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The Caliciviridae are a family of viruses with a single-stranded, non-segmented RNA 
genome of positive polarity. The ongoing discovery of caliciviruses has increased the 
number of genera in this family to 11 (Norovirus, Nebovirus, Sapovirus, Lagovirus, Vesivirus, 
Nacovirus, Bavovirus, Recovirus, Salovirus, Minovirus, and Valovirus). Caliciviruses infect 
a wide range of hosts that include fishes, amphibians, reptiles, birds, and marine and land 
mammals. All caliciviruses have a genome that encodes a major and a minor capsid 
protein, a genome-linked viral protein, and several non-structural proteins. Of these 
non-structural proteins, only the helicase, protease, and RNA-dependent RNA polymerase 
share clear sequence and structural similarities with proteins from other virus families. In 
addition, all caliciviruses express two or three non-structural proteins for which functions 
have not been clearly defined. The sequence diversity of these non-structural proteins 
and a multitude of processing strategies suggest that at least some have evolved 
independently, possibly to counteract innate and adaptive immune responses in a host-
specific manner. Studying these proteins is often difficult as many caliciviruses cannot 
be grown in cell culture. Nevertheless, the study of recombinant proteins has revealed 
many of their properties, such as intracellular localization, capacity to oligomerize, and 
ability to interact with viral and/or cellular proteins; the release of non-structural proteins 
from transfected cells has also been investigated. Here, we will summarize these findings 
and discuss recent in silico studies that identified previously overlooked putative functional 
domains and structural features, including transmembrane domains that suggest the 
presence of viroporins.
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INTRODUCTION

The Caliciviridae family of RNA viruses currently includes 11 genera, i.e., Norovirus, Nebovirus, 
Sapovirus, Lagovirus, Vesivirus, Nacovirus, Bavovirus, Recovirus, Salovirus, Minovirus, and Valovirus 
(Desselberger, 2019; Vinjé et  al., 2019). Viruses of the genera Norovirus, Nebovirus, Sapovirus, 
Lagovirus, Recovirus, and Valovirus are enteric viruses of mammals. Some of these viruses are 
associated with severe gastroenteritis or systemic disease, while others cause only mild or 
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asymptomatic infections. Noroviruses cause an estimated 684 
million gastroenteritis episodes and 200,000 deaths annually 
imposing a significant economic burden (Kirk et  al., 2015; 
Pires et  al., 2015; Bartsch et  al., 2016). Human norovirus and 
sapovirus infections can also lead to chronic disease and are 
often associated with severe complications, especially in the 
elderly, very young, and immunocompromised patients 
(Petrignani et  al., 2018; Wright et  al., 2020). Neboviruses are 
enteric pathogens of cattle in which mortality rates reach up 
to 30% (Alkan et  al., 2015). Tulane virus (genus Recovirus; 
Farkas et  al., 2008) was isolated from stool samples of rhesus 
macaques; another recovirus (Bangladesh/289/2007) was later 
discovered from human patients with diarrhea in Bangladesh 
(Smits et al., 2012). Remarkably, and in contrast to other human 
caliciviruses, Tulane virus easily propagates in cell culture 
(Farkas, 2015), which promises to turn this newly discovered 
virus into an important model for enteric caliciviruses. Valoviruses 
were first isolated from the feces of asymptomatic farmed pigs; 
these viruses were named St-Valérien-like viruses and found 
to be  closely related to noroviruses and recoviruses (L’Homme 
et al., 2009). Bavoviruses and nacoviruses were recovered from 
feces and intestinal contents of poultry – chickens, turkeys, 
and geese (Wolf et al., 2012; Liao et al., 2014). Rabbit caliciviruses 
(RCVs) and hare caliciviruses are enteric lagoviruses. The name 
“lagovirus” refers to the narrow host range of these viruses; 
they infect only members of the order Lagomorpha, e.g., 
Oryctolagus (European rabbit), Lepus (hares and jackrabbits), 
and Sylvilagus (cottontail rabbits). RCVs such as RCV-A1 usually 
cause asymptomatic infections in rabbits in contrast to many 
other lagoviruses that have been discovered to date (Strive 
et al., 2010). Pathogenic lagoviruses, including Rabbit hemorrhagic 
disease virus (RHDV) and European brown hare syndrome virus 
(EBHSV), are hepatotropic and cause a peracute hepatitis with 
mortality rates approaching 100% (Abrantes et  al., 2012; Hall 
et  al., 2017). Vesiviruses are the caliciviruses with the widest 
host range; so far, viruses have been isolated from cats (Feline 
calicivirus, FCV), pigs (Vesicular exanthema of swine virus, VESV), 
and seals (San Miguel sea lion virus-8, SMSV-8; Oglesby et  al., 
1971; Radford et al., 2007; Neill, 2014). Infection with vesiviruses 
can cause multiple organ failure, vesicular lesions, and respiratory 
and reproductive system diseases, depending on virus and host 
species (Radford et  al., 2007). Saloviruses and minoviruses are 
viruses that infect fishes. Atlantic salmon calicivirus (ASCV, genus 
Salovirus) was isolated from heart tissue of farmed Atlantic 
salmons with symptoms of heart and skeletal muscle inflammation 
(Mikalsen et  al., 2014). Fathead minnow calicivirus (FHMCV, 
genus Minovirus) was first identified in diseased fathead minnows 
with widespread hemorrhaging; however, all analyzed fish samples 
showed a co-infection with fathead minnow picornavirus. Thus, 
further studies are needed to elucidate whether FHMCV is 
associated with hemorrhagic disease or requires a co-infection 
to cause the disease (Mor et  al., 2017).

Picornaviridae and Caliciviridae are closely related families 
of the order Picornavirales, which comprises non-enveloped 
viruses with a positive-sense RNA genome. Both virus families 
direct host cells to synthesize a polyprotein that is cleaved by 
viral proteases, a process that, in some caliciviruses, is assisted 

by cellular proteases (Thumfart and Meyers, 2002; Sosnovtsev 
et  al., 2006). In the case of caliciviruses, mature non-structural 
proteins include the RNA-dependent RNA polymerase (RdRp), 
a 3C-like protease, VPg (virion protein, genome-linked), a 
helicase (NTPase), and several poorly characterized 
non-structural proteins that can be  termed NS1, NS2, and 
NS4. The overall gene organization of caliciviruses resembles 
that of picornaviruses with one major difference (Figure  1). 
In caliciviruses, the coding sequence for the capsid proteins 
is located at the 3'-end, while in picornaviruses, the capsid 
genes precede the polyprotein and are the first to be translated. 
Thus, the positional homologs of the calicivirus non-structural 
proteins NS1, NS2, and NS4  in picornaviruses are 2A, 2B, 
and 3A, respectively.

The genetic material of all caliciviruses consists of two types 
of positive-sense, single-stranded RNA molecules: full-length 
genomic and subgenomic RNAs (by contrast, picornaviruses 
produce only full-length genomic RNA). Calicivirus particles 
contain a single copy of genomic RNA (ca 7.5  kb) or one or 
more copies of a subgenomic RNA (ca 2  kb; Ehresmann and 
Schaffer, 1977; Meyers et  al., 1991a,b). Both RNAs have a 5' end 
that is covalently linked to VPg, a polyadenylated 3' end, and 
coding sequences in two or more partially overlapping open 
reading frames (ORFs) that are flanked by untranslated regions 
(UTRs). While the genomic full-length RNA encodes all structural 
and non-structural proteins, the subgenomic RNA encodes only 
the structural proteins VP1 and VP2. In caliciviruses, the 
subgenomic RNA ensures efficient particle formation through 
the synthesis of additional capsid proteins (Miller and Koev, 
2000). It is tempting to speculate that picornaviruses do not 
require subgenomic RNAs as the positioning of the coding 
sequences for the structural proteins at the 5' end increases protein 
output. Why caliciviruses have evolved a different coding strategy 
is not clear; however, having an additional RNA molecule for 
the enhanced expression of structural proteins may allow for a 
more sophisticated control of protein production (Meyers, 2003).

The functions of the calicivirus RdRp, protease, helicase, and 
VPg were identified based on sequence similarities to homologous 
proteins from picornaviruses and other positive-sense single-
stranded RNA viruses (Neill, 1990; Lambden and Clarke, 1995; 
Clarke and Lambden, 1997). The presence of conserved motifs 
and domains in these proteins often indicates the function (e.g., 
almost all RNA polymerases have a GDD motif in their active 
site). The RdRp replicates the viral genome, a process that, due 
to the lack of proof reading, constantly generates considerable 
genetic diversity. Template switching can further increase genetic 
diversity; in calicivirus-infected cells, this occurs relatively 
frequently, and most commonly at the junction of RdRp and 
structural protein coding sequences (Mahar et  al., 2013). The 
calicivirus protease, also referred to as the 3C-like protease after 
its counterpart in picornaviruses, participates in the proteolytic 
cleavage of the viral polyprotein (Boniotti et  al., 1994). The 
calicivirus helicase unwinds double-stranded RNA intermediates 
in an ATP-dependent reaction during viral replication (similar 
to homologous proteins in other viruses). However, the calicivirus 
helicase has additional functions. It acts as an RNA chaperone 
that remodels structured RNA in an ATP-independent manner 
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(Li et  al., 2017), and it facilitates the formation of vesicular 
structures that house the replication complexes (Cotton et  al., 
2016). The VPg protein is usually listed among the non-structural 
proteins, but as it is covalently bound to the 5' end of both 
genomic and subgenomic RNAs and is therefore present in 
mature virus particles, it could arguably be  categorized as a 
structural protein. In infected cells, the VPg serves as a primer 
for the replication of the viral genome and plays a critical role 
in the initiation of translation (Herbert et  al., 1997; Goodfellow, 
2011). The functions of the remaining non-structural proteins 
(i.e., NS1/2, NS1, NS2, and NS4) are more challenging to determine, 
as they lack sequence homology to other proteins. Even within 
the Caliciviridae family, the sequence diversity is so great that 
non-structural protein sequences cannot be  used to produce 
meaningful phylogenetic trees, except for sequences from closely 
related viruses (Figures 2B,C). Highly conserved RdRp sequences, 
in contrast, are much more suitable for phylogenetic analyses 
(Koonin, 1991; Wolf et  al., 2018; Figure  2A). The location of 
the non-structural protein genes in the viral genome, however, 
is rather conserved. In all caliciviruses, the coding sequence of 
NS1/2 is located at the 5' end, while the NS4 sequence follows 
the helicase sequence. Some, but not all, NS1/2 proteins undergo 
proteolytic cleavage. In vesiviruses, lagoviruses, neboviruses, and 
sapoviruses, the NS1/2 precursor protein is efficiently cleaved 
by viral and/or host cell proteases, generating the proteins NS1 
and NS2. In other viruses, the cleavage efficiency is less clear, 
and more stable precursor proteins may exist.

Although function(s) of the non-structural proteins NS1/2 
and NS4 remain elusive, recent studies suggest that mutations 
in their coding sequences may influence tissue tropism, virulence, 
and epidemiological fitness. For example, Mahar et  al. (2021) 
provide evidence for a role of NS proteins in epidemiological 
fitness, while investigating the evolution of lagoviruses. The 
recent introduction of the highly pathogenic RHDV2 to Australia 
quickly led to the emergence of recombinant lagoviruses that 
contain the capsid genes of RHDV2 and the non-structural 
protein coding sequences of non-pathogenic RCV strains that 

had been circulating in Australian rabbits for decades. These 
recombinants are hepatotropic and highly pathogenic (as is 
the parental RHDV2), suggesting that virulence and tropism 
is conferred by the structural genes. Furthermore, the recombinant 
strains quickly replaced RHDV2 despite having an identical 
or near-identical capsid protein, which suggests that 
non-structural proteins are important drivers of epidemiological 
fitness (Mahar et  al., 2021). It would be  interesting to extend 
these studies to explore which non-structural protein or which 
combination of non-structural proteins is responsible for the 
evolutionary success of these recombinant lagovirus strains in 
Australia. Non-structural proteins have also been shown to 
influence the tissue tropism in some caliciviruses. For example, 
in Murine norovirus (MNV), a single amino acid substitution 
in NS1 is associated with better virus growth and persistent 
infection of the proximal colon. A non-persistent strain becomes 
persistent with a single change of aspartic acid to glutamic 
acid (D93E) in NS1 (Nice et  al., 2013). Clearly, evidence is 
mounting for a role of the non-structural proteins as key 
determinants of pathogenicity and epidemiological fitness. In 
this review, we  summarize the current knowledge of these 
calicivirus proteins.

NON-STRUCTURAL PROTEIN 
PROCESSING AND SECRETION

The polyprotein of all caliciviruses is cleaved by the 3C-like virus 
protease into the non-structural proteins NS1/2, helicase, NS4, VPg, 
3C-like protease, and the RdRp (Figure  3). In RHDV, FCV, and 
human sapovirus infected cells, the NS1/2 precursor is also cleaved 
by the 3C-like protease (Wirblich et  al., 1996; Sosnovtsev et  al., 
2002; Oka et  al., 2005). In contrast, the norovirus NS1/2 precursor 
is not processed further by the 3C-like protease (Liu et  al., 1996). 
However, when the processing of a recombinant MNV NS1/2 
precursor was analyzed in vitro, it was discovered that a cellular 
protease, caspase-3, cleaves the protein (Sosnovtsev et  al., 2006). 

A

B

FIGURE 1 | Schematic representation of the genome organization for a typical (A) calicivirus and (B) picornavirus. Untranslated and translated sequences are 
depicted as lines and boxes, respectively. Structural (capsid) proteins are shown in green (note that VP1 and VP2 in lagoviruses are usually referred to as VP60 and 
VP10, respectively); the signature proteins of the picornavirus-like superfamily are shown in gray, namely the helicase (NTPase), VPg, protease (Pro), and the RNA-
dependent RNA polymerase (RdRp); the non-structural calicivirus proteins NS1/2 and their positional homologs in picornaviruses (2A, 2B) are shown in pink; and 
the non-structural calicivirus protein NS4 and its homolog in picornaviruses (3A) are shown in blue. Covalently linked VPg proteins at the 5' end are shown in yellow, 
and An represents the poly(A) tail at the 3' end.
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A

B

C

FIGURE 2 | Phylogenetic analysis of calicivirus protein sequences. Maximum likelihood phylogenies were inferred for amino acid sequences of (A) RdRp, 
(B) NS1/2, and (C) NS4. First, the amino acid sequences of the complete ORF1 coding region of representative published calicivirus sequences were aligned 
using MAFFT (Katoh et al., 2002). The alignment was then curated with trimAl (Capella-Gutiérrez et al., 2009). The RdRp, NS1/2, and NS4 coding regions 
were extracted from this complete ORF1 alignment and phylogenies were inferred individually for each gene using IQ-TREE (Nguyen et al., 2015). 
Phylogenies were rooted using Poliovirus type 1 (GenBank accession NC_002058). The following sequences were chosen for calicivirus genera: Vesicular 
exanthema of swine virus (VESV; NC_002551), Feline calicivirus (FCV; NC_001481), Sapovirus genogroup III (MG012434), Porcine enteric sapovirus 
(NC_000940), Turkey calicivirus (NC_043516), Chicken calicivirus (NC_033081), Newbury agent 1 (NC_007916), Nebraska virus (NC_004064), Rabbit 
haemorrhagic disease virus (NC_001543), European brown hare syndrome virus (EBHASV; NC_002615), Tulane virus (NC_043512), Human norovirus 
genogroup II (NC_039477), Murine norovirus (MNV; NC_008311), Minnow calicivirus (NC_035675), and Salmon calicivirus (NC_024031). The tree is drawn to 
scale, with branch lengths measured in the number of substitutions per site. Ultrafast bootstrap values are shown for each node. Low confidence bootstrap 
values (<70) are highlighted in red.
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Subsequently, a cleavage site homolog was identified in human 
noroviruses and it was discovered that both the human norovirus 
and MNV secrete NS1 after the precursor has been cleaved (Lee 
et  al., 2019). Cleavage occurs only at a late stage of the viral life 
cycle (18–22  h post-infection) and is concurrent with activation of 
apoptosis (Robinson et  al., 2019). Moreover, this process is required 
for intestinal tropism and virus persistence. A persistent MNV strain 
with a deleted caspase-3 cleavage site replicated less efficiently in 
the ileum (10-fold decrease) and was rarely detected in feces compared 
with the corresponding wild-type strain (Robinson et  al., 2019). 
Interestingly, the “secretion” of NS1 is insensitive to brefeldin A, an 
inhibitor of trafficking from the endoplasmic reticulum (ER) to the 
Golgi (Lee et  al., 2019). This suggests that NS1 leaves infected cells 
through an unconventional pathway that still awaits characterization.

NON-STRUCTURAL PROTEIN 
OLIGOMERIZATION

The ability to oligomerize has been demonstrated for several 
non-structural proteins, including the NS1/2 of MNV and 

Tulane virus, NS2 of FCV, and NS2 of RHDV (Table  1). One 
of the best-studied examples is the NS2 (p23) protein of RHDV, 
which was shown to oligomerize using co-translocation and 
cross-linking assays (Urakova et al., 2015). Briefly, rabbit kidney 
(RK)-13 cells were transfected with expression plasmids that 
encoded either a NS2 protein with a nuclear localization sequence 
(NLS) and a FLAG-tag or a NS2 protein with a myc-tag but 
no NLS. When expressed separately, only the NS2 protein with 
an NLS was transported to the nucleus. Upon co-expression, 
however, both proteins were detected in the nucleus, suggesting 
that NS2 proteins form dimers or higher order oligomers. This 
protein-protein interaction was confirmed in cross-linking 
experiments; subsequent Western blot analysis revealed a band 
of dimeric NS2 (Urakova et  al., 2015). More evidence for the 
ability of NS2 proteins to oligomerize has been observed with 
FCV and Tulane virus. In the case of FCV, NS2-NS2 dimers 
were detected in lysates from transfected cells after proteins 
were separated under non-reducing conditions and analyzed 
by Western blotting (Kaiser, 2006). In the case of Tulane virus, 
NS1/2 oligomers were detected by Western blotting of unboiled 
lysates from transfected cells that were also separated under 

FIGURE 3 | Calicivirus non-structural protein processing, oligomerization, and domains. The coding sequences for non-structural proteins are shown in pink 
(NS1/2), blue (NS4), or gray (all other non-structural proteins), while coding sequences for structural proteins are shown in green (VP1 and VP2). The ability of some 
proteins to oligomerize is illustrated by staggered boxes. Black scissors indicate the presence of a caspase-3 cleavage site; white scissors indicate a viral 3C-like 
protease cleavage site. VPD, viroporin domain; HR, hydrophobic region; MAD, membrane-associated domain; H-NC, H-box and NC motif (asparagine-cysteine); 
MERES, mimic of an endoplasmic reticulum (ER) export signal; and FFAT, phenylalanine-phenylalanine acidic tract. Genes and gene products are drawn to scale.
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non-reducing conditions (Strtak et  al., 2019). Taken together, 
these findings indicate that the oligomerization domain in 
NS1/2 resides in the NS2 moiety of the protein. Interestingly, 
recent reports suggest that the NS2 part of the NS1/2 protein 
of noroviruses and Tulane virus possesses viroporin activity, 
for which oligomerization is essential (Strtak et  al., 2019).

MEMBRANE ASSOCIATION OF 
NON-STRUCTURAL PROTEINS

All positive-sense RNA viruses, including caliciviruses and 
picornaviruses, are known to manipulate host cell membranes 
to create a “virus-friendly” environment (Romero-Brey and 
Bartenschlager, 2014). A re-organization of the production 
and trafficking of cellular membranes has many consequences, 
e.g., interferons (IFNs) may no longer be secreted and major 
histocompatibility complex (MHC) molecules may no longer 
reach the plasma membrane. This allows viruses to become 
“invisible” to the innate and adaptive immune systems. In 
addition, re-directing cellular membrane trafficking enables 
the formation of new intracellular compartments for virus 
replication. In picornaviruses, the ability of 2A, 2B, and 
3A to manipulate cellular membranes is well characterized 
(Doedens and Kirkegaard, 1995; Neznanov et  al., 2001). It 
is tempting to speculate that these proteins are functional 
homologs of the calicivirus proteins NS1/2 and NS4. In 
the following, we  will discuss findings that support 
this hypothesis.

Manipulation of Cellular Membrane 
Trafficking
Poliovirus (genus Enterovirus) proteins 2B and 3A co-localize 
with ER and/or Golgi membranes in transfected cells, 
manipulating cellular membrane networks. For example, 3A 
is known to disrupt the Golgi architecture by inhibiting the 
vesicle transport from ER to Golgi (Teterina et  al., 2011). 
Another consequence of 3A expression is the formation of 
vesicles that facilitate viral replication, most likely through the 
recruitment of ER-derived membranes (Cho et  al., 1994; Suhy 
et  al., 2000). Similarly, the calicivirus non-structural proteins 
NS1/2 and NS4 seem to localize either to Golgi or ER membranes 
(Table 1). In some cases, however, the intracellular localization 
was not determined in great detail, i.e., it is often not known, 
where exactly a particular non-structural protein is localized 
in transfected cells (let alone during genuine virus replication).

The human norovirus protein NS4 localizes to the ER and 
Golgi (Table  1). This protein contains an YХФESDG motif 
(where X is any amino acid and Ф is a hydrophobic amino 
acid residue), mimicking cellular ER export signals that typically 
contain a short YXXФ motif (Nishimura and Balch, 1997). 
This norovirus motif was thus named mimic of an endoplasmic 
reticulum export signal (MERES; Sharp et al., 2012). It is therefore 
not surprising that NS4 antagonizes trafficking from the ER to 
Golgi (Sharp et  al., 2012). By using a recombinant alkaline 
phosphatase as a reporter, it was shown that norovirus NS4 
hijacks COPII vesicles and inhibits protein secretion (Fernandez-
Vega et al., 2004; Sharp et al., 2010). Similar but less prominent 
effects were demonstrated for the NS4 protein of MNV, which 

TABLE 1 | Cellular localization and functional properties of calicivirus non-structural proteins.

Protein name Intracellular 
localization

Major functions/features Reference

  Human norovirus (genus Norovirus)

NS1 Extracellular NS1 is secreted and counteracts innate immune responses mediated 
by IFN-λ

Lee et al., 2019

NS1/2 Golgi Golgi disassembly; inhibition of cellular protein secretion Ettayebi and Hardy, 2003; Fernandez-Vega et al., 2004
NS4 ER/Golgi Golgi disassembly; inhibition of cellular protein secretion; formation of 

membranous web (replication factories)
Sharp et al., 2010; Doerflinger et al., 2017

  Murine norovirus (genus Norovirus)

NS1 Extracellular NS1 is secreted and counteracts innate immune responses mediated 
by IFN-λ

Lee et al., 2019

NS1/2 ER NS1/2 dimerization; NS1/2 cleavage is associated with persistence and 
apoptosis

Hyde and Mackenzie, 2010; Baker et al., 2012; 
Lee et al., 2019; Robinson et al., 2019

NS4 Golgi, 
endosomes

Golgi disassembly; moderate inhibition of cellular protein secretion Hyde and Mackenzie, 2010; Sharp et al., 2012

  Feline calicivirus (genus Vesivirus)

NS2 ER Dimerization; formation of membranous web (replication factories) Kaiser, 2006; Bailey et al., 2010
NS4 ER Formation of membranous web (replication factories); counteracts IFN 

response
Bailey et al., 2010; Tian et al., 2020

  Rabbit haemorrhagic disease virus (genus Lagovirus)

NS1 Nucleus and 
cytoplasm

Unknown  Urakova et al., 2015

NS2 Cytoplasm (ER?) Dimerization
NS4 Cytoplasm Unknown

  Tulane virus (genus Recovirus)

NS1/2 ER Oligomerization; viroporin formation Strtak et al., 2019
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lacks a MERES motif, but nevertheless localizes with Golgi 
membranes (Sharp et  al., 2012). The interaction of the human 
norovirus NS4 with Golgi membranes occurs via a hydrophobic 
membrane association domain (MAD) that contains an 
amphipathic α-helix capable of membrane insertion (Sharp et al., 
2010). When Doerflinger et  al. (2017) used light and electron 
microscopy to study the impact of recombinant NS4 proteins 
on vesicle formation, they found that NS4 is sufficient to induce 
the formation of single and double membrane vesicles. Taken 
together, NS4 seems to play a key role in the manipulation of 
protein trafficking and the formation of replication factories.

Inhibiting protein secretion in norovirus-infected cells is 
not restricted to NS4. The human norovirus protein NS1/2 
also disrupts the Golgi and shows a vesicular localization 
pattern in transfected cells (Ettayebi and Hardy, 2003). To 
study the effect of recombinant NS1/2 expression, researchers 
traced the fate of the vesicular stomatitis virus (VSV) glycoprotein 
G in transfected cells. In the absence of NS1/2, the VSV G 
protein was transported to the cellular surface. In cells that 
also expressed the human norovirus NS1/2, VSV G was no 
longer detectable on the cell surface, suggesting a disruption 
of the vesicular transport. Instead, VSV G was found to partially 
co-localize with NS1/2 (Ettayebi and Hardy, 2003). A yeast 
two-hybrid screen revealed an interaction of human NS1/2 
with the vesicle-associated membrane protein VAP-A (Ettayebi 
and Hardy, 2003). Since VAP-A plays an important role in 
the ER-to-Golgi vesicle trafficking (Weir et  al., 1998, 2001), 
Ettayebi and Hardy (2003) hypothesized that the interaction 
between NS1/2 and VAP-A contributes to the inhibition of 
secretory pathways. Subsequently, this interaction was found 
to be  dependent on a motif in NS1/2 that mimics the cellular 
phenylalanine-phenylalanine-acidic-tract (FFAT) motif (Figure 3; 
McCune et al., 2017). FFAT motifs are present in many cellular 
proteins that bind VAP-A (Kaiser et  al., 2005), which further 
supports the idea that NS1/2 proteins of human noroviruses 
inhibit secretory pathways through an interaction with VAP-A. 
A similar protein-protein interaction has been found for NS1/2 
of MNV and VAP-A (McCune et  al., 2017). Taken together, 
these findings suggest that manipulating VAP-A might be  an 
important strategy in the calicivirus life cycle. Future studies 
that investigate protein-protein interactions of other NS1/2 
proteins (or their cleavage products) will reveal whether all 
caliciviruses rely on this strategy.

Formation of Membrane-Associated 
Replication Complexes
The key protein in calicivirus replication is the RdRp (also 
referred to as NS7, e.g., in the case of noroviruses). Calicivirus 
RdRps are well-studied; crystal structures have been determined 
for Norwalk virus, MNV, Sapporo virus, and RHDV (Ng et  al., 
2002, 2004; Fullerton et  al., 2007; Lee et  al., 2011). As with 
all viral RdRps, the tertiary structure of the calicivirus RdRps 
resembles the shape of a right hand, with distinctive domains 
named “fingers,” “palm,” and “thumb.” Within these domains, 
seven highly conserved short motifs have been identified (motifs 
“A” to “G”), each with a distinctive function in RNA replication 
(reviewed in Te Velthuis, 2014; Deval et  al., 2017). Moreover, 

an additional 8th motif (motif “I”) has recently been identified 
in both calicivirus and picornavirus RdRps, although a specific 
function has not yet been assigned to this motif (Smertina 
et al., 2019). VPg is another viral protein that is directly involved 
in viral genome replication. The RdRp and its protease-polymerase 
(Pro-Pol) precursor nucleotidylate VPg (Belliot et  al., 2008; 
Han et  al., 2010); nucleotidylated VPg acts as a primer for 
genomic and possibly antigenomic RNA synthesis (summarized 
in Smertina et  al., 2019). Consequently, all genomic and 
subgenomic RNAs are covalently linked at the 5' end to a 
VPg protein, which enables a “cap”-independent translation of 
viral RNAs (Goodfellow, 2011; Leen et  al., 2016). Apart from 
the RdRp and VPg, other non-structural viral proteins have 
been found at the site of RNA replication (Green et  al., 2002; 
Hosmillo et  al., 2019), but how these proteins assist in RNA 
replication is less clear. Potential roles for these proteins, e.g., 
in the recruitment of membranes to anchor and shield the 
RNA replication machinery, are discussed below.

The NS2 and NS4 proteins of FCV are predicted to contain 
membrane-spanning hydrophobic protein domains, suggesting 
an association with membranes (Bailey et al., 2010). This might 
explain the ER localization of these proteins in 
immunofluorescence studies (Table  1). Immunofluorescence 
and electron microscopy studies further revealed that NS2 and 
NS4 of FCV cause a dramatic reorganization of the ER in 
transiently transfected Crandell Reese feline kidney (CRFK) 
cells (Bailey et  al., 2010). Furthermore, the manipulation of 
the intracellular membrane traffic resulted in the formation 
of vesicles associated with virus replication (Bailey et al., 2010). 
Similar observations were made in FCV-infected 293T cells; 
however, an impairment of cellular secretory functions was 
not detected (Bailey et  al., 2010). An association of FCV NS2 
and NS4 with viral replication complexes has long been postulated 
based on protein-protein interaction. Green et al. (2002) isolated 
active replication complexes from FCV-infected cells and 
identified the presence of NS2, NS4, helicase, capsid proteins, 
the polymerase precursor protein Pro-Pol, and the NS4-VPg 
precursor. These results were later confirmed using a yeast 
two-hybrid system and co-immunoprecipitations (Kaiser, 2006). 
Taken together, the findings suggest that the non-structural 
proteins NS2, NS4, and the helicase assist in the formation 
of replication complexes in FCV-infected cells.

In MNV infections, NS1/2 localizes to the ER while NS4 
localizes to the Golgi (Table  1). Nevertheless, both NS1/2 and 
NS4 are associated with replication complexes. To study the 
involvement of NS4  in replication, an infectious MNV variant 
with a FLAG-tagged NS4 protein was generated using transposon-
mediated insertional mutagenesis (Thorne et  al., 2012). 
Immunofluorescence staining revealed co-localization of NS4 
with the RdRp, and co-immunoprecipitation showed an interaction 
of NS4 with NS1/2. This demonstrates that both NS1/2 and 
NS4 were present at the site of MNV replication (Thorne et al., 
2012). Furthermore, intracellular localization studies with specific 
marker proteins suggest that active MNV replication complexes 
contain membranous vesicles derived from the ER, medial- and 
trans-Golgi apparatus, and endosomes (Hyde et al., 2009). Thus, 
the role of the NS1/2 and NS4 proteins in this process is 
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believed to be recruiting ER and Golgi membranes, respectively 
(Hyde and Mackenzie, 2010; Thorne et  al., 2012). To further 
characterize the viral replication machinery, Hosmillo et  al. 
(2019) used infectious MNV variants with a FLAG tag on 
either NS1/2 or NS4 for immunoprecipitations of active replication 
complexes. The researchers found that these complexes contained 
all viral proteins, and interestingly, a number of cellular proteins 
associated with fatty acid metabolism and vesicular transport, 
such as the protein VAP-A (Hosmillo et  al., 2019).

Viroporin Activity
Viroporins are viral proteins that feature one, two, or three 
transmembrane α-helices (Hyser et al., 2010). The helices possess 
amphipathic properties that allow for efficient membrane 
incorporation: hydrophobic amino acid residues face the 
membrane, and polar residues line the pore. These proteins 
oligomerize to form a functional transmembrane ion channel, 
which can be  selective or non-selective and voltage dependent 
or independent (reviewed in Nieva et  al., 2012). For example, 
the influenza virus protein M2 has only one transmembrane 
helix; however, through the formation of tetramers, enough 
transmembrane helices are brought together to form a small 
pore that is selectively permeable to protons (Pinto et al., 1997). 
A remarkable function mediated by many viroporins is the 
disruption of cellular Ca2+ homeostasis through leakage from 
intracellular depots (mitochondria, ER, Golgi) to the cytoplasm 
(Aldabe et  al., 1997; Pham et  al., 2017). Changes to the 
intracellular Ca2+ concentration can favor viral replication and 
induce apoptosis (Hajnóczky et  al., 2003; Zhou et  al., 2009).

The picornavirus protein 2B has multiple functions including 
that of a viroporin. In poliovirus-infected cells, 2B oligomerizes 
and forms ion channels in ER and Golgi membranes (Martinez-Gil 
et  al., 2011). When expressed as recombinant proteins, 2B and 
interestingly, also 3A disrupted Ca2+ signaling, suggesting that 
polioviruses encode two viroporins that act independently (Doedens 
and Kirkegaard, 1995; Aldabe et al., 1997; Martinez-Gil et al., 2011).

Similar activities were described for calicivirus non-structural 
proteins. For example, the Tulane virus NS1/2 was shown to 
form an ion channel in ER membranes and to elevate cytoplasmic 
Ca2+ levels (Strtak et  al., 2019). Its ability to form an ion 
channel was initially predicted in silico by identifying amphipathic 
transmembrane helices in the C-terminal (NS2) part of NS1/2. 
The functionality of the domain has since been confirmed 
in  vitro using a “classic” bacterial viroporin assay. This assay 
takes advantage of a genetically modified Escherichia coli strain 
that constitutively expresses low levels of T7 lysozyme to control 
T7 RNA polymerase-dependent gene expression. The low-level 
expression of the lysozyme is normally well tolerated, but 
co-expression of proteins that form membrane channels/pores 
can lead to leakage of the lysozyme into the periplasmic space, 
cleavage of peptidoglycan, and the subsequent lysis of the cell 
(Studier and Moffatt, 1986). The expression of full-length NS1/2, 
but not that of several deletion mutants, caused cell lysis in 
T7 lysozyme-producing E. coli (Strtak et al., 2019). Furthermore, 
eukaryotic cells stably expressing a fluorescent Ca2+ sensor were 
infected with Tulane virus and the intensity of fluorescence 
was measured over time. After 8  h, the cytoplasmic Ca2+ 

concentration in virus-infected cells was significantly higher 
than that in mock-infected cells. Moreover, when Ca2+ levels 
were depleted in the cell culture medium and in the cytoplasm 
using the Ca2+ chelator BAPTA-AM [1,2-bis(o-aminophenoxy)
ethane-N,N,N',N'-tetraacetic acid], virus replication decreased 
dramatically, suggesting that Ca2+-mediated signaling is crucial 
for the Tulane virus life cycle (Strtak et  al., 2019).

It becomes increasingly clear that similar viroporins exist 
among all caliciviruses. In 2003, Ettayebi and Hardy (2003) 
identified a hydrophobic transmembrane domain in the NS1/2 
of human and murine noroviruses (Figure  3), even though it 
was not clear at the time that this domain is part of a viroporin. 
Furthermore, the C-terminal region of all NS2 proteins shows 
a remarkable degree of conservation among caliciviruses – 
relative to other parts of the protein (Figure 4). In noroviruses, 
the C-terminal part of the NS1/2 protein includes a number 
of relatively hydrophobic regions (HRs) that form a distinct 
secondary structure, whereas most of the N-terminal is largely 
hydrophilic and disordered (i.e., a secondary structure is lacking; 
Baker et al., 2012). The C-terminal hydrophobic transmembrane 
domain (along with upstream sequences) is responsible for 
the observed co-localization of the human norovirus NS1/2 
with Golgi membranes in transfected cells and is essential for 
the disassembly of the Golgi apparatus (Fernandez-Vega et  al., 
2004). When a fusion construct of the hydrophobic domain 
of NS1/2 (without upstream sequences) and the green fluorescent 
protein was expressed, it co-localized with the Golgi but did 
not disrupt its membranes. Thus, sequences upstream of the 
HR are required for Golgi disruption (Fernandez-Vega et  al., 
2004). In another experiment, transposon-based insertional 
mutagenesis was used to probe MNV genome tolerance for a 
15-nt exogenous sequence (Thorne et al., 2012). In the C-terminal 
region of NS2, most of these 15-nt insertions were lost after 
three passages, suggesting that this part of the protein is required 
for virus replication (Thorne et al., 2012). Moreover, functional 
assays measuring intracellular Ca2+ levels revealed that the 
NS1/2 of human norovirus also disrupts calcium homeostasis, 
similar to the Tulane virus experiments (Strtak et  al., 2019).

Bioinformatic predictions suggest that the lagovirus proteins 
NS2 and NS4 contain amphipathic helices that may interact 
with membranes to form ion channels and possibly act as 
viroporins, similar to the transmembrane domains in picornavirus 
homologs 2B and 3A, respectively (Figure  5). This hypothesis 
is further supported by the observation that RHDV NS2 
oligomerizes in transfected cells (Urakova et  al., 2015), which 
would bring together a sufficient number of transmembrane 
helices to form a functional viroporin. However, functional 
studies are needed to confirm this hypothesis.

COUNTERACTING INNATE IMMUNE 
RESPONSES

Poliovirus protein 2A (a chymotrypsin-like protease) counteracts 
the IFN-induced antiviral defense: wild-type poliovirus can 
efficiently replicate in cells pre-treated with IFN-α, while a 
poliovirus variant with a mutation in 2A that affects the cleavage 
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of cellular but not viral substrates, no longer replicated in 
IFN-treated cells (Morrison and Racaniello, 2009). The exact 
mechanism for this phenomenon is not known. Not all 
picornaviruses have 2A proteins that counteract the IFN system, 
e.g., the 2A of Encephalomyocarditis virus (EMCV) seems to 
lack the ability to interfere with innate immune responses. 
The replication of EMCV is IFN-sensitive; the virus does not 
replicate in cells pre-treated with IFN-α. However, IFN resistance 
can be  engineered by substituting the EMCV 2A gene with 
the gene of its poliovirus homolog, which further demonstrates 
the importance of 2A in counteracting innate immune responses 
(Morrison and Racaniello, 2009). Other poliovirus non-structural 
proteins have additional immune evasion functions, e.g., the 
proteins 2B and 3A inhibit the secretion of IFN-β, 
proinflammatory interleukins (IL)-6 and 8, and the intracellular 
trafficking of the receptor for the tumor necrosis factor (TNF; 
Dodd et  al., 2001; Neznanov et  al., 2001).

The calicivirus proteins NS1/2 and NS4 are likely to 
be  homologs of the picornavirus proteins 2A/2B and 3A, 
respectively (see Figure  1). Evidence is accumulating that all 
of these proteins are involved in the downregulation of host 
defense responses. The norovirus protein NS1 is cleaved from 
its precursor protein NS1/2 by caspase-3 (a cellular protease) 
and is “secreted” through an unconventional pathway (Lee 
et  al., 2019). Extracellular NS1 seems to be  essential for 
overcoming epithelial defenses induced by IFN-λ (Lee et  al., 
2019). A recombinant MNV variant with a mutation in the 
caspase-3 cleavage site of NS1/2 failed to replicate in wild-type 
mice after oral infection, although replication upon intraperitoneal 
injection was unaffected (Lee et  al., 2019). Virus replication 
after oral infection was rescued in type III IFN receptor deficient 
but not in type I  IFN or type II IFN receptor deficient mice 
(Lee et  al., 2019), suggesting that type III IFNs such as IFN-λ 
play a critical role in epithelial host defenses against noroviruses. 
The importance of a type III IFN-mediated antiviral response 
was further demonstrated in human intestinal organoids 
(enteroids). Human norovirus-infected enteroids responded to 

the infection by expressing type III but not type I  IFNs (Lin 
et  al., 2020). In additional experiments, genetically targeted 
enteroid lines were used to determine whether knocking out 
key IFN signaling components would enhance virus replication. 
Interestingly, Lin et  al. (2020) found that the replication of a 
bile acid-dependent GII.3 strain but not that of a pandemic 
GII.4 strain was increased in enteroid lines without a functional 
IFN type I/IFN-α/β receptor (IFNAR) or the latent transcription 
factor STAT1. However, a similar increase in virus replication 
was not observed in genetically targeted enteroids that no 
longer expressed STAT2 and STAT1, or in enteroids without 
a functional IFN type III receptor (Lin et  al., 2020). Thus, 
additional research is needed to fully understand the role of 
the different IFNs and IFN-induced effector proteins in norovirus 
infections. Nevertheless, the observed strain-specific sensitivities 
to innate immune responses may help to identify norovirus 
proteins with an ability to counteract IFN signaling and/or 
IFN-induced effector proteins.

Manipulating the host cell’s transcriptional activity is a way 
through which many viruses counteract host immune responses. 
A transcriptome analysis of transiently transfected monocytes 
revealed that norovirus NS1/2 reduces the expression of toll-like 
receptor (TLR)-4, -7, -8, and -9, increases the expression of 
several pro-inflammatory cytokines/chemokines, and induces 
a pro-apoptotic phenotype, suggesting that the norovirus NS1/2 
protein regulates innate and adaptive immune responses (Lateef 
et  al., 2017). In addition, norovirus NS1/2 may manipulate 
innate immune responses at the protein level. The aforementioned 
interaction between the norovirus NS1/2 and the vesicle-
associated membrane protein VAP-A suggests that caliciviruses 
manipulate intracellular trafficking, which would inhibit or 
block the transport of critical innate immune proteins to the 
cellular surface (TLRs, IFNs, MHCs, etc.).

Interestingly, in FCV, it is the NS4 (p30) protein (i.e., the 
picornavirus 3A homolog) that interferes with host cell innate 
immune responses. Tian et al. (2020) analyzed the IFN signaling 
in FCV-infected cells that were pre-treated with the transcription 

FIGURE 4 | Amino acid sequence alignment of the putative viroporin domain in the NS2 protein of various caliciviruses. The C-terminal region of all NS2 proteins 
contains a high degree of conserved amino acid residues (highlighted in color), as compared to the rest of the protein sequence. This figure was generated using the 
same sequences as in Figure 2B. RHDV, Rabbit haemorrhagic disease virus; EBHSV, European brown hare syndrome virus; and VESV, Vesicular exanthema of 
swine virus.
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inhibitor actinomycin D (to stop virus-induced transcription). 
When they analyzed the mRNA levels of the IFN-α/β receptor 
subunits 1 and 2 (IFNAR1 and IFNAR2, respectively), they 
found that the half-life of IFNAR1 but not IFNAR2 mRNAs 
was drastically reduced in virus-infected cells compared to 
control cells (6.3 vs. 100  h, respectively). This showed that 
FCV downregulates expression of a functional IFN type I receptor 
through mRNA degradation of IFNAR1 (Tian et  al., 2020). 
To identify the protein responsible for the IFNAR1 mRNA 

degradation, cells were transiently transfected with each of the 
FCV non-structural proteins and the IFNAR1 mRNA 
concentrations were measured. NS4 was the only protein that 
significantly affected IFNAR1 mRNA stability (Tian et al., 2020).

The picture emerges that caliciviruses have evolved various 
mechanisms to counteract innate immune defenses. It is likely 
that even more counter defense mechanisms exist, but their 
discovery is currently hampered by a lack of robust cell culture 
models and replicon systems.

A

B

FIGURE 5 | Potential viroporin domains in the lagovirus (RHDV) non-structural proteins. Sequence analysis using PSIPRED secondary structure prediction tools 
(Buchan and Jones, 2019) revealed transmembrane (dark gray) and/or amphipathic pore-lining helices (light gray) in (A) p23 (pink) and (B) p29 (light blue); the 
MEMSAT-SVM algorithm (Nugent and Jones, 2012) was used for protein topology prediction; and Kyte-Doolittle plots indicate the hydrophobicity of amino acids. 
Note that the exact intracellular localization of p23 and p29 and the orientation of these proteins in cellular membrane(s) is currently unknown; if they localize to the 
ER, the term “cytoplasm” would indicate the lumen of the organelle.
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MISCELLANEOUS FEATURES

Enteroviruses are well-known for their ability to shutoff host 
cell protein expression (Barco et  al., 2000). This function is 
largely attributed to the viral proteases 2A and 3C; both 
proteases process viral polyproteins, but can also cleave several 
host proteins (Ventoso et  al., 1998; Agol and Gmyl, 2010). 
For example, 2A manipulates the nuclear pore by cleaving 
one of the nuclear pore components, thereby inhibiting mRNA 
export (Belov et  al., 2004; Castelló et  al., 2009). Furthermore, 
2A and 3C attack the poly(A) binding protein (PABP; Joachims 
et  al., 1999) and 2A cleaves a component of the translation 
initiation factor eIF4F, which effectively stops translation of 
capped mRNAs (Kräusslich et  al., 1987). Caliciviruses also 
interfere with the cellular protein expression, but the mechanistic 
details are less clear. The viral 3C-like proteases of human 
noroviruses, MNV and FCV were shown by several researchers 
to be  associated with translational shutoff and cleavage of 
PABP, similar to poliovirus proteases (Kuyumcu-Martinez 
et  al., 2004; Emmott et  al., 2017). Other researchers did not 
find an involvement of the MNV 3C-like protease but observed 
that cellular protein synthesis was inhibited by NS3 (the 
helicase) through an unknown mechanism (Fritzlar et  al., 
2019). Clearly, future research is warranted to resolve 
this discrepancy.

Interestingly, the 2A proteins of enteroviruses and the 
NS1/2 protein of caliciviruses possess an H-NC motif 
(Figure 3). This motif contains an H-box with a characteristic 
histidine amino acid residue and an NC motif with an 
asparagine and cysteine dipeptide (Hughes and Stanway, 
2000; Johansson et  al., 2002; Fernandez-Vega et  al., 2004). 
Why these non-structural proteins have a conserved H-NC 
motif is unknown, but the occurrence of the motif in a 
cellular protein may give some clues to its function. The 
class II tumor suppressor protein H-rev107 is a phospholipase 
that also possesses the H-NC motif (Hughes and Stanway, 
2000; Uyama et al., 2009). Through its ability to bind K-Ras, 
H-rev107 inhibits cell growth and differentiation, and regulates 
apoptosis (Han et  al., 2017, 2020). It is possible that viral 
proteins such as 2A and NS1/2 manipulate key signaling 

proteins like K-Ras, but there is presently no evidence to 
support this hypothesis.

OUTLOOK

Until now, research into the non-structural proteins of 
caliciviruses has mostly been focused on MNV and FCV (mainly 
because these viruses can be  cultivated easily in a laboratory). 
New organoid culture systems, e.g., human (Ettayebi et  al., 
2016) and rabbit intestinal organoids (Mussard et  al., 2020; 
Kardia et  al., 2021) may soon facilitate detailed functional 
studies on the replication of human noroviruses, lagoviruses, 
and other caliciviruses that do not grow in conventional cell 
culture. These studies will also shed light on the role of 
non-structural proteins in building replication complexes, 
counteracting innate and adaptive immune responses, redirecting 
cellular resources, and other activities.
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