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Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide
zoonotic infections, infamous for its ability to evade the immune system and persist
chronically within host cells. Despite the frequent association with attenuation in other
Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella
canis and Brucella ovis, which remain fully virulent in their natural canine and ovine
hosts, respectively. While these natural rough strains lack the O-polysaccharide they,
like their smooth counterparts, are able to evade and manipulate the host immune
system by exhibiting low endotoxic activity, resisting destruction by complement and
antimicrobial peptides, entering and trafficking within host cells along a similar pathway,
and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have
compensated for their roughness by alterations to their outer membrane, especially
in regards to outer membrane proteins. B. canis, in particular, also shows evidence
of being less proinflammatory in vivo, suggesting that the rough phenotype may be
associated with an enhanced level of stealth that could allow these pathogens to persist
for longer periods of time undetected. Nevertheless, much additional work is required to
understand the correlates of immune protection against the natural rough Brucella spp.,
a critical step toward development of much-needed vaccines. This review will highlight
the significance of rough lipopolysaccharide in the context of both natural disease and
host–pathogen interactions with an emphasis on natural rough Brucella spp. and the
implications for vaccine development.

Keywords: Brucella, lipopolysaccharides (LPS), O-polysaccharide, vaccine, bacteria, Gram-negative, host–
pathogen interaction, LPS

INTRODUCTION

Despite knowledge of its existence for over a century, brucellosis remains one of the most
commonly reported zoonotic diseases worldwide (Pappas et al., 2006). A significant contributor to
this is the fact that the causative Gram-negative bacterium, Brucella, is facultatively intracellular.
This feature allows Brucella spp. to deviously persist within the host’s cells where it can evade
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many components of the immune system. On top of this,
numerous animal species, particularly livestock, can carry the
organism and readily transmit it to humans. Of the 12 identified
species, the most frequently reported causes of human infection
are Brucella melitensis, Brucella abortus, and Brucella suis with
B. canis associated with fewer reported cases (Corbel, 1997;
Pappas et al., 2008). Although cross-species infections are
common with the first three strains, each shows a strong host
preference with disease usually occurring in small ruminants,
cattle, pigs, and dogs, respectively. Brucella spp. may also be
classified according to their lipopolysaccharide (LPS) phenotype.
The “classical” strains most commonly associated with human
infection, B. melitensis, B. abortus, and B. suis, exhibit a smooth
LPS while B. canis is naturally rough (Whatmore, 2009). B. canis
owes this designation to the fact that its LPS conspicuously lacks
the terminal O-polysaccharide (O-PS). Interestingly, roughness
is not unique to B. canis as B. ovis, virulent in sheep, also lacks
O-PS.

The rough phenotype of B. canis and B. ovis, defined by a
lack of O-PS, is unusual as this trait is typically associated with
attenuation in Gram-negative bacteria, yet both are fully virulent
in their natural hosts (Moreno et al., 1984; Erridge et al., 2002).
Like their smooth counterparts, both can cause reproductive
disease in these species. In bitches, disease manifests as abortion
while males commonly exhibit prostatitis and epididymitis
(Carmichael and Kenney, 1968; Moore and Kakuk, 1969). Less
commonly, dogs may present with diskospondylitis or uveitis
(Kerwin et al., 1992). B. ovis, on the other hand, is a frequent
cause of chronic epididymitis, orchitis, and infertility in rams
with occasional induction of abortion in ewes (Buddle, 1956;
Ficapal et al., 1998). One critical difference between these two
strains, however, is that B. canis is zoonotic while B. ovis is not
(Corbel, 1997).

The importance of developing new safe and effective vaccines
against brucellosis cannot be overstated and this critical
need is one aspect that applies to both smooth and rough
Brucella spp. despite the difference in LPS phenotype. While
canine brucellosis has historically been considered a pathogen
predominantly of kenneled dogs, B. canis has been isolated
with increasing frequency from stray dog populations as well
as pets throughout the world (Hensel et al., 2018; Wang
et al., 2018; Suárez-Esquivel et al., 2021). Although B. canis
is perceived to be less virulent for humans, manifestation of
human disease can occasionally be severe (Piampiano et al.,
2000; Gul et al., 2009; Marzetti et al., 2013). Detection of
B. canis in a kennel can also be devastating as the pathogen
is highly contagious between dogs and those infected are
frequently euthanized. B. ovis, although not zoonotic, can
still result in significant economic losses for sheep farmers
(Blasco, 1990). Unfortunately, no vaccine is currently available
to protect against B. canis infection in dogs and the use of
the commercially available Rev.1 vaccine, protective against
B. ovis in sheep, is not approved for use in areas free
of B. melitensis. Comprehending the components of the
immune response required to protect against these naturally
rough pathogens is crucial for development of new and
effective vaccines.

This review will highlight the significance of rough LPS in the
context of both natural disease and interaction with the immune
response with an emphasis on natural rough Brucella spp. and the
implications for vaccine development.

LIPOPOLYSACCHARIDE STRUCTURE

As with most Gram-negative bacteria, Brucella spp. produce an
LPS that plays a critical role in maintaining outer membrane
integrity and survival within the host (Erridge et al., 2002;
Mancilla, 2015). The classical smooth Brucella LPS is composed
of three main components: (1) lipid A; (2) a polysaccharide
core; and (3) O-PS composed of repeating glycosyl subunits
(Smith, 2018; Figure 1). Lipid A is responsible for most of
the endotoxic activity of LPS and its hydrophobicity allows
it to anchor LPS to the outer membrane (Figure 1). Not
only does lipid A play this key structural role, but it is the
component of LPS that is recognized by Toll-like receptor (TLR)-
4, one of the ways in which host immune cells can identify
Gram-negative bacteria (Maldonado et al., 2016). In Brucella,
lipid A is composed of a diaminoglucose backbone and is
distinguished by a preponderance of C16 and C18 fatty acids
as well as C28 and other very long chain fatty acids (VLCFAs),
an unusual feature which results in a bulkier structure than
most other Gram-negative bacteria (Iriarte et al., 2004; Mancilla,
2015).

The core oligosaccharide serves as a bridge between lipid
A and O-PS and is important in maintaining the stability and
rigidity of the outer membrane (Figure 1). In Brucella spp., the
core is composed of two 3-deoxy-D-manno-2-octulosonic acid
(Kdo) sugars, one of which is linked to the O-PS (Monreal et al.,
2003). The other Kdo notably forms a unique branching side
chain composed of glucosamine, glucose, and mannose (Gil-
Ramírez et al., 2014; Fontana et al., 2016). As will be discussed in
further detail below, the side branch appears to play an important
role in survival within the host, helping to reduce immune
recognition by TLR4 and enhancing resistance to complement
and bactericidal peptides (Conde-Álvarez et al., 2012; Soler-
Lloréns et al., 2014; Fontana et al., 2016). Although the structure
of natural B. canis LPS has not been fully elucidated, the overall
structure of the core oligosaccharide with side chain attached to
a bulky lipid A embedded in the outer membrane is presumed to
be similar if not the same between naturally smooth and rough
Brucella spp.

The O-PS, a key virulence factor in smooth Brucella spp.,
remains the most studied component of this pathogen’s LPS
(Allen et al., 1998; Jiménez de Bagüés et al., 2004; Mancilla, 2015;
Figure 1). The lack of O-PS is what differentiates the LPS of
B. canis and B. ovis from their smooth counterparts. In other
Gram-negative bacteria, the O-PS typically exhibits a high degree
of variability, allowing for strain differentiation by molecular
methods (Wang et al., 2010; Smith, 2018). In contrast, Brucella
O-PS is highly homogeneous, possibly due to its niche within the
intracellular environment limiting horizontal transfer with other
bacteria, as suggested by Mancilla (2015). The Brucella O-PS is
composed of homopolymers of N-formylperosamine with minor

Frontiers in Microbiology | www.frontiersin.org 2 July 2021 | Volume 12 | Article 713157

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-713157 July 9, 2021 Time: 19:5 # 3

Stranahan and Arenas-Gamboa Rough Lipopolysaccharide Phenotype in Brucella

FIGURE 1 | Schematic of the structure of lipopolysaccharide (LPS) of Brucella spp. in comparison to other Gram-negative bacteria. Brucella LPS is unusual in
several ways, including the incorporation of very long chain fatty acids (VLCFAs) in the lipid A and a core oligosaccharide side branch composed of several
glucosamine residues. In contrast, most other Gram-negative bacteria, best exemplified by Escherichia coli, possess a more compact lipid A and no core side
branches. Brucella spp. may be categorized as smooth if they possess an intact O-polysaccharide (O-PS), as is the case with most zoonotic strains. Alternatively,
Brucella canis and Brucella ovis are naturally rough, completely lacking the O-PS. While typically associated with attenuation, both rough Brucella spp. remain fully
virulent in their natural hosts, as does the naturally rough Yersinia pestis. D, diaminoglucose; G, glucose; Ga, galactose; Gln, glucosamine; H, heptose;
3-deoxy-D-mannose-2-octulosonic acid, Kdo; M, mannose; N, N-acetylglucosamine; Pe, N-formylperosamine; Q, quinovosamine. Adapted from Mancilla (2015),
Yang et al. (2019), and Singh et al. (2020). Created with Biorender.com.

variations depending on strain, in which “A-dominant” strains
exhibit a linear α-1,2-linked polymer with approximately 2% α-
1,3 linkages while the O-PS from “M-dominant” strains is a linear
polymer of tetrasaccharide repeating units containing one α-1,3
linkage and three α-1,2-linked monosaccharide residues (Meikle
et al., 1989; Kubler-Kielb and Vinogradov, 2013; Mancilla,
2015). Although not sufficient for speciation, serotyping using
monoclonal antibodies directed against A or M epitopes can
allow for distinction of different biovars within a particular
smooth Brucella species (Alton et al., 1988). Further discussion
of O-PS in this review will focus on the classical smooth Brucella
spp. (B. abortus, B. melitensis, and B. suis). Although more
recently identified Brucella species have been characterized as
smooth (B. neotomae, B. ceti, B. pinnipedialis, B. microti, B.
papionis, and B. inopinata), the complete structure of their LPS,
including the O-PS, remains to be elucidated. Preliminary work
has suggested that some of these strains not only lack typical
O-PS epitopes but also suspected alterations to the core and/or
lipid A, possibly accounting for a lack of zoonotic potential in the
majority of these species (Cloeckaert et al., 1998; Baucheron et al.,
2002; Zygmunt et al., 2012).

The mechanisms of Brucella O-PS and core oligosaccharide
synthesis have been extensively reviewed (Cardoso et al., 2006;
Mancilla, 2015) and the genes involved are summarized

in Table 1. Interestingly, the lack of O-PS in B. canis
and B. ovis appears to have evolved separately in an
example of convergent evolution and the mutations
resulting in their rough phenotypes are completely different
(Vizcaíno et al., 2004; Zygmunt et al., 2009). B. ovis,
for instance, lacks the entire genomic island-2 (GI-2)
encompassing the key glycosyltransferases wboA and wboB,
while B. canis retains this region (Vizcaíno et al., 2004;
Tsolis et al., 2009).

Interestingly, B. ovis exhibits additional genetic differences
from the smooth strains not identified in B. canis, such as
the B. ovis pathogenicity island 1 (BOPI-1) which includes 28
open reading frames (ORFs) absent in other Brucella species
and is required for B. ovis pathogenesis (Tsolis et al., 2009).
At least some of these genes, such as the ABC transporter
system, appear to compensate for a lack of alternative nutrient
import pathways in B. ovis caused by separate mutations (Silva
et al., 2011, 2014). Whether additional compensation for lack
of O-PS is provided by these genes remains to be determined.
B. canis and B. ovis are also distinguished by a higher number
of pseudogenes, with the greatest number reported in B. ovis,
a sign indicative of genome degradation (Tsolis et al., 2009;
Wattam et al., 2009). It has been suggested that the narrower
host range of these natural rough Brucella spp. is related to
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TABLE 1 | Genes involved in the synthesis of the core oligosaccharide and O-polysaccharide in Brucella spp.

LPS
component

Gene(s) Function Comments References

O-PS wboA Glycosyltransferase, O-PS synthesis Encoded on genomic island-2, absent in B.
ovis; Disrupted in RB51

Rajashekara et al., 2008; Mancilla et al.,
2010

wboB Glycosyltransferase, O-PS synthesis Encoded on genomic island-2, absent in
B. ovis

Rajashekara et al., 2008; Mancilla et al.,
2010

wbkA, wbkE O-PS polymerization Zygmunt et al., 2009; Mancilla, 2015

gmd, per Perosamine synthesis Godfroid et al., 1998, 2000

wbkC N-formylation of perosamine residues Mancilla, 2015

wbkD, wbkF Bactoprenol priming Both disrupted in B. canis wbkD disrupted
in RB51

Zygmunt et al., 2009; Bricker et al., 2020

wzm, wzt O-PS transport to outer membrane wzt truncated in B. ovis Vizcaíno et al., 2004; Wattam et al., 2009

Core wa** Glycosyltransferase Moriyón et al., 2004

pgm Phosphoglucomutase Ugalde et al., 2000

wadB, wadC,
wadD

Glycosyltransferase Synthesis of the branching side chain Gil-Ramírez et al., 2014; Salvador-Bescós
et al., 2018

this process (Tsolis et al., 2009; Martín-Martín et al., 2011).
However, the possibility of additional gain-of-function mutations
leading to enhanced tropism for particular organ systems in
their natural hosts despite a lack of O-PS (i.e., male genital
tract for B. ovis) cannot be excluded (Tsolis et al., 2009;
Moreno, 2014).

The indication that loss of O-PS occurred on two separate
occasions amongst Brucella spp. suggests that this provided
an evolutionary adaptation to B. canis and B. ovis and/or
these two strains were able to compensate for its loss by
additional but separate changes. This is a mystery within
the field of brucellosis that is not yet unraveled but insights
can be gained by understanding the roles O-PS plays for
smooth Brucella spp. and how the natural rough strains
compare in this regard.

Although separate from the LPS, outer membrane proteins
(Omps) are another structural feature of the Brucella outer
membrane that deserves special mention. Extensively reviewed
elsewhere, Omps have been shown to be critical to outer
membrane stability and appear to be especially important for the
natural rough Brucella spp. (Cloeckaert et al., 2002; Roop et al.,
2021). As will be discussed in greater detail later, certain Omps
have been shown to contribute to complement and antimicrobial
peptide resistance, to be essential for internalization of B. ovis
into cells, and to inhibit antigen presentation (Caro-Hernández
et al., 2007; Barrionuevo et al., 2008; Martín-Martín et al.,
2008). Interestingly, the pattern of Omp expression, including
Omp25/Omp31, in natural rough strains appears to differ from
one another and with that of the smooth strains, although
there is also variation amongst the classical smooth strains
(Vizcaíno et al., 2004; Martín-Martín et al., 2009). B. abortus,
for instance, lacks Omp31 and Omp25b, while B. melitensis
lacks Omp31b (Cloeckaert et al., 2002). Additionally, while
omp25 deletion mutants of B. abortus and B. melitensis are
attenuated in mice, this reduction in virulence is markedly
more pronounced in B. ovis, although a separate study noted
no attenuation in a B. abortus mutant (Edmonds et al., 2002;
Manterola et al., 2007).

THE BIOLOGICAL SIGNIFICANCE OF
LPS

The O-PS of the classical smooth Brucella spp. is a well-
characterized virulence factor (Lapaque et al., 2005; Smith,
2018). The following sections will refer to rough mutants
which are derived from smooth parent strains by deletion
of any number of genes involved in O-PS synthesis and
should be distinguished from natural rough B. canis and
B. ovis. The majority of studies assessing the function of O-PS
focus on comparing smooth strains and their rough mutants.
Thus, far more is known about the relevance of the rough
phenotype in rough mutants rather than in the natural rough
Brucella spp. Nevertheless, natural rough strains appear to
more closely mimic their smooth counterparts than rough
mutants in features and interactions typically associated with
expression of O-PS, such as resistance to complement, cellular
entry and trafficking, and lack of induction of cytotoxicity
and proinflammatory cytokine production, as summarized
in Figure 2.

Low Endotoxic Activity
Compared to most other Gram-negative bacteria, the LPS
of Brucella is well known for exhibiting remarkably low
endotoxin activity, being several hundred times less toxic than
Escherichia coli LPS (Goldstein et al., 1992; Dueñas et al.,
2004; Tumurkhuu et al., 2006). The low endotoxic activity
of Brucella LPS is related to the structure of the lipid A
and core. Endotoxicity is generally associated with the acyl
chain number and length of lipid A, which is recognized by
host cell Toll-like receptor 4 (TLR4) and its co-receptor MD2
(Erridge et al., 2002). The preponderance of VLCFAs in Brucella
lipid A results in a bulky molecule that binds poorly with
MD2 (Lapaque et al., 2005). In recent years, an additional
explanation for the poor endotoxic activity of Brucella LPS
has been revealed following the discovery of the lateral core
oligosaccharide side branch.
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FIGURE 2 | Functions of lipopolysaccharide (LPS) in Brucella spp. in comparison between smooth, rough, and rough mutant strains. Smooth Brucella spp. are
known to be far more resistant to destruction by complement while rough mutants derived from these strains, in which the O-polysaccharide (O-PS) is not produced,
are generally susceptible. Natural rough Brucella spp., such as B. canis, exhibit complement resistance as high or higher than their smooth counterparts despite a
lack of O-PS with additional components such as the core oligosaccharide side branch and outer membrane proteins (Omps) making contributions. An additional
difference is the ability of smooth and natural rough Brucella spp. to enter cells using lipid rafts and replicate intracellularly while rough mutants are typically unable to
do this. Smooth Brucella spp. use O-PS as a ligand for the scavenger receptor, SR-A on host cells while natural rough Brucella spp. are thought to use outer
membrane proteins for this interaction. Finally, rough mutants are known to cause cytotoxicity following cell infection and induce significant proinflammatory cytokine
production while natural smooth and rough Brucella spp. do not. Such changes indicate that natural rough Brucella spp. are able to compensate for the loss of
O-PS during infection. Created with Biorender.com.

Mutation of wadC, wadB, and wadD, glycosyltransferases
required for the branch’s synthesis, has demonstrated the
important roles this structure plays (Conde-Álvarez et al., 2012;
Kubler-Kielb and Vinogradov, 2013). The side chain imparts
a positive charge onto the core oligosaccharide that shields
the more internal negative charges of the inner core and lipid
A, thereby preventing effective interaction with TLR4/MD2 on
host macrophages and dendritic cells (Conde-Álvarez et al.,
2012; Fontana et al., 2016). This is important to note as
the side chain is independent of the O-PS and thus likely
performs the same function for the natural rough strains.
Evidence toward this is the fact that purified LPS from B. canis
and B. ovis exhibits low endotoxin-specific Limulus activity
comparable to LPS of B. abortus and significantly less than
that of the classic endotoxic LPS of E. coli (Moreno et al.,
1984). It also bears mentioning that what little proinflammatory
activity is stimulated by Brucella spp. is mediated largely by
interaction of outer membrane lipoproteins with TLR2 on host
cells, and the majority of these proteins are conserved across

rough and smooth Brucella spp. (Giambartolomei et al., 2004;
Roop et al., 2021).

Defense Against Complement and
Antimicrobial Peptides
One of the key functions of Brucella spp. O-PS is to provide
resistance to destruction by complement and antimicrobial
peptides (Allen et al., 1998; Eisenschenk et al., 1999). Specifically,
O-PS has been shown to block access of C1q to outer membrane
targets, which results in the known increased susceptibility of
rough mutants to complement attack (Moreno et al., 1981;
Corbeil et al., 1988; Allen et al., 1998; Eisenschenk et al., 1999).
It is also known that O-PS is important in defense against
antimicrobial peptides, including lysozyme, as evidenced by the
increased sensitivity of rough mutants to these compounds (Riley
and Robertson, 1984; Martínez de Tejada et al., 1995; Freer et al.,
1996). Interestingly and in contrast to rough mutants, B. ovis
and B. canis exhibit similar or occasionally greater resistance
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to complement and antimicrobial peptides compared to their
smooth counterparts despite their rough phenotype (Martínez
de Tejada et al., 1995; Martín-Martín et al., 2011). In one study,
B. canis was actually found to be the most resistant strain overall
to non-immune serum, low pH, H2O2, and cationic peptides
(Martín-Martín et al., 2011). This indicates that O-PS is not
the only factor capable of mediating such peptide resistance in
Brucella.

The core oligosaccharide is one such structure involved in
complement and bactericidal peptide resistance in both smooth
and rough Brucella spp. (Soler-Lloréns et al., 2014; Fontana
et al., 2016; Salvador-Bescós et al., 2018). The role of the core
may also help explain an early report that B. ovis exhibits
greater sensitivity to cationic peptides than rough mutants of
B. abortus (Freer et al., 1999). This study utilized B. ovis REO198,
a strain which possesses a core oligosaccharide defect, unlike
B. ovis PA which has an intact core and exhibits enhanced
resistance to cationic peptides (Martín-Martín et al., 2011;
Pérez-Etayo et al., 2018). Interestingly, an intact core is also
critical for resistance to antimicrobial peptides in other species
of Gram-negative bacteria, including Burkholderia cenocepacia
(Loutet et al., 2006).

Yet another feature that contributes to complement resistance
in Brucella spp. are outer membrane proteins (Omps). As
previously mentioned, the pattern of Omp expression differs
both between smooth and rough Brucella spp. and between
B. ovis and B. canis. It has been suggested that the differences
in Omp expression largely account for the enhanced resistance
of natural rough strains against complement and antimicrobial
peptides despite the lack of O-PS, in contrast to many rough
mutants (Caro-Hernández et al., 2007; Roop et al., 2021). These
differences may also account for the finding that despite both
being naturally rough, B. ovis is highly susceptible to the
detergents deoxycholate, Triton X-100, and CHAPS while B. canis
exhibits comparable or enhanced resistance compared to smooth
B. melitensis and B. abortus (Martín-Martín et al., 2011). These
findings are important to note as B. canis and B. ovis, despite both
being rough, exhibit notable differences in host preference and
zoonotic capability.

Intracellular Survival and Replication
The importance of O-PS for smooth Brucella spp. in survival
within their intracellular niche has been well established. O-PS
can serve as an adhesin by binding to the scavenger receptor
SR-A, allowing interaction with lipid rafts which facilitates entry
of Brucella into the endocytic pathway (Porte et al., 2003; Kim
et al., 2004) (Figure 3). From there, Brucella temporarily reside
in an endosomal Brucella-containing vacuole (eBCV), in which
the acidic pH signals the induction of genes encoding the Type-
IV secretion system (T4SS). Following secretion of T4SS effectors,
Brucella avoids destruction by lysosomes and traffics to the rough
endoplasmic reticulum (RER), where it forms a replicative rBCV
in which the bacteria may chronically persist (Celli, 2015). In
contrast, rough mutants cannot enter cells via lipid rafts and
vacuoles containing these bacteria fuse rapidly with lysosomes
(Porte et al., 2003; Pei et al., 2008) (Figure 3). Rough mutants are
also internalized more heavily and rapidly (Dornand et al., 2004;

Tian et al., 2014). B. ovis and B. canis, however, more closely
resemble the smooth strains in cellular entry and trafficking. For
instance, both natural rough strains utilize lipid rafts to enter
murine J774.A1 macrophages using the same SR-A receptor,
although this interaction is conspicuously not dependent on
phosphoinositide-3-kinase (PI3K) as it is with smooth strains
(Martín-Martín et al., 2010) (Figure 3).

Some studies have noted that natural roughs penetrate HeLa
cells and murine RAW 264.7 macrophages at a higher rate than
smooths, although to a lesser degree than rough mutants (Freer
et al., 1999; Sá et al., 2012). Other studies have noted that the
binding and penetration of B. ovis occurs to a similar extent as
smooth strains in murine macrophages and the same observation
has been noted for B. canis in bovine neutrophils and human
osteoblast cell lines (Delpino et al., 2009; Keleher and Skyberg,
2016). Given the lack of O-PS in both natural and mutant rough
strains, it is unclear which molecule(s) may serve as a ligand
for SR-A although it is possible that certain Omps may play
this role. Two possibilities are Omp25d and Omp22 which are
required for entry and replication in murine RAW 264.7 or
J774.A1 macrophages by B. ovis but not by smooth strains in
which O-PS predominantly determines cell entry (Manterola
et al., 2007; Martín-Martín et al., 2008).

Following entry, rough mutants are rapidly destroyed via
fusion with lysosomes and are typically unable to replicate
intracellularly or exhibit reduced levels of replication within
murine J774A.1 macrophages and human monocytes, depending
on the mutation (Porte et al., 2003; Rittig et al., 2003; Jiménez
de Bagüés et al., 2004) (Figure 3). Despite earlier reports
showing the inability of B. canis to do this, it has since been
shown that both B. canis and B. ovis are fully capable of
intracellular replication in macrophages and epithelial cells, with
replication of B. canis noted in HeLa cells, murine RAW 264.7
macrophages, and canine trophoblasts and that for B. ovis noted
in Vero cells, murine J774.A1 macrophages, and HeLa cells
(Detilleux et al., 1990; Martín-Martín et al., 2008; Eskra et al.,
2012; Silva et al., 2014; Chacón-Díaz et al., 2015; Fernández
et al., 2017). B. ovis can replicate in both canine and ovine
macrophages and B. canis exhibits the same ability (Eckstein
et al., 2020). The T4SS appears to be just as important for
allowing intracellular replication in the natural roughs as in
the smooths as mutants in virB genes or vjbR of B. ovis and
B. canis exhibit significant attenuation and inability to replicate
within ovine macrophages and mice or HeLa cells, murine RAW
264.7 macrophages, and canine DH82 dendritic cells, respectively
(Sá et al., 2012; Chacón-Díaz et al., 2015; Macedo et al., 2015;
Stranahan et al., 2020).

Interestingly, while phagosomes containing rough mutants
fuse rapidly with lysosomes and many are unable to progress
beyond this point to establish replication in the rBCV, B. ovis
and B. canis appear to eventually be able to reach the replicative
niche and replicate to levels identical to smooth strains in
HeLa cells and murine RAW264.7 macrophages (Silva et al.,
2014; Chacón-Díaz et al., 2015) (Figure 3). Silva et al., 2014
demonstrated that BCVs containing B. ovis in HeLa cells interact
early in infection with lysosomes, as shown by association
with LAMP1, and that this marker is later excluded with
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FIGURE 3 | Cellular entry and intracellular trafficking of natural rough and smooth Brucella spp. and rough mutants derived from smooth strains. Both natural
smooth and rough Brucella spp., but not rough mutants, enter macrophages using lipid rafts and utilize the scavenger receptor, SR-A, to do so. While the
O-polysaccharide (O-PS) serves as the ligand for this interaction for smooth strains, rough Brucella spp. appear to rely on outer membrane proteins (Omps),
including Omp22 and Omp25d. Lipid raft-mediated entry for smooth, but not natural rough Brucella spp., is reliant on the activity of phosphoinositide-3-kinase
(PI3K). Once internalized, Brucella become engulfed in an endosomal Brucella-containing vacuole (eBCV) that alter associates with LAMP1. Expression of the type 4
secretion system (T4SS) allows some of the smooth and natural rough Brucella to avoid destruction by lysosomes and later associate with components of the rough
endoplasmic reticulum (RER), such as calreticulin, to establish a replicative vacuole, or rBCV. In contrast, most rough mutants are unable to avoid lysosomal fusion
and do not exhibit intracellular replication. Created with Biorender.com.

formation of the typical rBCV associated with calreticulin, a
marker of the RER. Formation of myelin figures associated
with vacuole-enclosed bacteria in ovine macrophages also
suggests that B. ovis may continue in the pathway followed
by smooth strains with formation of an autophagic vacuole
for cellular egress (Macedo et al., 2015). Interestingly, B. canis
also exhibits high levels of lysosome fusion in the first few
hours of cellular infection, comparable to rough mutants and
significantly less than smooth strains, but is able to replicate
after 48 h comparable to B. abortus levels in HeLa cells
and murine J774.A1 or RAW264.7 macrophages, (Porte et al.,
2003; Chacón-Díaz et al., 2015). Nevertheless, differences have
been observed: B. ovis shows later evasion of lysosome fusion
compared to smooth strains, with this change happening after
48 h in ovine macrophages instead of the 24 h noted for
B. abortus in murine J774.A1 macrophages (Starr et al., 2008;
Silva et al., 2014). For B. canis, a similar trend has been
noted in which colocalization of the bacterium with calnexin,
another RER marker, does not occur in HeLa cells until
48 h post-infection (Chacón-Díaz et al., 2015). This delay in

avoidance of phagosome-lysosome fusion may help explain why
earlier studies, which did not extend time points beyond 24 h,
demonstrated prominent and rapid phagosome fusion with
lysosomes using natural rough strains in contrast to smooth
strains, with the conclusion that natural roughs could not
replicate intracellularly (Porte et al., 2003; Rittig et al., 2003). It
has been well established that natural rough B. ovis and B. canis
can replicate within cells both from their natural hosts as well as
mice and humans.

Prevention of Apoptosis and Cellular
Activation
O-PS-mediated entry by smooth Brucella spp. via lipid rafts
has been shown to inhibit caspase-2-mediated apoptosis
in phagocytes, including murine J774.A1 and RAW264.7
macrophages and human macrophages (Fernandez-Prada et al.,
2003; Pei et al., 2006; Chen and He, 2009). Rough mutants, on
their other hand, are well known for induction of cytotoxicity
which is dependent on the T4SS in the same cell types
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(Fernandez-Prada et al., 2003; Pei et al., 2008). While the
mechanisms behind this are incompletely understood, it appears
that overexpression of the T4SS occurs during cellular infection
by rough mutants, leading to over-secretion of effector proteins
which activate the IRE1α pathway of ER stress (Pei et al.,
2008; Li et al., 2017). Interestingly, this seems not to be
the case with natural rough strains, where B. canis and
B. ovis resemble their smooth counterparts and have been
repeatedly shown not to induce cytotoxicity in HeLa cells,
murine J774.A1 and RAW 264.7 macrophages, or human lung
epithelial cells (Martín-Martín et al., 2008; Ferrero et al., 2009;
Chacón-Díaz et al., 2015).

O-PS-mediated uptake of smooth Brucella spp. is also known
to induce only low levels of proinflammatory cytokines in
phagocytes, especially in comparison to other Gram-negative
pathogens (Jiménez de Bagüés et al., 2004; Billard et al., 2007).
This is an attribute which has been added to the list of
ways in which Brucella spp. can subvert the host immune
response. Nevertheless, it is important to note that despite this
low induction of inflammatory cytokines, inflammation is still
a classic feature of brucellosis and although typically milder
compared to that caused by most other bacteria, the chronic
stimulation of low-level inflammation by persisting Brucella spp.
frequently results in tissue damage (Baldi and Giambartolomei,
2013). In contrast to smooth strains, penetration by rough
mutants leads to significant production of proinflammatory
cytokines in human monocytes or macrophages and murine
J774.A1 macrophages (Fernandez-Prada et al., 2003; Rittig et al.,
2003; Pei et al., 2008). B. canis and B. ovis, like the smooth strains,
also induce minimal to no proinflammatory cytokine production
in cells while rough mutants, including RB51, stimulate high
levels of TNF-α and IL-12 in murine J774.A1 macrophages,
although this pattern has yet to be investigated in macrophages
derived from their natural hosts (Martín-Martín et al., 2010).
A possible explanation for this is that, like the smooth strains,
B. canis and B. ovis enter cells via lipid rafts and follow the same
general intracellular trafficking pathway, albeit with some delay,
while the contrasting entry by rough mutants triggers a strong
cellular response. The differences in the intracellular pathway
between natural rough and smooth strains, such as the ligand
for SR-A and timing of lysosome evasion, have been proposed to
account for the further reduced inflammatory response of B. ovis
and B. canis when compared with smooth strains in mice and
natural hosts (Galindo et al., 2009; Chacón-Díaz et al., 2015;
Roop et al., 2021).

While it is apparent that O-PS serves directly or indirectly as
a key virulence factor for smooth Brucella spp., the lack of this
molecule in natural rough strains appears to be compensated
for, at least partially, by alterations in Omp expression and
the continued presence of the lateral core oligosaccharide side
branch (Mancilla, 2015; Roop et al., 2021). The possibility
that a rough phenotype in itself could serve an additional
advantage to Brucella spp. is intriguing and this idea can best
be contemplated after understanding the reasons why other
Gram-negative pathogens, such as Pseudomonas aeruginosa and
Yersinia pestis, have either temporarily or permanently lost
their O-PS.

THE ADVANTAGES OF GOING ROUGH

Naturally smooth Brucella spp. can undergo temporary or
permanent loss of O-PS under both laboratory conditions
and during the course of infection within their natural hosts
(Mancilla, 2015). This process is exemplified by RB51, a
spontaneous and stably rough vaccine strain that arose after
repeated passage on antibiotic-containing media and has been
widely utilized in studies investigating the function of Brucella
O-PS (Schurig et al., 1991). Another example is the now
out of use B. abortus 45/20 vaccine strain, which acquired a
rough phenotype after repeated passage through guinea pigs
(Moriyón et al., 2004).

Dissociation from a smooth to a rough phenotype and the
potential advantages of this change for the bacterium have been
studied for many years with various Gram-negative bacteria.
Reeves (1995) suggested that the tendency of Gram-negative
bacteria to become rough under laboratory conditions is due
to the necessity of O-PS for survival only in the presence of
the host immune response. Requiring energy to produce, there
appears to be a selective advantage to loss of O-PS in situations
where it is not needed, as in liquid culture (Maldonado et al.,
2016). Isolation of rough variants of smooth Gram-negative
bacteria in samples from infected hosts, including Brucella, also
suggests that there may be an adaptive advantage to loss of
O-PS in evading the host immune system, particularly in chronic
infections (Turse et al., 2011; Mancilla et al., 2012; Szabo et al.,
2017). Although this seems to contradict the statement that
Gram-negative bacteria require O-PS to resist destruction by
the host immune system, namely via complement, it appears
that various bacteria will sacrifice the protection offered by a
complete O-PS in exchange for additional survival benefits such
as avoidance of a robust antibody response and improved access
to preferred host-cell types (Maldonado et al., 2016). Could it
be that a rough phenotype in B. canis or B. ovis is not only
compensated for by changes to the outer membrane but may
actually benefit these organisms by assisting in maintenance of
a chronic infection? While the answer to this question remains
uncertain, several other Gram-negative bacteria develop a rough
phenotype during chronic infections.

One example is P. aeruginosa, particularly in patients with
cystic fibrosis (CF). While isolates from acutely infected patients
or the environment typically have a smooth phenotype, most
from chronically infected patients with CF are rough (Hancock
et al., 1983; Goldberg and Pler, 1996; Lam et al., 2011). The
reasons behind this phenomenon and its propensity for occurring
in CF patients are not fully understood, but it has been
suggested that while rough P. aeruginosa strains are more serum-
sensitive, the reduced immunostimulatory potential following
loss of the O-PS may contribute to immune evasion and survival
in chronic lung infections. Like their smooth counterparts,
B. canis and B. ovis can avoid activation of macrophages along
with subsequent proinflammatory cytokine production (Martín-
Martín et al., 2010). B. canis in particular has been shown
to be less inflammatory in the mouse model in terms of
pathologic changes and cytokine production and induces less
ROS production in infected humans than smooth strains despite
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similarly low levels of cytokine induction noted by the previously
mentioned in vitro studies (Usta et al., 2012; Chacón-Díaz et al.,
2015; Stranahan et al., 2019). As suggested by Chacón-Díaz et al.
(2015), B. canis might therefore be an even stealthier pathogen
in its natural host than smooth Brucella spp., although this
possibility remains to be tested in dogs or canine cells. The
rough phenotype of B. canis could possibly serve an advantage
by reducing immune stimulation, allowing it to establish long-
lasting, asymptomatic infections, while simultaneously avoiding
the serum sensitivity observed with other rough Gram-negative
bacteria via adjustments to the structure of its outer membrane.

Another example of a bacterium that benefits from loss
of O-PS is B. cenocepacia, which also undergoes this change
during chronic infection of CF patients (Evans et al., 1999).
Assumption of a rough phenotype facilitates internalization
into macrophages, a niche that this facultatively intracellular
pathogen could subsequently exploit to favor persistence (Saldías
et al., 2009; Schwab et al., 2014). Enhanced phagocytosis by
macrophages is also observed in both rough mutants and,
depending on the study, with the naturally rough B. ovis
(Detilleux et al., 1990; Tian et al., 2014). Whether this enhanced
entry could also assist rough Brucella spp. in establishing their
preferred intracellular niche early in infection is unknown.
It also bears mentioning that enhanced entry of natural and
mutant rough Brucella spp. has been noted in various cell types
beyond macrophages, including epithelial and endothelial cells
and without associated replication (Ferrero et al., 2009, 2011).

The ability to exploit new host cell receptors by exhibiting
a rough phenotype might serve a third possible advantage
for Gram-negative bacteria. For instance, the normally smooth
Helicobacter pylori is able to bind to a receptor called TFF1
on injured gastric mucosa specifically through rough LPS, as
demonstrated by work examining the interaction of TFF1 with
purified H. pylori rough LPS or a rough mutant (Reeves et al.,
2008; Dolan et al., 2012). Both naturally rough and smooth
Brucella spp. utilize the scavenger receptor, SR-A (CD36) to
enter macrophages (Pei et al., 2008; Martín-Martín et al., 2010).
Whether the exposure of the core and additional outer membrane
components such as Omps could allow naturally rough Brucella
spp. to exploit additional receptors unavailable to smooth strains
in their natural hosts is uncertain. That this may be the case is
supported by the finding that O-PS may interfere with interaction
of Omps with anti-Brucella antibodies (Bowden et al., 1995).

Another Gram-negative bacterium deserves special mention
here: Y. pestis. Like B. canis and B. ovis, Y. pestis has permanently
lost its O-PS yet remains a virulent pathogen. Although the
structure of its LPS differs significantly from that of Brucella
(Figure 1), Y. pestis exhibits several similarities in its behavior
such as the ability to survive in macrophage phagosomes and
inhibition of fusion with lysosomes to allow for intracellular
replication (Pujol et al., 2009; Connor et al., 2018). The rough
LPS provides a selective advantage to this pathogen by enabling
exposure of the protein Ail at the cell surface, resulting in
thickening and rigidification of the LPS which actually promotes
serum resistance (Singh et al., 2020). This is reminiscent of the
high serum resistance of the natural rough Brucella but the exact
structural modifications resulting in this enhanced resistance

for B. ovis and B. canis have not been fully unraveled (Caro-
Hernández et al., 2007; Martín-Martín et al., 2011). Additionally,
the rough Y. pestis is able to use its exposed core to bind SIGNR1
(CD209b), a receptor on antigen-presenting cells, facilitating its
dissemination to various organs (Yang et al., 2019). Interestingly,
experimentally derived smooth Y. pestis actually has an impaired
ability to cause systemic infection in mice, leading to the proposal
that loss of O-PS was key to the evolution of Y. pestis as a highly
virulent pathogen (Yang et al., 2019). As described above, the
absence of O-PS in B. canis and B. ovis coincides with an altered
topology of the outer membrane, particularly in regards to its
Omps, which also serves to increase serum resistance (Caro-
Hernández et al., 2007; Martín-Martín et al., 2011). The ability
of rough Brucella spp. to exploit additional receptors, again, is
unknown but is an intriguing possibility which might also explain
their host specificity and organ tropism.

It seems clear that natural rough Brucella spp. have
compensated for their lack of O-PS, as evidenced by their
resistance to complement degradation, ability to replicate
intracellularly, and lack of cytotoxicity and induction of
proinflammatory cytokines. As with other Gram-negative
bacteria, the rough phenotype might also serve to enhance
the ability of rough Brucella spp. to avoid immune detection.
Whether a rough LPS might also serve an advantage by increasing
entry into macrophages or allowing the bacterium to use different
receptors for cellular entry is not known but should be further
explored, particularly in the context of the natural hosts.

SMOOTH AND ROUGH BRUCELLA:
INTERACTION WITH THE HOST IMMUNE
SYSTEM

Although some differences do exist, interaction of natural rough
Brucella spp. with host cells, including cellular entry, replication,
and lack of proinflammatory cytokine production, closely
resembles what occurs with smooth strains. These numerous
similarities in host cell interactions suggest that components of
the immune response engendered by both smooth and rough
Brucella spp. may be similar, a concept which has significant
implications for vaccine development. Work with B. canis and
B. ovis in cells derived from the natural host and in the
mouse model, described in the following section, may help to
address this question.

MHC-II Modulation
One mechanism in which smooth Brucella spp. interact with
host cells to subvert the adaptive immune response is by
inhibition of antigen presentation via Major Histocompatibility
Complex (MHC)-II in macrophages. Macrophages utilize MHC-
II to present antigen to CD4+ T lymphocytes, stimulating
the adaptive immune response (Cresswell, 1994). The ability
of Brucella spp. to interfere with this process is crucial to
its long-term survival within the host, as IFN-γ-producing
CD4+ T lymphocytes are a well-recognized requirement to
controlling Brucella infection (Vitry et al., 2012). Interestingly,
Brucella O-PS has also been found to interfere with this crucial
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branch between innate and adaptive immunity. One mechanism
by which this occurs is disrupting the ability of MHC-II to present
antigen following processing of LPS by macrophages. In this
scenario, smooth LPS shed within the BCV is degraded by the
macrophage followed by the formation of dense complexes, or
macrodomains, which interfere with the interaction of MHC-II
with CD4+ T lymphocytes through steric hindrance (Forestier
et al., 1999, 2000). However, it appears that an additional
mechanism for MHC modulation exists that is utilized by the
natural rough strains as well. In a study using THP-1 cells,
B. abortus, B. ovis, and heat-killed B. abortus inhibited IFN-
γ-induced expression of MHC-II, suggesting the importance of
some conserved element (Barrionuevo et al., 2008). Rather than
LPS, Omp19 was the molecule responsible for this inhibition and
this occurred in a TLR2-dependent manner (Barrionuevo et al.,
2008). Thus, natural rough Brucella are capable of decreasing
antigen presentation via MHC-II during the development of an
adaptive immune response, independent of the structure of their
LPS. Like the smooth strains, natural rough Brucella spp. can use
MHC-II modulation to avoid detection by CD4+ T lymphocytes,
promoting the chronic infections observed in their natural hosts.

Interaction With Natural Host Cells
As professional antigen-presenting cells, dendritic cells play a key
role in linking innate and adaptive immunity, and their role in
the immune response to Brucella has been extensively evaluated.
In terms of smooth Brucella, there remains some controversy as
to whether infection of dendritic cells stimulates or inhibits their
activation (Avila-Calderón et al., 2020). Overall, the majority
of studies have shown that smooth Brucella spp. infection
of dendritic cells results in downregulation of costimulatory
markers (i.e., CD80 and CD86) and decreased production of
proinflammatory cytokines while infection with rough mutants,
such as RB51, results in the opposite effect (Zwerdling et al.,
2008; Surendran et al., 2012; Avila-Calderón et al., 2020). The
core oligosaccharide side branch, mentioned before for its
importance in defense against complement and hampering of
TLR4 recognition, appears to be important here as well. The
wadC mutants of smooth strains, lacking this side branch, induce
significant dendritic cell activation through recognition by TLR4
while their smooth parent strains do not (Conde-Álvarez et al.,
2012). Comparatively little work on interaction with dendritic
cells has been done with natural rough strains, but two studies by
Pujol et al. (2017) have produced interesting findings concerning
B. canis. These authors demonstrated that B. canis induces
the expression of costimulatory molecules on both canine and
human dendritic cells, but while infected human dendritic cells
demonstrate TH1-skewed proinflammatory cytokine production,
the canine cells show a mixed TH1-TH17 response (Pujol et al.,
2017). This effect was also observed in CD4+ T lymphocytes
stimulated by dendritic cells previously infected with B. canis
(Pujol et al., 2019). These findings demonstrate that host
specificity can play an important role in the immune response
to Brucella spp.

A strong TH1 response, required for effective control of
Brucella infection, by human dendritic cells could at least partially
account for the lower susceptibility of humans to B. canis

infection compared to the natural canine host. TH17 cells, on the
other hand, have been shown to be associated with development
of osteoarticular lesions in mice infected with Brucella spp.,
with IL-17 driving osteoclastogenesis (Giambartolomei et al.,
2012). TH17 lymphocytes are also associated with autoimmune
disorders and auto-antibody formation (Cornelius and Lamarca,
2014). The TH17 component of the response in canine dendritic
cells, as suggested by Pujol et al. (2017), may reflect an increased
susceptibility in this host and/or help to explain the incidence
of osteoarticular lesions, particularly diskospondylitis, as well as
antibody-mediated destruction of sperm in infected dogs (George
and Carmichael, 1984; Pujol et al., 2019). Antibody-mediated
attack on sperm is also a prominent feature of B. ovis infection
in rams and the possible role of IL-17 remains to be explored
in this species (Paolicchi et al., 2000). The association with IL-
17 and disease in dogs infected with B. canis also warrants
investigation. In addition to potential detrimental effects of IL-
17 during Brucella infection, this cytokine appears to play some
role in protective immunity early-on in the lungs following
mucosal exposure (Mambres et al., 2016). The effect of IL-17
on defense against Brucella spp., smooth and rough, therefore
appears to differ depending on the site of infection and deserves
further study.

An additional host cell type that has been explored with
B. canis infection is canine trophoblasts. Fernández et al. (2017)
found that B. canis can infect and replicate within these cells or
canine placental explants, causing no cytotoxicity but resulting in
the secretion of IL-8 and RANTES (CCL5). Similar stimulation
of IL-8 production has been seen in bovine placental explants,
human trophoblasts, and human endometrial cell lines infected
with B. abortus (Carvalho Neta et al., 2008; Fernández et al., 2016;
Zavattieri et al., 2020). When the canine or human trophoblasts
were exposed to culture supernatant from phagocytes infected
with B. canis or B. abortus, the same stimulation of IL-8 was
observed, suspected to be due to production of TNF-α by the
phagocytes as has been shown to be the case in humans (Shimoya
et al., 1999; Fernández et al., 2016, 2017). Increased IL-8 is
expected to be responsible for drawing in neutrophils seen in
the necrotizing placentitis characteristic in cases of infection with
both B. canis in dogs or smooth Brucella spp. in their natural hosts
(Fernández et al., 2017). Thus, it appears that both rough B. canis
and the virulent smooth strains exhibit a similar pathogenesis
in the female reproductive system in a still incompletely defined
mechanism that is independent of O-PS. It remains to be seen
how this cytokine induction compares with B. ovis, which is
predominantly a pathogen of the male reproductive system with
abortion being less common.

Infection in the Mouse Model
Unlike many rough mutants, B. ovis and B. canis are able to
establish and maintain a chronic, systemic infection in mice with
organ distribution typical of smooth strains (Jiménez de Bagüés
et al., 1993; Silva et al., 2011; Sá et al., 2012; Chacón-Díaz et al.,
2015; Stranahan et al., 2019). However, the dose required to do so
appears to be higher, at least for B. canis. For infection of mice
with smooth Brucella spp., a dose of 104–105 CFU is typically
used, resulting in early colonization of the spleen and liver with
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persistence in the spleen typically lasting longer than 36 weeks
(High et al., 2007; Grilló et al., 2012). However, infection with
B. canis at this dose in a previous study resulted in sporadic
levels of colonization in the spleen with clearance achieved by
9 weeks (Stranahan et al., 2019). Vaccine studies in mice have
noted levels of colonization in the spleen similar to or higher than
the inoculation dose of 5 × 104–5 × 105, although these studies
only examined a single time point post-infection and the full
picture of the course of infection is difficult to ascertain in these
cases (Edmonds et al., 2002; Clausse et al., 2014; Qian et al., 2017).
Regardless, what is clear is that both B. canis and B. ovis appear to
be less proinflammatory in mice than their smooth counterparts
although it must be noted that in their natural hosts, both natural
rough Brucella spp. can induce significant inflammation in target
organs, including the epididymis (Carmichael and Kenney, 1968;
Ficapal et al., 1998).

Splenomegaly is a classic feature of smooth Brucella spp.
infection in mice (Enright et al., 1990; Grilló et al., 2012). In
contrast, B. canis at doses up to 107 CFU does not result in
significant splenomegaly (Chacón-Díaz et al., 2015; Stranahan
et al., 2019). This gross lesion may be induced at a high dose
of 109 CFU, but even then, the effect is transient (Stranahan
et al., 2019). Interestingly, B. ovis does consistently appear
to result in splenomegaly (Silva et al., 2011). B. canis also
produces less significant histologic lesions in target organs,
including fewer microgranulomas in the liver and histiocytic
infiltrates in the spleen, than smooth strains despite identical
inoculation doses and levels of colonization (Chacón-Díaz et al.,
2015; Stranahan et al., 2019). Unexpectedly, B. ovis is able to
induce numerous microgranulomas in the liver at 106 CFU
while such lesions are scarce in mice infected with the same
dose of B. canis, emphasizing that while both rough, B. ovis
and B. canis are by no means identical (Silva et al., 2011; Sá
et al., 2012; Chacón-Díaz et al., 2015; Stranahan et al., 2019).
In terms of cytokine induction in vivo, smooth strains are
known to not cause significant induction of proinflammatory
cytokines in mice (Barquero-Calvo et al., 2007). Nevertheless,
both B. canis and B. ovis produce even lower amounts of
such cytokines, including IFN-γ and IL-6, than smooth strains
at the same dose (Sá et al., 2012; Chacón-Díaz et al., 2015).
This is in contrast to the high levels of proinflammatory
cytokines induced in vitro by rough mutants and it has been
suggested, as mentioned above, that the lower levels induced by
B. canis and B. ovis indicate that these strains exhibit an even
stealthier intracellular life style (Rittig et al., 2003; Sá et al., 2012;
Chacón-Díaz et al., 2015).

The distribution of B. ovis and B. canis to the spleen, liver,
and lymph nodes in mice, as in their natural hosts, indicates
that this laboratory animal can serve as a model for vaccine
efficacy studies as it does for smooth strains (Carmichael and
Kenney, 1968; Silva A. P. et al., 2015). Nevertheless, there are
some limitations. For B. ovis, a significant cause of epididymitis
in rams, one such deficiency is the lack of genital tropism or
significant histologic lesions induced in the male reproductive
system of mice (Silva et al., 2011). While B. canis is able to
colonize the non-pregnant uterus of mice, it remains to be seen
for both B. ovis and B. canis whether these natural rough strains

can induce placentitis and fetal resorption noted with smooth
strain infection in mice (Grilló et al., 2012).

The mouse model has been frequently employed to test
vaccine candidates for B. ovis and less commonly for B. canis.
For smooth strains, mice have been heavily utilized to investigate
correlates of immune protection against infection, particularly
in the context of vaccination. Such studies have established
that control of smooth Brucella spp. infection is reliant on
a strong TH1 immune response with IFN-γ representing
the critical cytokine involved (Murphy et al., 2001; Baldwin
and Goenka, 2006; Skendros and Boura, 2013). CD4+ and
CD8+ T lymphocytes are the primary producers of IFN-
γ in brucellosis and both appear to play key roles in the
protective immune response, although the relative importance
of each subset compared to the other remains controversial
and appears to be influenced by route of infection and strain
administered (Mambres et al., 2016; Pascual et al., 2019; Wang
et al., 2020). For example, both CD4+ T lymphocytes and B
lymphocytes are required to control infection with B. melitensis
in mice following i.p. inoculation while only α/β T lymphocytes
(either CD4+ or CD8+) are required for control following
intranasal infection (Mambres et al., 2016; Demars et al., 2019).
Comparatively little has been done to investigate the components
of a protective immune response against the natural rough
strains, particularly for B. canis. Nevertheless, protection against
colonization induced by vaccination against both B. canis and
B. ovis has been correlated with increased levels of IFN-γ
production in mice (Cassataro et al., 2007b; Clausse et al., 2014;
Eckstein et al., 2020; Moran et al., 2021). Additionally, as has been
shown with B. melitensis and B. abortus, antibodies appear to play
an important role in protection against B. ovis in mice (Jiménez
de Bagüés et al., 1994; Bowden et al., 1995). Further investigation
is required with the natural rough Brucella spp. to determine
additional correlates of immune protection.

VACCINE DEVELOPMENT FOR ROUGH
BRUCELLA SPP.

While the vaccines B. abortus S19, B. abortus RB51, and
B. melitensis Rev.1 are commercially available to protect against
infection by smooth Brucella spp. in livestock, no such vaccines
exist for use in dogs. In addition, the Rev.1 vaccine, although
protective against B. ovis in sheep, is not approved for use in
areas free of B. melitensis (Blasco and Díaz, 1993; Ridler and
West, 2011). Three questions may be asked in terms of the much-
needed vaccine development for rough B. ovis and B. canis: (1)
Is a live attenuated or killed/subunit vaccine superior? (2) Is the
immune response required to protect against natural roughs by
vaccination the same as that required against smooth strains? (3)
Does it matter if a live attenuated vaccine (LAV) to protect against
the natural roughs is smooth or rough and will this impact cross-
protection against smooth strains of Brucella in the vaccinated
animal? The first question is still debated even for the smooth
Brucella spp., although a preponderance of evidence from the
natural host indicates that LAVs provide the greatest levels of
protection against brucellosis due to their ability to generate
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TABLE 2 | Vaccine candidates against B. ovis investigated in the mouse model in select studies.

Candidate vaccine Route/dose Mouse strain Challenge strain,
dose/route

# vaccinations Protection
index

References

B. ovis1abcBA 108 CFU, s.q.,
alginate-encapsulated

BALB/c B. ovis ATCC 25840,
106 CFU, i.p.

1 0.54 Silva T. M. et al., 2015

C57BL/6 1.01

B. ovis1omp25d 107 CFU, i.p. BALB/c B. ovis PA, 105 CFU,
i.p.

1 ∼3.6 Sancho et al., 2014

B. ovis1omp22 ∼3

Rev.1 105 CFU, i.p. ∼3.4

B. ovis1wadB 108 CFU, i.p. BALB/c B. ovis PA, 5 × 105

CFU, i.p.
1 5.16 Soler-Lloréns et al., 2014

B. ovis1wadC 4.06

Rev.1 105 CFU, s.q. 3.49

B. melitensis BM 115 108 CFU, i.p. BALB/c B. ovis 63/290,
2 × 108 CFU, i.p.

1 3 Adone et al., 2008

Rev.1 108 CFU, i.p. 3.6

Rev.1 1bp26 5 × 104 CFU, s.q. BALB/c B. ovis PA, 5 × 105

CFU, i.p.
1 2.44 Cloeckaert et al., 2004

Rev.1 1omp31 3.49

Rev.1 1bp261omp31 2.56

Rev.1 2.64

B. abortus1wbkA 108 CFU, i.p. BALB/c B. ovis PA, 8 × 104

CFU, i.p.
1 4.6 Monreal et al., 2003

B. abortus1per 2.86

B. abortus1manB 0

B. abortus 1wa** 1.14

RB51 3.11

S19 105 CFU, s.q. 3.12

RB51 3 × 108 CFU, i.p. BALB/c B. ovis PA 1 2.3 Jiménez de Bagüés et al.,
1994

BLSOmp31 30 µg, s.q., + CpG-
ODN + Coa-ASC16

BALB/c B. ovis PA, 2.9 × 105

CFU, i.p.
2 3.61 Moran et al., 2021

HS extract (B. ovis
REO198)

12 µg, conjunctival,
mannosylated
nanoparticles.

BALB/c B. ovis, 5104 CFU,
i.p.

1 2.93 Da Costa Martins et al.,
2012

Rev.1 5 × 105 CFU, s.q. 2.52

pcDNABLS 100 µg, i.m. BALB/c B. ovis, 104 CFU, i.v. 4 1.94 Cassataro et al., 2007a

pCIOmp31 2.24

pcDNABLS + pCIOmp31 2.20

pCIBLSOmp31 3.14

Rev.1 2.2 × 104 CFU, s.q. 1 2.42

BLS 30 µg, s.q., + IFA BALB/c B. ovis, 104 CFU, i.v. 2 1.29 Cassataro et al., 2007b

Omp31 1.98

BLSOmp31 2.69

Rev.1 2.2 × 104 CFU, s.q. 1 2.41

Omp31 20 µg, i.p. BALB/c B. ovis PA, 1.6 × 104

CFU, i.p.
2 2.06 Estein et al., 2003

R-LPS 1.63

Omp31 + R-LPS 2.26

HS extract 2.57

White cells indicate studies involving live attenuated vaccine (LAV) candidates while gray cells indicate those associated with subunit/killed candidates.

more persistent memory responses (Ficht et al., 2009; Perkins
et al., 2010). When comparing the protection indices of studies
investigating vaccine candidates against B. ovis and B. canis,
as measured by differences in log10 colonization of the spleen

between vaccinated and unvaccinated animals, the picture is less
clear (Tables 2, 3). Higher protection indices are typically noted
for LAVs than for subunit vaccines, although there is frequent
overlap and many instances in which protection afforded by
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TABLE 3 | Vaccine candidates against B. canis investigated in the mouse model in select studies.

Candidate vaccine Route/dose Mouse strain Challenge strain,
dose/route

# vaccinations Protection
index

References

B. ovis1abcBA 108 CFU, s.q.,
alginate-encapsulated

BALB/c B. canis ATCC
23365, 106 CFU, i.p.

1 1.5 Eckstein et al., 2020

B. canis 1vjbR 3 × 107 CFU, i.p. BALB/c B. canis RM6/66, 107

CFU, i.p.
1 2.98 Liu et al., 2020

A19 105 CFU, i.p. 1 3.43

B. canis1vjbR 109 CFU, s.q. C57BL/6J B. canis RM6/66, 107

CFU, i.p.
1 4.14 Stranahan et al., 2020

RB51 3.9–4.8 × 108 CFU, i.p. BALB/c B. canis S26,
2.8 × 105 CFU, i.p.

1 1.56 Truong et al., 2015

RB511cydC 2 2.03

RB511cydD 2 2.11

RB511purD 2 2.20

B. canis1virB10 1.4 × 108 CFU, i.p. BALB/c B. canis, 5 × 104

CFU, i.p.
1 1.91 Palomares-Resendiz et al.,

2012

B. canis1virB11 1 1.96

B. ovis1omp25 5 × 104 CFU i.v. BALB/c B. canis RM6/66,
5 × 104 CFU, i.v.

1 1.15 Edmonds et al., 2002

B. melitensis1omp25 5 × 104 CFU i.v. 1 1.62

Rev.1 5 × 104 CFU i.v. 1 1.95

RB51 3 × 108 CFU, i.p. 1 0.46

B. canis ghost 108 CFU, i.p. BALB/c B. canis RM6/66,
5x105 CFU, i.p.

1 2.37 Qian et al., 2017

rOmp31 30 µg, s.q., + montanide BALB/c B. canis RM6/66,
5.5 × 105 CFU, i.p.

2 1.42 Clausse et al., 2014

30 µg, s.q., + Quil-A 1.86

30 µg, s.q., + IFA 1.66

30 µg, s.q., + AH 1.65

Heat-killed B. canis 109 CFU, s.q. + IFA 3.48

pCIBLSOmp31 + rOmp31 100 µg, 30 µg, i.m. BALB/c B. canis RM6/66,
5.5 × 105 CFU, i.p.

3,1 2.29 Clausse et al., 2013

BLSOmp31 30 µg, s.q. + AH 2 1.57

30 µg, s.q. + IFA 4.02

30 µg, s.q. + montanide 0.36

30 µg, s.q. + Quil-A 1.54

B. canis bacterin 6.3 × 108 CFU,
s.q. + IFA

4.38

B. ovis 109 CFU, i.p. 1 4.12

White cells indicate studies involving live attenuated vaccine (LAV) candidates while gray cells indicate those associated with subunit/killed candidates.

subunit vaccines approaches or equals that offered by LAVs.
Work with B. canis has highlighted that the choice of adjuvant
can significantly impact the efficacy of a subunit vaccine (Clausse
et al., 2014) and studies involving both natural rough strains have
demonstrated improved protection of certain LAVs when given
in an encapsulated form, as has been shown for smooth Brucella
spp. (Ficht et al., 2009; Silva A. P. et al., 2015; Eckstein et al., 2020).

As for the components of a protective immune response
against rough Brucella spp., what is so far known from research
in mice, as indicated in the preceding section, appears to reflect
what is observed for smooth strains. In the few vaccine studies
which have examined it, IFN-γ is higher in stimulated splenocytes
in groups of mice that exhibit greater levels of protection
against both B. ovis and B. canis (Cassataro et al., 2005b, 2007b;
Truong et al., 2015; Eckstein et al., 2020; Moran et al., 2021).

There is also limited evidence that antibodies play a role
in protection against B. ovis in vaccinated mice (Jiménez de
Bagüés et al., 1994). For the natural dog and ovine hosts,
a TH1 response also appears critical for protection. In dogs,
the current understanding is that animals which achieve self-
elimination of B. canis, at least to below the level of detection
by culture, are immune to subsequent challenge secondary to a
strong cell-mediated immune response (Carmichael and Greene,
2006; Cosford, 2018). In contrast, persistently infected dogs
exhibit a stronger humoral immune response and these dogs
that undergo treatment with antibiotics are fully susceptible to
secondary challenge (Carmichael and Greene, 2006). For sheep,
the relative importance of humoral immunity is less certain
but TH1/cell-mediated responses with high levels of IFN-γ
are associated with higher levels of protection against B. ovis
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in Rev.1- or subunit-vaccinated animals (Estein et al., 2009;
Galindo et al., 2009).

While CD4+ T lymphocytes were long considered the most
important source of IFN-γ in the response against brucellosis,
several recent studies have indicated that CD8+ T lymphocytes
may be equally or sometimes more important in mediating
protection depending on the vaccine administered. For example,
one study found that CD4+ T lymphocytes were required for
protection against B. melitensis in mice following vaccination
with RB51 while CD8+ T lymphocytes were required following
vaccination with the candidate B. abortus znBAZ (Wang et al.,
2020). Whether this is related to the rough phenotype of RB51
or separate properties of this LAV is uncertain. For the natural
rough Brucella spp., such aspects of the immune response during
vaccination have been little explored but also appear to be
influenced by the type of vaccine. In work investigating the
protective efficacy of Omp31 as a vaccine against B. ovis in mice,
protection afforded by administration of the recombinant protein
was mediated by CD4+ T lymphocytes while protection acquired
through DNA coding for Omp31 was mediated mainly by CD8+
T lymphocytes (Cassataro et al., 2005a,b). It is clear that further
work needs to be done to investigate components of a protective
immune response against natural rough strains induced by
vaccination, particularly for B. canis. An additional need is to
perform these investigations using a natural, mucosal route of
infection rather than the convenient but artificial intraperitoneal
(i.p.) route. This concern has become apparent recently as studies
with smooth Brucella spp. indicate that correlates of immune
protection differ depending on route of infection, with B cells,
for instance, being required for protection in mice following i.p.
inoculation but being dispensable following intranasal infection
(Mambres et al., 2016; Demars et al., 2019).

Finally, should a vaccine against B. ovis or B. canis be produced
in a smooth or rough background and will this impact cross-
protection against smooth strains? This question is critical as both
sheep and dogs are susceptible to infection by smooth Brucella
spp., including B. melitensis for sheep and B. suis for dogs (Pappas
et al., 2006; Ramamoorthy et al., 2011). Unlike the vaccines
S19 and Rev.1, RB51 is a stable rough vaccine. While its LPS
phenotype putatively results in less interference with serologic
assays, RB51 possesses the disadvantages of antibiotic resistance,
virulence for humans, and decreased efficacy compared to S19
(Winter et al., 1996; Ficht et al., 2009). Interestingly, while RB51
provides protection against B. ovis in mice, it is not likewise
effective in sheep (Jiménez de Bagüés et al., 1994, 1995). Of note,
this study suggested through passive transfer that the protection
afforded against B. ovis in mice was predominantly mediated
by the humoral immune response while protection against
B. abortus was mainly cell-mediated, although this protection
was much lower than that afforded by the vaccine (Jiménez de
Bagüés et al., 1994). RB51 is also able to provide similar levels of
protection against B. canis and B. abortus in mice (Truong et al.,
2015). Efficacy of RB51 in dogs is uncertain and although it is
not shed in the urine or feces of vaccinated dogs, it can colonize
various organs, including the placenta, which could serve as a
source of infection to humans or other animals and therefore
precludes its use in dogs (Palmer and Cheville, 1997).

The deficiencies of RB51 do not mean that rough vaccines
cannot be protective against infection by Brucella spp., rough or
smooth. RB51’s reduced efficacy against B. ovis and its smooth
counterparts in the natural host may be associated with its
attenuation and/or alterations to its outer membrane or LPS
outside of its lack of O-PS. Several studies have demonstrated
that targeted mutagenesis can produce rough vaccines that are
superior in protection to RB51 and comparable to protection
by S19 or Rev.1 in mice (Monreal et al., 2003Kahl-McDonagh
and Ficht, 2006; Aragón-Aranda et al., 2020). One prominent
finding is that for a rough vaccine to be effective, the core
must be intact although lack of the aforementioned lateral side
branch may actually enhance vaccine efficacy, presumably due
to enhanced recognition of surface molecules in the absence of
this “shield” (Monreal et al., 2003; Soler-Lloréns et al., 2014).
Additionally, while some rough vaccine candidates are not as
protective against smooth Brucella spp. as is S19 in mice, the
difference may largely be accounted for by the activity of anti-
O-PS antibodies, a component of the immune response that
appears important in mice (depending on route of infection)
but is of controversial significance in the natural hosts (Monreal
et al., 2003). In B. ovis vaccine studies, the rough vaccine
B. melitensis 115 (wzm mutation) provides similar levels of
protection against both B. melitensis and B. ovis while B. ovis
1abcBA affords comparable protection against B. melitensis, B.
ovis, and B. canis (Adone et al., 2008; Costa et al., 2020; Eckstein
et al., 2020). Nevertheless, some caveats must be pointed out.
First, certain rough LAV candidates such as B. melitensis B115
still produce partial or complete O-PS that remains within the
cytoplasm and the possibility that this internal O-PS assists in
mediating protection cannot be ruled out. Second, some studies
administered rough vaccine candidates at a higher dose than
smooth candidates, as is the case with the recommended doses of
RB51 vs. S19 in mice (108 CFU vs. 105 CFU) (Adone et al., 2008,
2011; Aragón-Aranda et al., 2020). Despite this, these studies,
although still few in number, indicate that a rough vaccine has
the potential to protect against both smooth and rough Brucella
spp. and deserve further investigation. Advantages would include
the oft-cited lack of interference with current serologic assays
detecting anti-O-PS antibodies in addition to the possibility of
producing an LAV on a background strain that is either non-
zoonotic (B. ovis) or exhibits reduced virulence for humans
(B. canis).

As is known for development of vaccines against smooth
Brucella spp., there are limitations to the mouse model for
development of B. ovis and B. canis vaccines and there is a
significant need for more work in the natural hosts for these
rough organisms, particularly B. canis. As mentioned above,
RB51 is moderately protective against B. ovis in mice but has
no efficacy in sheep likely due to as yet incompletely understood
differences in the immune response and/or differences in
challenge route utilized between these two hosts (Jiménez
de Bagüés et al., 1994, 1995). On the other hand, certain
vaccines such as B. ovis1abcBA provide minimal protection
in the mouse but are highly effective against experimental
B. ovis infection in rams (Silva A. P. et al., 2015; Silva
T. M. et al., 2015). Of additional concern, while Rev.1 can
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serve as a reference vaccine for comparison purposes in B. ovis
vaccine studies, no such reference is available for B. canis.

CONCLUDING REMARKS

Conspicuously lacking in O-PS, B. canis and B. ovis are virulent
pathogens in their natural hosts that are able to recapitulate
many of the properties and cellular interactions observed by
their more famous smooth cousins. The lack of a vaccine for
dogs and the recent rise in detection of B. canis infection
along with the negative economic impact of B. ovis on sheep
production necessitates a more thorough understanding of these
rough organisms and their interactions with the host. Oftentimes
in complete contrast to what occurs with rough mutants of
smooth Brucella spp., these natural rough strains are able to
evade and manipulate the host immune system by exhibiting
low endotoxic activity, resisting destruction by complement and
antimicrobial peptides, entering and trafficking within host cells
along a similar pathway, and interfering with MHC-II antigen
presentation. B. canis and B. ovis appear to have compensated
for the loss of O-PS by alterations to their outer membrane,
particularly in regards to Omps. Whether this loss also serves
an evolutionary advantage, as it does for other rough Gram-
negative bacteria such as Y. pestis, is uncertain although the
lower proinflammatory profile induced in vitro and in mice
is suggestive of an enhanced level of stealth that could allow
these pathogens to persist for long periods of time undetected.

Given the commonalities in behavior between natural rough
and smooth Brucella spp., it is not surprising that the immune
response required to achieve protection against either phenotype
appears similar. Nevertheless, much additional work is required
to understand the correlates of immune protection against
the natural rough Brucella spp., both in the natural host and
involving mucosal routes of infection. Finally, the mouse model
is useful in supporting the continued search for a vaccine against
B. canis and evidence so far points to the superior protection
of LAVs. Despite RB51’s reduced efficacy compared to S19 and
Rev.1, there is evidence that a rough vaccine could serve to
protect sheep and dogs against not only B. ovis and B. canis, but
against smooth strains as well.
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