversity indices. Meanwhile, the PCoA
showed a clear separation between the CE and DC groups,
which indicated that multiple enzymes could dramatically alter
the gut microbiota with increasing microbial evenness without
decreasing microbial richness (Zhang et al.,, 2017). Consistent
with the results of previous studies, Firmicutes, Proteobacteria,
and Bacteroidetes were the dominant phyla in the ileum of hens,
accounting for more than 98% of the total bacteria (Pan and Yu,
2014; Liu et al,, 2021). The genera Lactobacillus, Enterococcus,
Streptococcus, and Faecalicoccus were the signature taxa of the CE
group determined using LEfSe (LDA > 4, p < 0.05). Lactobacillus
spp. contribute to intestinal health, immunity enhancement,
nutrient absorption, and bile acid hydrolysis (Staley et al., 2017;
Xiao et al., 2017). Enterococcus spp. are lactic acid bacteria that
produce bacteriocins against pathogenic bacteria and regulate
nutrient metabolism (Hanchi et al., 2018). Streptococcus spp.
such as S. thermophiles and S. salivarius are often considered to
have probiotic effects, which help establish intestinal immune
homeostasis and regulate the inflammatory response of the host
(Akpinar et al, 2011; Kaci et al.,, 2014). Analysis of microbial
co-occurrence network patterns suggested that the addition of
multi-enzymes remarkably increased the interactions between
gut microbiota without affecting the number of interacting
bacteria, illustrating that adding multiple enzymes enhanced
the communication between bacteria. Correlation analysis of
differential microbiota and metabolites demonstrated that the gut
microbiota signature genera were strongly correlated with altered
metabolites. Therefore, the addition of multi-enzyme modulated
immune function and metabolism may be related to altering
the intestinal microbiota, increasing the relative abundance of
potentially beneficial bacteria, and enhancing the interaction
between bacteria.

The gene function analysis of the predicted metagenomes
from the DC group suggested that the microbial pathways were
significantly enriched in the sporulation and biosynthesis of
ansamycins. Spores can store the microbiota’s hereditary material
in a harmful or unsuitable environment so that their metabolism
in this state is 10 million times slower than in normally growing
bacteria (Huang and Hull, 2017; Bressuire-Isoard et al., 2018).
Ansamycins are antibiotics produced by several Actinomycetes
strains and have an inhibitory effect on the growth of many
bacteria (Vardanyan and Hruby, 2016). Bacteria inhibit the
growth of their surrounding bacteria by synthesizing antibiotics
to compete for limited resources, leading to a vicious cycle in
the gut environment. Metabolic pathway enrichment analysis
showed significant enrichment of several pathways, including
glycerophospholipid metabolism, autophagy, and ferroptosis.
This could be because the bacteria in the DC group lacked genes
related to the degradation of harmful substances and the higher
concentration of antibiotics surrounding them. Hence, bacteria
may degrade their components or excess proteins through
autophagy to provide nutrition for survival or directly induce
ferroptosis-like death in the DC group (Deretic and Levine,
2009; Xu et al., 2019; Shen et al., 2020). Spearman correlation
analysis revealed that two top-focused metabolites, doxycycline,
and cinchonidine, enriched in the DC group, were positively

correlated with the DC signature bacteria Romboutsia spp. and
Burkholderia spp. Doxycycline, a tetracycline, has a bacteriostatic
effect by inhibiting the synthesis of bacterial proteins by
destroying transfer RNA and messenger RNA at ribosomal
sites (Raval et al., 2018). Because doxycycline is significant for
maintaining animal health and controlling vertically transmitted
diseases, it has been widely used in the breeding industry (Yan
et al., 2018). Studies have shown that doxycycline mainly affects
the relative abundance of Firmicutes and Proteobacteria and
reduces the richness and evenness of the flora (Boynton et al.,
2017; Stavroulaki et al., 2021). Cinchonidine is an alkaloid
found in several foods such as fruits, herbs, spices, and olives
(Olea europaea) (Eyal, 2018). However, the biosynthetic pathway
of cinchonidine remains unclear (Maldonado et al, 2017).
Opverall, the bacteria in the DC group enriched genes related
to sporulation and biosynthesis of ansamycins pathways and
lacked communication. The intestinal environment had a higher
doxycycline content than the CE group, which would affect
the microbial community structure and reduce the evenness
(Stavroulaki et al., 2021).

The gene function analysis of the predicted metagenomes
from the CE group suggested that the microbial pathways were
significantly enriched in the biodegradation and metabolism of
multiple harmful substances. Polycyclic aromatic hydrocarbons
(PAHs) are widely distributed organic pollutants with genetic
toxicity and carcinogenicity that can significantly interfere
with gut microbiota and are associated with harmful effects
on host health (Ghosal et al., 2016; Redfern et al., 2021).
Ethylbenzene is a toxic aromatic organic compound metabolized
by the organism, and the accumulation of xenobiotics in an
organism may cause tissue damage and harm the host (Pan
et al, 2020). The addition of multiple enzymes significantly
enriched microbial functional genes related to the degradation
of the aforementioned harmful substances, which suggested that
the microbes of the CE group may have a better ability to
degrade toxic organic compounds and maintain homeostasis of
the gut environment to create a better intestinal environment.
Meanwhile, the ileum microbiota in the CE group also enriched
“glycosyltransferases” pathways, which may promote bacterial
surface antigen formation, thus stimulating the host immune
system and improving humoral immunity (Hong et al., 2019).
Spearman correlation analysis revealed that one top-focused
metabolite, 6-hydroxy-5-methoxyindole glucuronide, enriched
in the CE group, was positively correlated with the CE signature
bacteria Lactobacillus spp., and Enterococcus spp. 6-Hydroxy-
5-methoxyindole glucuronide, a member of the glucuronide
family. It is a natural metabolite of 6-hydroxy-5-methoxyindole
generated in the liver by UDP glucuronyltransferase, which
assists with the excretion of toxic substances, drugs, or other
substances that cannot be used as an energy source (Zhao et al,,
2012; Liu et al, 2019). Collectively, the addition of multiple
enzymes can improve the ability of microbes to degrade harmful
substances, and the potentially beneficial bacteria enriched in
the CE group are closely related to the metabolite 6-Hydroxy-5-
methoxyindole glucuronide that facilitates the excretion of toxic
substances. Thus, CE addition can benefit hen health, possibly by
affecting the metabolic function of intestinal bacteria.
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Taken together, the results showed that CE supplementation
may provide a nutrient-rich environment for bacteria by
improving the digestion and absorption of starch and protein,
elevating the excretion of toxins and harmful substances, and
reshaping the structure of the ileal microbial community such
that Lactobacillus spp. are the dominant bacteria and the
relative abundance of common potentially beneficial bacteria,
such as Enterococcus and Streptococcus, is increased. Follow-
up studies are needed to ascertain the changes in the gut
microbiome and metabolome induced by complex enzymes on
intestinal cell function.

CONCLUSION

Overall, administration of 0.2 g/kg of dietary multi-enzyme
could enhance humoral immunity and improve egg quality
and reproductive efficiency together with intestinal microbial
community structure and metabolite composition of aged
breeding hens. Multi-enzymes could be used to enhance the
immunity and reproductive performance of old breeding hens
and extend their service life.
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