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Phycospheric bacteria may be the key biological factors affecting the growth of algae.
However, the studies about interaction between Isochrysis galbana and its phycospheric
bacteria are limited. Here, we show that a marine heterotrophic bacterium, Alteromonas
macleodii, enhanced the growth of I. galbana, and inhibited non-photochemical
quenching (NPQ) and superoxide dismutase (SOD) activities of this microalgae. Further,
we explored this phenomenon via examining how the entire transcriptomes of I. galbana
changed when it was co-cultured with A. macleodii. Notable increase was observed
in transcripts related to photosynthesis, carbon fixation, oxidative phosphorylation,
ribosomal proteins, biosynthetic enzymes, and transport processes of I. galbana in
the presence of A. macleodii, suggesting the introduction of the bacterium might have
introduced increased production and transport of carbon compounds and other types
of biomolecules. Besides, the transcriptome changed largely corresponded to reduced
stress conditions for I. galbana, as inferred from the depletion of transcripts encoding
DNA repair enzymes, superoxide dismutase (SOD) and other stress-response proteins.
Taken together, the presence of A. macleodii mainly enhanced photosynthesis and
biosynthesis of I. galbana and protected it from stress, especially oxidative stress.
Transfer of fixed organic carbon, but perhaps other types of biomolecules, between the
autotroph and the heterotroph might happen in I. galbana-A. macleodii co-culture. The
present work provides novel insights into the transcriptional consequences of I. galbana
of mutualism with its heterotrophic bacterial partner, and mutually beneficial associations
existing in I. galbana-A. macleodii might be explored to improve productivity and
sustainability of aquaculture algal rearing systems.
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INTRODUCTION

How environmental factors affect the growth of microalgae is always a concern of researchers.
Environmental factors such as illumination, salinity, temperature, and nutrient salts all have
significant effects on the growth of microalgae (Suthar and Verma, 2018; Cao et al., 2020;
Ananthi et al., 2021; Corredor et al., 2021). In recent years, many researchers have found that the
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growth of microalgae is not only affected by the abiotic
environmental factors, but also the influence of biological factors
such as bacteria on the growth of microalgae cannot be neglected.
The complex relationship between bacteria and microalgae has
attracted more and more attention (Amin et al., 2012b; Seymour
et al., 2017; Lian et al., 2018; Zhang et al., 2020), becoming
one of the hot spots in the field of algae research at present.
Current studies have shown that bacteria can promote the
growth of microalgae in various ways. For example, bacteria
can release the growth-promoting hormone indole-3-acetic acid
(Amin et al., 2015; Dao et al., 2018), provide essential vitamins
to algae (Croft et al., 2005; Cooper et al., 2019), scavenge reactive
oxygen species (ROS) (Morris et al., 2008, 2011), promote algal
assimilation of iron (Amin et al., 2009, 2012a), or metabolically
transform compounds released by autotrophs in ways that can
impact the entire community (Durham et al., 2015; Christie-
Oleza et al., 2017). Such studies have begun to investigate which
factors drive algal-bacterial interactions, yet there are many
gaps in our understanding of these processes. Understanding
these interactions requires studying them at different scales:
identifying transcriptional changes that occur when organisms
interact being the most fundamental, as this is where the cell-to-
cell “recognition” is first expressed.

Isochrysis galbana is one of the most important bait microalgae
in aquaculture. It is small in body size, rich in polysaccharides,
carotene and lipids with high energy, especially unsaturated fatty
acids docosahexaenoic acid (DHA) and eicosapentaenoic acid
(EPA), which are needed for the growth and development of
shellfish. Besides, it has the characteristics of having no cell wall
and being easily digested and absorbed by aquatic animal larvae
(Cao et al., 2019). It is not only a good bait for aquaculture
seedling, but also an important raw material for the development
of bioactive substances. Meanwhile, it is also considered as one
of the microalgae most likely to be industrialized. However, the
cultivation of I. galbana is difficult in the actual production,
because factors causing the bottleneck of biomass yield are still
unclear. Optimal cultivation conditions of I. galbana should
always take its associated bacterial community into account.
However, studying how co-occurring bacteria affect I. galbana is
still in its in-fancy. Therefore, it is urgent to excavate beneficial
bacteria of I. galbana and study the mechanism of I. galbana-
bacteria interaction, and beneficial bacterial strains may be
supplemented as a new means to improve algal productivity and
culture stability.

At present, some studies have reported some beneficial
bacteria, which can promote the growth of microalgae, such as
Sulfitobacter sp. (Amin et al., 2015), Phaeobacter gallaeciensis
(Seyedsayamdost et al., 2011), Rhizobium sp. (Kim et al., 2014)
and Mesorhizobium sp. (Kazamia et al., 2012; Wei et al.,
2020). For I. galbana, there was an increase in algal biomass
accumulation and growth rate in the presence of Alteromonas
sp. and Labrenzia sp. (Sandhya and Vijayan, 2019). Interestingly,
we found a bacterium also affiliated to the genus of Alteromonas,
Alteromonas macleodii, that could promote the growth of
I. galbana. However, the underlying interaction mechanism
between I. galbana and Alteromonas remained unclear, which
deserves further study.

In this study, we performed some physiological and
biochemical experiments to evaluate the effects of A. macleodii
on I. galbana. As a step toward further understanding the
underpinnings of the effects, we examined the transcriptional
responses of I. galbana to grow in co-culture with A. macleodii.
This will provide novel insights into the transcriptional
consequences of I. galbana of mutualism between I. galbana and
its heterotrophic bacterial partner. Further, mutually beneficial
associations existing between I. galbana and A. macleodii might
be explored to improve productivity and sustainability of
aquaculture algal rearing systems.

MATERIALS AND METHODS

Algal Growth and Axenic Culture
Generation
Isochrysis galbana was obtained from the Marine Biotechnology
Laboratory of Ningbo University, China. NMB3 medium used
in this study for culturing microalgae was composed of KNO3
(100 mg/L), KH2PO4 (10 mg/L), MnSO4·H2O (2.5 mg/L),
FeSO4·7H2O (2.5 mg/L), EDTA-Na2 (10 mg/L), vitamin B1
(6 mg/L), and vitamin B12 (0.05 mg/L) (Yang et al., 2016).
Microalgae were cultivated at a light intensity of 100 mmol
photon m−2 s−1 under 23◦C. Axenic I. galbana was maintained
as described previously (Cao et al., 2019).

Bacterial Growth, Isolation, and
Classification
Bacteria were typically grown on 2216E medium incubated at
28◦C with shaking at 200 r.p.m. Bacterial growth was measured
by counting colony-forming units. Bacteria were isolated from
exponential phase growing I. galbana cultures. 16S rRNA genes
of the isolated bacteria were amplified using universal 16S rDNA
primers (27F, 1492R). The temperature profile for Polymerase
Chain Reaction (PCR) consisted of an initial incubation at 95◦C
for 5 min, followed by 32 cycles of 95◦C for 30 s, 55◦C for 1 min
and 72◦C for 2 min, and a final extension step at 72◦C for 10 min.
Purified PCR products were ligated into pMD19-T vector for
sequencing. The 16S rRNA gene sequence was compared with
reference sequences in the National Center for Biotechnology
Information (NCBI) by Basic Local Alignment Search Tool
(BLAST). Based on the result of 16S rRNA gene sequence
alignment and phylogenetic analysis, one isolated bacterial strain
shared 100% sequence identity to the validly named species
Alteromonas macleodii.

Co-culture Experiment
For co-culture experiments, single colony of A. macleodii was
freshly plated before each experiment on 2216E agar plates.
A. macleodii was inoculated into 2216E broth and incubated for
24 h in a shaking incubator (28◦C, 180 rpm). Freshly prepared
bacterial cells (OD600 = 0.4–0.6) were centrifuged (5,000 g for
5 min) and washed twice with sterile NMB3 medium. When
axenic I. galbana was cultured to exponential phase (cell density
of about 1 × 106 cells/mL), A. macleodii was added into algal
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FIGURE 1 | Co-cultures results of I. galbana and A. macleodii with three different initial bacteria/algae ratios of (1:1, 1:10, and 1:50) expressed as cell abundance (A)
and the color of algal fluid (B). Significance of the differences between mean values was determined with Student’s t test. Error bars represent standard error (SE),
while asterisks (*) indicate significant difference at p value < 0.05.

culture to achieve bacteria/algae ratios of 1:1, 10:1, and 50:1.
The algal growth was determined daily by cell counting, and
the bacterial growth was measured by counting colony-forming
units. For the co-culture transcriptome experiments, treatments
consisted of (1) I. galbana and A. macleodii co-culture (a
bacteria/algae ratio of 50:1), (2) axenic I. galbana. All treatments
were in triplicate. Sample names for I. galbana and A. macleodii
co-culture group were Ig_Am 1, Ig_Am 2 and Ig_Am 3, and Ig 1,
Ig 2 and Ig 3 were for axenic I. galbana group.

RNA-seq Analysis
Cells were harvested at mid-exponential growth (100 h after
inoculation for all treatments) by centrifuging. The supernatants
were removed, and the bacteria and microalgae were immediately
flash frozen in liquid nitrogen and later stored at −80◦C.
Total RNA was extracted using Trizol reagent (Invitrogen, CA,
United States) according to manufacturer protocol. After the
RNA test was qualified, mRNA was purified using the Ribo-
zero kit to remove rRNA. The enriched mRNA was then
broken into short fragments, separately. First-strand cDNA was
synthesized using random hexamer primer and M-MuLV Reverse
Transcriptase (RNase H−). To synthesize the second-strand

cDNA, buffer solution, dNTPs, RNase H, and DNA polymerase
I were added. The cDNA fragments were purified, end blunted,
“A” tailed, and adaptor-ligated. PCR was used to selectively enrich
those DNA fragments that had adapter molecules on both ends
and to amplify the DNA in the library. Lastly, PCR products were
purified (AMPure XP System) and library quality was assessed
using an Agilent Bioanalyzer 2100 system. The generated libraries
were sequenced on the Illumina HiSeq platform in Novogene
Bioinformatics Technology Co., Ltd. (Beijing, China).

Clean reads were generated after removing the adaptor
sequences, low-quality sequences (<Q20) and sequences shorter
than 50 bp. High-quality clean reads from I. galbana and
A. macleodii co-culture samples (Ig_Am 1, Ig_Am 2 and Ig_Am
3) were aligned against the assembled transcriptome of axenic
I. galbana. The I. galbana transcriptome was assembled using
the high-quality clean reads from the axenic I. galbana samples
(Ig 1, Ig 2, and Ig 3) by the Trinity software as described for
de novo transcriptome assembly (Grabherr et al., 2011). Seven
public databases, including Clusters of Orthologous Groups
(COG), Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG), NCBI non-redundant protein (Nr),
NCBI non-redundant nucleotide (Nt), Protein family (Pfam)
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and Swiss-Prot, were used for unigene annotation. We then
performed a differential expression analysis of each gene and
identified genes responses to co-culturing with A. macleodii.
Genes were considered to exhibit differential expression where
the fold change in expression of co-culture compared with the
axenic culture was ≥ 2, the p value was ≤ 0.05. Finally, we
performed gene enrichment analysis with the corresponding
database (GO enrichment: 1; KEGG enrichment: 2) for the
differentially transcribed genes. The transcriptomic data has been
deposited in NCBI Sequence Read Archive (SRA) database under
the accession numbers PRJNA747627.

Real-Time Quantitative PCR
Gene specific quantitative real-time PCR primers used in this
study were documented in Supplementary Table 1. RT-qPCR
was performed using SYBR Premix Ex Taq (TakaRa) on a
StepOne Real-Time PCR System (ABI, United States). Relative
expression levels were normalized to an actin gene and calculated
using the 2−1 1 Ct method as previously described (Cao et al.,
2016). The significance of the differences between mean values
was determined by Student’s t-test (p < 0.05).

RESULTS AND DISCUSSION

Alteromonas macleodii Promotes the
Growth of I. galbana
We have analyzed the growth by cell counting for co-cultures
with three different initial bacteria/algae ratio of (1:1, 1:10, and
1:50) and I. galbana mono-culture (Figure 1). The I. galbana
cell abundance in co-cultures was significant higher than the
control, which indicated that the growth of I. galbana was
promoted by co-culturing with A. macleodii. Further, the cell
abundance of I. galbana co-culturing with higher density of
A. macleodii was higher (Figure 1A) and the color of algal fluid
was darker (Figure 1B). We could conclude that the growth-
promoting role of A. macleodii to I. galbana depends on the
population density of the bacterium. As a key experimental
parameter, the initial inoculation ratio has a crucial impact on
the results of the co-culture system. For example, A. macleodii
strain HOT1A3 enhanced the growth of Prochlorococcus at
low cell densities, yet inhibited it at a higher concentration
(Aharonovich and Sher, 2016).

Physiological and Biochemical Effects of
A. macleodii on I. galbana
We next focused the initial bacteria/algae ratio of 50:1,
with the aim of evaluating the effects of co-culturing with
A. macleodii on physiology and biochemistry of I. galbana.
Same as the results shown in Figure 1, the high bacteria/algae
ratio (50:1) significantly enhanced the growth of I. galbana
(Figure 2A). Non-photochemical quenching (NPQ), a
chlorophyll fluorescence parameter, reflects the ability of plant to

1http://geneontology.org/
2http://www.genome.jp/kegg/

FIGURE 2 | Cell abundance (A), non-photochemical quenching (NPQ) (B)
and superoxide dismutase (SOD) activity (C) for I. galbana co-culture and
mono-culture during 20 d exposure time. Significance of the differences
between mean values was determined with Student’s t test. Error bars
represent standard error (SE), while asterisks (*) indicate significant difference
at p value < 0.05.
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TABLE 1 | Isochrysis galbana pathways and selected KEGG categories significantly enriched or depleted in co-culture.

Pathway Genes with significantly differentially abundant transcript levels P value

Increased abundance during co-culture

Oxidative phosphorylation COX1, COX2, COX3, ND1, ND2, ND3, ND4, ND5, and ATP6 1.41E-17

Photosynthesis psbA, psbD, psbF, psaD, psbL, psaC, and psaL 2.88E-11

Ribosome RP-S2, RP-S5, RP-S10, RP-S12, RP-S15, RP-S24, RP-S27, RP-S29, and RP-L18 2.05E-03

Tyrosine metabolism GOT1, s-glutathione dehydrogenase 3.47E-02

Isoquinoline alkaloid biosynthesis GOT1 3.98E-02

Carbon fixation in photosynthetic organisms GOT1, PGK, rpiA, rbcS, and sedoheptulose-1,7-bisphosphatase 4.13E-02

Decreased abundance during co-culture

Steroid biosynthesis TGL4, DHCR7, and CYP51 1.55E-02

Non-homologous end-joining PRKDC, DNL4 1.73E-02

Protein processing in endoplasmic reticulum SIL1, EDEM2, MAN1, HRD1, SEC23, HUGT, STT3, PDIA6, and SEC24 1.85E-02

Arginine biosynthesis argE, argAB, argH, glnA, URE, and GPT 1.96E-02

Biotin metabolism BIO3-BIO1, bioB 1.97E-02

alpha-Linolenic acid metabolism TGL4 2.34E-02

Carotenoid biosynthesis phytoene desaturase, lycopene beta cyclase, and zeaxanthin epoxidase 3.17E-02

COX, Cytochrome c oxidase; ND, NADH dehydrogenase; RP, Ribosomal protein; GOT1, Glutamic oxaloacetic transaminase 1; PGK, Phosphoglycerate kinase; TGL,
Triacylglycerol lipase; DHCR7, 7-dehydrocholesterol reductase; CYP51, Sterol 14 alpha-demethylase; PRKDC, DNA-dependent protein kinase catalytic subunit; DNL4,
DNA ligase 4; EDEM2, ER degradation enhancer; mannosidase alpha-like 2; MAN1, Mannosyl-oligosaccharide alpha-1;2-mannosidase; HRD1, HMG-CoA reductase
degradation 1; PDIA6, Protein disulfide-isomerase A6; URE, Urease; GPT, Glutamic-pyruvic transaminase; BIO, Biotin.

dissipate energy, which is directly related to the ability to provide
photoprotection to plant (Bachmann et al., 2004). Previous
studies have documented that photosynthetic organisms would
elevate NPQ when exposed to some environmental stressors
(Cui et al., 2017; Zhang et al., 2017). In the present study,
the values of NPQ in the co-culture group were significantly
lower than that of the axenic group, especially in the later
stages of co-culture (Figure 2B). Finally, co-culturing with
A. macleodii severely inhibited the superoxide dismutase
(SOD) activities of I. galbana comparing with the control
for the entire study period (Figure 2C). It is well known
that SOD plays a key role in the removal of reactive oxygen
species (ROS). Interestingly, Alteromonas strains may scavenge
ROS and thus reduce potential oxidative stress affecting
Prochlorococcus (Morris et al., 2008, 2011). Besides, the study
by Sandhya and Vijayan (2019) reported that Alteromonas
sp. Mab 25 is able to produce extracellular antioxidants. The
decreasing SOD activities in co-culture may be correlated
with the scavenging of ROS by A. macleodii. The mechanism
of A. macleodii promoted the growth of I. galbana could be
related to protect it from stress, especially oxidative stress.
However, additional studies are required in order to test
this hypothesis.

The Transcriptional Responses of
I. galbana to Co-culture
To gain insight into how I. galbana responded physiologically to
the presence of A. macleodii, we compared the transcriptomes
of I. galbana in co-cultures with A. macleodii with in mono-
culture. We next focused on the mid-exponential growth
stages of I. galbana in co-culture, with the aim of identifying
transcriptional changes in I. galbana that might explain
the growth-promoting role of A. macleodii to I. galbana in

co-culture. In general, after trimming and quality checking,
clean reads% was ranged from 93.82 to 98.78 (Supplementary
Table 2). The clean reads were finally combined and used to
draw the transcriptome information of I. galbana. All data,
including the error (%), Q20 (%), Q30 (%), and GC content (%),
met the requirements for further analysis. Further, transcripts
representing 2,157 different I. galbana genes were found
to be differentially abundant in the co-culture, with more
decreasing (1387) than increasing (770) in relative abundance
(Supplementary Tables 3, 4). We next asked whether there
were any pathways or molecular functions enriched in the
subset of genes differentially expressed between co-cultures
and axenic cultures, using KEGG analysis. The significant
enrichment observed for the increased genes was “Oxidative
phosphorylation,” “Photosynthesis,” “Ribosome,” “Tyrosine
metabolism,” “Isoquinoline alkaloid biosynthesis” and “Carbon
fixation in photosynthetic organisms,” while the depleted KEGG
categories included “Steroid biosynthesis,” “Non-homologous
end-joining,” “Protein processing in endoplasmic reticulum,”
“Arginine biosynthesis,” “Biotin metabolism,” “alpha-Linolenic
acid metabolism” and “Carotenoid biosynthesis” (Table 1).

Kyoto Encyclopedia of Genes and Genomes enrichment
results suggested that photosynthesis of I. galbana were promoted
in the presence of A. macleodii (Table 1 and Figure 3). A similar
increase in expression of these pathways was also observed
in Prochlorococcus-Alteromonas co-cultures (Biller et al., 2016).
Why might the presence of A. macleodii trigger a change in
the photosystems of I. galbana? Although mechanistic insights
require further research, one possible explanation is that the
heterotroph, by consuming some form of dissolved organic
carbon released by I. galbana, might have either directly or
indirectly stimulated I. galbana to increase the production
and export of carbon compounds. As organic carbon was
not provided in the medium, the success of I. galbana and
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FIGURE 3 | Schematic diagram of transcriptional responses of I. galbana to co-culture with A. macleodii. I. galbana cell in yellow and A. macleodii cell in gray. Red
and green arrows indicate the related genes or pathways were up-regulated and down-regulated, respectively. Log2

foldchange in comparison group Ig_Am/Ig for the
expression of the related genes and the gene names were denoted with the white dotted box.

FIGURE 4 | Experimental confirmation of RNA-seq data on relative fold change level of the selected differentially-expressed genes (DEGs) by real-time quantitative
PCR (RT-qPCR) analyses. The results from RNA-Seq and RT-qPCR, are shown by bars with different patterns. The selected DEGs included calcium-dependent
protein (Cluster-1913.49064), photosystem II protein D1 (Cluster-1913.54157), aspartate aminotransferase (Cluster-1913.58166) and biotin synthase
(Cluster-1913.37995) for I. galbana. RT-qPCR data represent the mean ± standard error (SE) of three independent experiments.

A. macleodii co-culture reflects the ability of A. macleodii
to survive using the organic carbon produced by I. galbana.
The increase in expression of carbon fixation related genes in
I. galbana proved this to some extent (Table 1 and Figure 3).
Besides, oxidative phosphorylation is one kind of way to
generate energy in the form of ATP and it was activated in

the presence of A. macleodii here (Table 1 and Figure 3).
Increased energy could be used for biosynthesis, transportation
and other activities. Finally, consistent with the increased growth
of co-cultured I. galbana, we found that co-cultured cells were
enriched for transcripts encoding a number of proteins involved
in biosynthesis or growth (Table 1 and Figure 3). These included
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increased in transcripts for multiple ribosomal proteins, as well
as enzymes related to Isoquinoline alkaloid biosynthesis and
Tyrosine metabolism. This suggested that I. galbana cells were
increasing their biosynthetic capability in co-culture, and the
increased biosynthesis need more energy. Taken together, we
hypothesized that increasing photosynthesis of I. galbana in
co-culture will produce more energy-storing materials such as
carbohydrate that could be used for respiration to produce more
energy for biosynthesis, which could explain for the increased
growth of co-cultured I. galbana in the presence of A. macleodii.

Besides the above enriched pathways or molecular functions,
many of the transcriptional responses of I. galbana can be
associated with transport processes under co-culture conditions
(Supplementary Table 3). For example, the expression of
a intraflagellar transport protein 140-like protein (Cluster-
1913.45461), a ABC transporter (Cluster-1913.54562), a putative
zinc transporter (Cluster-1913.58709) and sodium potassium
calcium exchanger 4 (Cluster-1913.5747) was significantly
increased in the presence of A. macleodii (Supplementary
Table 3). Similar results were found in Synechococcus–Shewanella
co-culture, as well as Prochlorococcus–Alteromonas (Beliaev
et al., 2014; Biller et al., 2016). These results suggested that
many types of biomolecules, including fixed organic carbon,
might be exchanged between the co-cultured autotroph and
heterotroph. The differential expression of 10 genes annotated as
calcium-dependent protein kinase (CDPK), calcium-dependent
protein or calreticulin (8 upregulated, 2 downregulated) suggests
similarities with plant recognition of bacteria using Ca2+ as a
second messenger (Vadassery and Oelmüller, 2009). Calcium-
dependent signaling followed by cell death was described
previously for nutrient-limited diatoms (Vardi et al., 2006). Our
results, as well as the results reported by Durham et al., 2017
extend this by suggesting that second messenger also plays a
role in relaying information on biotic stimuli. Interestingly,
the expression of a delta-6 fatty acid desaturase (Cluster-
1913.57529) was enrich significantly (Log2

FoldChange = 21.583)
(Supplementary Table 3). Delta-6 fatty acid desaturase is a key
enzyme for polyunsaturated fatty acids (PUFA) biosynthesis.
If the presence of A. macleodii indeed increased markedly the
polyunsaturated fatty acids content in co-culture is worth of
making further research.

Finally, additional transcriptional responses of I. galbana
were consistent with a generalized reduction in stress in the
presence of the heterotroph. For example, multiple DNA repair
enzymes, including DnaJ (Cluster-1913.40877), DNA mismatch
repair protein (Cluster-1913.37455, Cluster-1913.28067),
deoxyribodipyrimidine photolyase (Cluster-1913.105678),
RNA helicase nonsense mRNA reducing factor (Cluster-
1913.102129), lon protease homolog 1 (Cluster-1913.17497),
REV1 Deoxycytidyl transferase (Cluster-1913.59724) were
transcriptionally depleted in co-culture (Supplementary
Table 4). Besides, the expression of copper/zinc superoxide
dismutase (Cluster-1913.101311) was down-regulated
in co-culture, which was consistent with the decreased
activity of SOD (Figure 3 and Supplementary Table 4). In
addition, other stress-response transcripts encoding heat
shock protein 90, multiple nfx1-type zinc finger-containing

proteins and some ubiquitination-related proteins also
decreased in relative abundance (Supplementary Table 4).
These results suggested the growth-promoting role of
A. macleodii to I. galbana might be partly related to protect
it from stress, especially oxidative stress, which was similar
with the case in Alteromonas-Prochlorococcus interaction
(Morris et al., 2008, 2011).

However, the most significant fraction of genes differentially
expressed in co-culture compared with axenically growing cells
have no known function. The lack of annotation hampers the
interpretation of many of the responses observed and this
highlights how much we have yet to learn about the mechanisms
and molecules underlying I. galbana- bacteria interactions.
Additionally, correlation analysis of the transcriptional responses
of A. macleodii to co-culture with the responses of I. galbana
was important to provide insight into I. galbana and A. macleodii
interactions, which deserves further study. Finally, it is important
to recognize that changes in relative transcript abundance within
I. galbana and A. macleodii does not necessarily always lead
to similar changes in protein abundance. Thus, the changes
described here represent a first step toward understanding the
interactions between A. macleodii and I. galbana.

Validation of Significant
Differentially-Expressed Genes by
RT-qPCR
In order to further validate the RNA-seq data, four DEGs
from comparison group (Ig_Am vs Ig) were randomly
selected for expression profile analyses by RT-qPCR. All
these DEGs included calcium-dependent protein (Cluster-
1913.49064), photosystem II protein D1 (Cluster-1913.54157),
aspartate aminotransferase (Cluster-1913.58166) and biotin
synthase (Cluster-1913.37995) for I. galbana. The results
of RT-qPCR revealed that most of these DEGs shared
similar expression tendency with those from RNA-seq data
(Figure 4). Although there were some quantitative differences
between the two analytical platforms, the similarities between
these two methods suggested that the RNA-seq data were
reproducible and reliable.
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