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Hepatitis B virus (HBV) infection is a global public health problem that plagues
approximately 240 million people. Chronic hepatitis B (CHB) often leads to liver
inflammation and aberrant repair which results in diseases ranging from liver fibrosis,
cirrhosis, to hepatocellular carcinoma. Despite its narrow species tropism, researchers
have established various in vivo models for HBV or its related viruses which have
provided a wealth of knowledge on viral lifecycle, pathogenesis, and immunity. Here
we briefly revisit over five decades of endeavor in animal model development for HBV
and summarize their advantages and limitations. We also suggest directions for further
improvements that are crucial for elucidation of the viral immune-evasion strategies and
for development of novel therapeutics for a functional cure.
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INTRODUCTION

Over half a century has passed since a precipitin line in an immunodiffusion agar gel was formed
between serum of a hemophilia patient receiving transfusion and serum of an Australian aborigine
(Blumberg et al., 1965). This serendipitous event turned out to be the first revelation of a new
etiology: Hepatitis B Virus (HBV) (Sutnick et al., 1969; Dane et al., 1970; Almeida et al., 1971). The
active research surrounding this virus thereafter has yielded in-depth understanding of its natural
history, immunobiology, and pathogenesis.

HBV belongs to the hepadnaviridae which is characterized by a small genome (3.2 kilobase)
of partially double-stranded DNA. It enters the human hepatocytes via the interaction between
viral envelope protein and human sodium taurocholate co-transporting polypeptide (NTCP) in a
highly species-specific manner (Yan et al., 2012; He et al., 2015; Burwitz et al., 2017; Takeuchi et al.,
2019; Chen et al., 2020). It then reproduces its genome by a transcription—reverse transcription
process. The former is done under the genetic instruction of the covalently closed circular DNA
(cccDNA) which is formed by repairing the incoming viral genome or recycling of the viral DNA
produced in the cytoplasm. The cccDNA serves as the template for transcription of the pregenomic
RNA and other mRNAs that encode at least seven proteins. The pregenomic RNA is not only the
messenger for viral core and polymerase, but also the template for reverse transcription, which
strictly requires polymerase assisted core particle formation. HBV is a hepatotropic virus with strict
host and organ tropism.

Individuals chronically infected with HBV can develop a series of liver diseases, from liver
fibrosis, cirrhosis to hepatocellular carcinoma. Although great progress has been made in
the prevention and treatment of chronic hepatitis B (CHB), there are still over 240 million
people infected with HBV and around 650,000 people die of this disease each year globally
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(World Health Organization [WHO], 2015). To further reduce
these figures, besides broader coverage of HBV vaccination, novel
approaches of therapy that are able to cure chronic infection
are needed. The continuing development of animal models for
HBV infection has been instrumental for our understanding
of its lifecycle, development of antiviral agents, and testing of
preventive measures. A series of models have been developed
ever since the “Australian antigen” was discovered. Their utilities
and shortcomings are reviewed (Table 1). Possible directions
for further development to meet the needs of an HBV cure
are also discussed.

CHIMPANZEE AND OTHER PRIMATES

Apart from human subjects, chimpanzees were almost the only
model used in the early stages of HBV research (McAuliffe
et al., 1980). In as early as 1969, two groups independently
reported the appearance of Australian antigen and development
of its antibody after inoculation of positive sera in chimpanzees
(Hirschman et al., 1969; Lichter, 1969). This was followed

by several other studies with more detailed longitudinal
observations (Maynard et al., 1971, 1972; Barker et al., 1973).
Chimpanzees were also the only feasible subjects for evaluation
of the first generation vaccines which were purified from HBV
positive sera and inactivated (McAuliffe et al., 1980). A major
achievement of molecular virology in 1982 was also made
possible by injecting cloned viral genome into chimpanzees thus
establishing an acute viral hepatitis (Will et al., 1982). All these
studies established the molecular etiology of HBV as the causative
agent for hepatitis B.

The fact that chimpanzees have the genetic background and
immune system that are closest to humans makes them the
host of choice for studying the innate and adaptive immune
response to HBV infection. One striking feature of HBV acute
infection observed in chimpanzees is that the virus does not
induce or repress host gene expression in the lag (week 0–2)
and logarithmic expansion phase (week 4–6) which is in stark
contrast to HCV infection (Wieland S. et al., 2004). The induction
of interferon stimulated genes (ISGs) and other inflammatory
genes are within the viral clearance phase (week 8–12) which is
initiated by infiltration of T cells, B cell, macrophages, and NK

TABLE 1 | Basic features of animal models for major hepadnaviruses.

Animal Virus/
vector

Virological characteristics Immune response Pathogenesis Therapy

Viral
entry

cccDNA
formation

Persistence Immune
competence

T cell
response

(HBsAg) B
cell

response

Inflammation Fibrosis HCC Direct
Antiviral

Therapeutic
vaccine

Chimpanzee HBV + + age and dose-
dependent

+ + + + − − + Yes but limited

Tree shrew HBV + + age-
dependent

+ + + + + + + Yes but limited

Duck DHBV + + age and dose-
dependent

+ + + +/− − − + Not relevant

Woodchuck WHV + + age-
dependent

+ + + + + + + Yes

Mouse Transgenic
mice

− − Integrate tolerance −/+c
−/+c

− − +/−e
+ Yesc

Hydrodynamic
injection

− − Pro-clearance + High High − − − + Yes

Adv vector − −/+a Dose-
dependentb

+ Medium Medium − − − + Yes

AAV vector − −/+a Pro-
persistence

+ low low − − −/+f
+ Yes

Mice with
humanized
liver

+ + persistence − − − + − − + Inapplicable

Dual
humanized
mice

+ + Pro-
persistence

+ + ±
d + ±

d
− + Not studied

acccDNA formation can be achieved in certain designs such as using recombinant cccDNA techniques (refs. Qi et al., 2014; Yan et al., 2017).
bAdenoviral vector mediated HBV replication mostly cause transient viremia although higher persistence rate can be achieved with lower inoculum (ref. Huang et al.,
2012).
cHBV transgenic mice are usually tolerant to constitutively expressed viral antigens. However, some reports show the activity of virus specific T and B cell responses (refs.
Fumagalli et al., 2020; Michler et al., 2020).
dDepends on the type of dual humanized mice.
eHCC formation is observed in some transgenic lines.
f HCC formation is observed in one report.
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cells, etc. Transient antibody-mediated depletion of CD8 + T
cells during the logarithmic phase of viral replication caused
prolonged viremia and liver damage (Thimme et al., 2003).
Meanwhile, the essentiality of the priming of CD4 + T cells
in the early phase of the infection was also discovered, as
pre-depletion of these cells caused persistent infection with
minimal immunopathology (Asabe et al., 2009) reminiscent
of the immune tolerance state of CHB. Most interestingly,
inoculation of chimpanzees with intermediate viral dose (104

to 107 genome copy) leads to viral clearance whereas high-
dose (1010 genome copy) or low-dose (10 copy) leads to
persistent infection, indicating that kinetics of viral spread
in the early phase determines the fate of the disease (Asabe
et al., 2009). In a self-limited infection, an early (week 8–
12) non-cytolytic suppression of viremia and a late (week 14–
20) cytolytic destruction of HBV positive hepatocytes were
both documented by longitudinal observations in chimpanzees,
suggestive of a two-phase dynamic process (Guidotti et al., 1999;
Wieland S.F. et al., 2004).

The use of chimpanzees has also facilitated the development
of novel therapeutics. GS-9620 is a potent, orally active TLR7
agonist in clinical development for treatment of CHB. Its
short-term oral administration in HBV infected chimpanzees
achieved long-term suppression of viral load by inducing
ISGs and cytokines/chemokines (Lanford et al., 2013). Further
transcriptomic and histological analyses revealed intrahepatic
aggregates comprised of CD8 + T cells and B cells in the
portal regions (Li L. et al., 2018). Therapeutic vaccination
schemes (Pancholi et al., 2001) and anti-HBV monoclonal
antibodies (Eren et al., 2000) were also evaluated in chimpanzees
preclinically. Unfortunately, due to increasing concerns over
animal ethics, experiments using chimpanzees have been highly
restricted (Altevogt et al., 2012).

Apart from chimpanzees, macaques were also suggested to be
susceptible to HBV. Inoculation of HBV replicative plasmid into
macaques (Macaca Silvanus) caused viremia and pathological
changes (Gheit et al., 2002). The same group later found Macaca
fasicularis from Mauritius island had a high positive rate of
HBV DNA although at low viral load (Dupinay et al., 2013).
Genome sequencing revealed that it was a genotype D subtype
ayw3 with a substitution at position 67 within preS1. Inoculation
of virus-positive pooled serum into Macaca fasicularis caused
an acute infection. However, another study failed to establish
an infection using the virus harboring this variation and using
the same species of macaque (Burwitz et al., 2017). Some other
HBV-related viruses were also identified in New World monkeys.
The woolly monkey hepatitis B virus (WMHBV) infects its
natural host, Lagothrix lagotricha (woolly monkey) (Lanford
et al., 1998). Spider monkeys and chimpanzees were also shown
to be susceptible to WMHBV in experimental infections (Lanford
et al., 1998, 2003). The capuchin monkey hepatitis B virus
(CMHBV) was recently identified in Sapajus xanthosternos in
Brazil (de Carvalho Dominguez Souza et al., 2018). The surface
protein of these two viruses showed high antigenic relatedness as
evidenced by cross-reactivity of polyclonal antibody against HBV
surface antigen. Furthermore, Hepatitis D Virus pseudotyped
with WMHBV and CMHBV surface proteins could infect human

hepatocytes suggesting their highly similar cellular entry process.
Indeed, molecular substitution assays on key residues on the
NTCP polypeptide suggested that amino acid 158 is critical
for virus entry (Takeuchi et al., 2019). This residue in New-
World monkeys, which include capuchin monkey and woolly
monkey, is identical to that of human and chimpanzee. However,
these animals not readily available as experimental hosts due to
economical and ethical reasons.

TREE SHREW

Tree shrews (Tupaia belangeri) are small mammals closely
related to primates. The susceptibility of tree shrews to HBV
infection was confirmed both in vivo and ex vivo (Walter et al.,
1996; Yan et al., 1996) although a transient and low level of
viremia was documented in newborns (Walter et al., 1996).
A larger scale, longitudinal research on 46 tree shrews neonatally
inoculated with HBV resulted in 6 chronic infections (Wang
et al., 2012). Hepatic histopathological changes observed in
chronically infected animals were similar to those observed in
CHB (Ruan et al., 2013). Continued observation showed that
hepatocellular carcinoma occurred in two of the six animals at
the late stage of life (Yang et al., 2015). Thus, this model faithfully
recapitulates many aspects of the HBV infection in humans.
Another contribution made by this model is the study of the
viral entry route. Fine mapping of the receptor binding site of
PreS1 was made possible using primary hepatocytes isolated from
Tupaia (Glebe et al., 2003; Glebe et al., 2005). More importantly,
sodium taurocholate co-transporting polypeptide (NTCP) was
identified as the functional receptor for HBV using primary
culture of Tupaia hepatocytes (Yan et al., 2012).

THE WOODCHUCK AND DUCK MODELS

The Woodchuck Hepatitis Virus (WHV) (Summers et al., 1978)
was first discovered in the late 1970s. It has significant similarities
to HBV in its morphology, genome structure, and replication
scheme. Its genome is frequently integrated into the host genome
at the N-myc loci (Fourel et al., 1990) and is directly linked
with the development of hepatocellular carcinoma (Gouillat et al.,
1997). More detailed analysis on HBV showed that integration
events are randomly distributed among chromosomes (Mason
et al., 2016), the enriched loci found in human liver tumors such
as TERT, MLL4, and CCNE1 are the result of clonal expansion
(Sung et al., 2012; Zhao et al., 2016). Molecular virology studies
revealed that various forms of linear viral DNA can be produced
during WHV replication which serves as the substrate for
chromosomal integration (Yang et al., 1996). These forms of viral
DNA and its integration was also confirmed in CHB (Tu et al.,
2021). Woodchuck has also been widely used for the evaluation of
therapeutic solutions. The administration of nucleoside analogs
on WHV infected animals inhibited viremia but did not inhibit
its genetic reservoir (cccDNA) (Moraleda et al., 1997; Dandri
et al., 2000). Woodchucks were also used as a testing ground for
various combination therapies involving DNA vaccine, antigen-
antibody immune complex, immune checkpoint modulators etc.
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(Roggendorf et al., 2007; Lu et al., 2008; Kosinska et al., 2012,
2013; Liu et al., 2014) with considerable success.

The duck hepatitis B virus (DHBV) (Mason et al., 1980)
was first reported to be present in Pekin ducks in 1980 which
bears significant resemblance to HBV in its genome, morphology,
and replication. Because ducks are much more accessible than
other hosts, DHBV was used as a model system for studying
the replication scheme of hepadnaviruses. Indeed, Summers
and Mason found that DHBV replicates its genome by reverse
transcription of an RNA intermediate, i.e., the pregenomic RNA
(Summers and Mason, 1982) thus pointing to its evolutionary
kinship with retroviruses (Miller and Robinson, 1986). Moreover,
ex vivo infection of primary duck hepatocytes revealed the
existence of a nuclear cccDNA pool which is not maintained
by semiconservative replication but by intracellular recycling of
relaxed circular DNA (Tuttleman et al., 1986). The abundance
of cccDNA is regulated by the expression level of viral surface
protein which determines the relative rate of viral release and
intracellular recycling of relaxed circular DNA (Summers et al.,
1990). This phenomenon is also corroborated in HBV infection
(Lentz and Loeb, 2011; Zhang et al., 2016). By biochemical
purification, researchers identified the receptor for DHBV as a
180 kDa glycoprotein (Kuroki et al., 1994; Breiner et al., 1998;
Urban et al., 1998), although the entry of HBV does not use
human homologs of this protein.

The above-mentioned animal models can be naturally
infected with members of hepadnaviruses. There are, however,
quite several limitations that restrict further studies on
HBV pathogenesis, immune response, and curative strategies.
The Pekin duck is a powerful tool for DHBV molecular
virology, but its immune system is evolutionarily distant
from that of humans. The limited supply of woodchucks
and the difficulty in their domestication restrict their larger-
scale experimentation. The chimpanzees have been historically
crucial for the development of prophylactic vaccine and for
studying HBV immunobiology, but their high cost, genetic
variations, and ethical regulations have prohibited their further
use. Experimental mice have long been the model of choice
in immunologic and pathological studies, but they are not
susceptible to HBV or other hepadnaviruses. A large number of
studies have been performed to establish mouse systems that can
address specific aspects of HBV biology.

TRANSGENIC MICE

With the development of transgenic mice technology, researchers
started to clone HBV sequences into the mouse germline in
the 1980s. The resultant mouse strains can be used to study
the pathophysiological effects of certain viral gene products.
For example, transgenic expression of surface antigen does not
cause obvious pathologies (Babinet et al., 1985; Chisari et al.,
1985), but the enforced expression of the large surface protein
inhibits the release of small surface protein (Chisari et al.,
1986), increases proteinaceous cytoplasm containing acidophilic
inclusions resembling ground-glass hepatocytes observed in
human carriers of HBV, and later develop nodular hyperplasia

(Chisari et al., 1987). The oncogenic role of HBx is established
by studies on transgenic mice. Kim et al. developed a transgenic
mouse line in which HBx was expressed under the control of its
native promoter (Kim et al., 1991). Histopathology begins with
multifocal preneoplastic lesions followed by benign adenomas
and finally malignant carcinomas. They also found that male mice
developed disease and died much earlier than females. A similar
observation was made in an HBx transgenic mouse lineage with
high level of protein expression (Koike et al., 1994). Apart from
the reported findings, they suggested that the formation of full-
blown carcinoma requires additional genetic events as only small
populations of altered foci developed into neoplasia. Indeed,
they observed increased DNA synthesis and aneuploid DNA
content in a subset of hepatocytes. Although there were a few
reports that did not find significant histological alteration in HBx
transgenic mice (Lee et al., 1990), the majority of them supported
its tumorigenic role (Tsuge et al., 2010; Quetier et al., 2015).

Thanks to the well-developed tools for immunologic studies,
HBV transgenic mice were extensively used to elucidate the
mechanism of immunopathogenesis and mechanism of virus-
mediated tolerization. The knowledge on the functional role of
HBeAg has been greatly expanded using e antigen transgenic
mice. HBeAg is translated from a precore mRNA a few
nucleotides upstream of the initiation codon of the core open
reading frame and further processed by proteolytic cleavage.
The primary amino acid sequence of HBeAg shows significant
identity to that of HBcAg although HBeAg is structurally distinct
and is expressed in non-particulate form and secreted into
circulation. There are a large number of reports supporting the
link between HBeAg and active manipulation of the anti-HBV
immune response. For example, HBV G1896A mutation that
causes the premature termination of the e antigen is associated
with acute fulminant or severe hepatitis (Tong et al., 2013). Using
HBeAg-expressing transgenic mice, Milich et al. (1990) found
that these mice are immunologically tolerant to not only HBeAg
but also HBcAg at the T-cell level. T cells exposed to HBeAg
were non-responsive to HBcAg. In addition, after priming with
core antigen, in vitro anti-HBc IgG production was greatly
reduced in e antigen transgenic mice but IgM production was
unaffected suggestive of a reduced Th-cell function. Moreover,
non-transgenic mice exposed to HBeAg in utero by their
transgenic mother showed reduced T cell response to HBcAg
peptides which suggested that HBeAg can pass the placenta to
induce fetal tolerance to HBcAg before and around birth. Thus,
HBeAg plays a crucial role in restricting T cell response to
HBcAg in the early phase of HBV infection and contributes to
the establishment of chronic infection.

The transgenic mice expressing individual viral proteins
are still limited by the lack of replicative parameters. The
establishment of replication-competent HBV transgenic mice
has provided a robust system for dissecting the innate and
adaptive immune response within the context of persistent HBV
infection (Guidotti et al., 1995). In this model, a high level
of viral RNA and replicative intermediates are detected in the
hepatocytes, and virus particles in serum are morphologically
indistinguishable from those in natural infection. Although the
host is immune tolerant to the virus, an acute immune response
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can be initiated by adoptive transfer of specific immune cells.
Introduction of HBsAg-specific cytotoxic T lymphocytes (CTLs)
in this transgenic mouse results in a transient spike of liver
damage (Guidotti et al., 1996) whereby a small fraction of the
hepatocytes are killed. Nevertheless, these CTLs clear all traces
of HBV gene expression and replication via the antiviral activity
of IFN-γ and TNF-α. Indeed, the potent suppression of viral
replication is independent of the cytolytic activity as perforin
knockout CTLs also abolish viral activity. Nevertheless, the initial
cell lysis triggers focal inflammation response in which antigen-
non-specific cells such as neutrophils, polymorphonuclear
neutrophils, and platelets infiltrate into the hepatic sites (Sitia
et al., 2002, 2004; Iannacone et al., 2005). The polymorphonuclear
neutrophils are known to express matrix metalloproteinases
which facilitate the recruitment of mononuclear cells into the
liver and exacerbate liver inflammation (Sitia et al., 2004). In
addition to studies on CTL-mediated adaptive immune response,
innate immune responses can also be investigated. Kakimi et al.
analyzed the antiviral effect of activated natural killer T (NKT)
cells by injection of antibody to galactosylceramide (Kakimi et al.,
2000). Similarly, the functional role of Interleukin-12 (IL-12)
(Cavanaugh et al., 1997), IL-18 (Kimura et al., 2002), was also
analyzed. This model is also suitable for evaluation of various
antiviral therapies (Julander et al., 2002; Weber et al., 2002;
Julander et al., 2003; Uprichard et al., 2005; Ebert et al., 2011;
Buchmann et al., 2013).

It is also worth noting that although transgenic mice are
thought to be completely tolerant to the transgene-encoded viral
protein, spontaneous clearance of HBsAg due to the emergence
of antibodies was reported (Fumagalli et al., 2020). Also, a
therapeutic vaccination scheme combined with siRNA-mediated
knockdown in HBV transgenic mice generated antibodies toward
HBsAg (Michler et al., 2020). These results indicate that the
transgene-specific B cells are not clonally deleted and may be
activated in certain circumstances.

TRANSFECTED OR TRANSDUCED MICE

Although adoptive transfer experiments in HBV transgenic mice
can inform the antiviral capability of various cell types, this
information does not necessarily translate to a real infection as
the cell type under question can be very scarce or functionally
tolerized in vivo. Since mouse hepatocytes are not permissive
to HBV even after the introduction of the human NTCP gene
(He et al., 2015), methods that can introduce viral DNA without
germline insertion are needed. The hydrodynamic injection
method, which involves rapid, high-pressure tail vein injection
of HBV constructs was developed. Yang et al. introduced
an overlength replication-competent HBV genome into mice
and observed antigen production, viral transcripts, and DNA
synthesis within two weeks in wildtype and much longer in
NOD/SCID mice (Yang et al., 2002). By optimization of the
delivery construct, Huang et al. achieved over 6 months of
antigenemia in 40% of the injected immunocompetent mice
(Huang et al., 2006). Further studies demonstrated that mouse
genetic background has a significant impact on the rate of
clearance. BALB/c and NOD/ShiLtJ mice quickly cleared the

virus while C3H/HeN mice are more tolerant to viral replication
(Chou et al., 2015; Peng et al., 2015). An association with
the gut microbiota and age-related viral clearance is proposed
(Chou et al., 2015).

Mouse hepatocytes can also be transduced by recombinant
viral vectors, e.g., adenovirus (Adv) or adeno-associated virus
(AAV), to initiate HBV replication. Transduction by Adv-HBV
usually results in a transient antigenemia (Sprinzl et al., 2001; von
Freyend et al., 2011) although it can be prolonged by a lower dose
inoculation (Huang et al., 2012). By contrast, the introduction of
HBV genome via AAV results in an immunotolerant phenotype
with long-term antigenemia and minimal liver inflammation
and fibrosis (Yang et al., 2014). The strikingly different behavior
of these two viral vector systems is thought to derive from
the feature of the carriers, the former being an activator of
innate immune response and the latter usually stealthy and silent
(Greber and Flatt, 2019; Ertl, 2021).

A more recent development in this transient transfer method
involves the formation of bona fide cccDNA within the nuclei
which may better recapitulate the epigenetic state of the
supercoiled episomal cccDNA in natural infection. To achieve
this, different approaches were used. Yan et al. utilized a
phage ϕC31 integrase-mediated intramolecular recombination
technology to generate a recombinant cccDNA in Escherichia
coli (Yan et al., 2017). The resulting DNA molecule is highly
similar to the native cccDNA and can initiate viral replication
and antigen expression within the mouse liver. Another
approach used by Deng’s group utilized the Cre-loxP in vivo
recombination system in which the vector backbone was excised
by the co-introduced Cre recombinase. The remaining loxP
site within the recombinant cccDNA (rcccDNA) is flanked by
a pair of splice donor and acceptor sites. Thus, its transcript
undergoes a post-transcriptional RNA splicing yielding an RNA
pregenome identical to that of a wildtype virus (Qi et al., 2014).
Hydrodynamic injection of this vector resulted in the formation
of rcccDNA within the nuclei. The same group further improved
this system by using a replication-defective adenoviral vector to
transfer the rcccDNA into Alb-Cre transgenic mice which led
to prominent HBV persistence for over 62 weeks (Li G. et al.,
2018). We have also established an rcccDNA model based on the
Cre-loxP recombination strategy by using a AAV8 vector that is
hepatotropic and achieved long-term antigenemia and cccDNA
persistence (Wu et al., 2020).

HUMANIZED CHIMERIC MICE

Although the HBV transgenic and transfected mice each partially
recapitulate some features of CHB, neither of them supports
the complete infection cycle of infection due to the lack of
cellular receptor. Engraftment of susceptible human hepatocytes
into mouse can overcome this barrier. The “trimera” mouse is
the result of the earliest attempts in this direction. Using mice
that lack mature T, B and NK cells, human liver fragments
were transplanted under the kidney capsule. After injection of
HBV positive sera, viral DNA and antigens were detected for
about two months (Ilan et al., 1999; Eren et al., 2000). Although
this model was used for evaluation of antiviral therapy and
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monoclonal antibodies against HBsAg, the short time window
for infection and transient viremia offered limited operational
capability. Another easy-to-use mouse model, in which the
HBV replication-competent HepAD38 cells were subcutaneously
engrafted into nude mice, may serve as a simple platform for
antiviral evaluation (Feitelson et al., 2007; Schinazi et al., 2012).
It was not until mouse strains that support expansion of human
hepatocytes, that humanized chimeric mice became a robust
infection model.

In the early 1990s, researchers found that mice with the
liver specific expression of the urokinase-type plasminogen
activator (Alb-uPA) resulted in elevated uPA concentration,
hypofibrinogenemia and neonatal hemorrhaging (Sandgren et al.,
1991). This feature was exploited to facilitate the repopulation
of xenogenic hepatocytes in various genetic backgrounds of
immune deficiency (Rhim et al., 1995; Petersen et al., 1998;
Tateno et al., 2004). Dandri et al. established active HBV
replication in uPA/RAG-2 mouse repopulated with human
hepatocytes although the humanized efficiency is less than 15%
(Dandri et al., 2001). Later development of uPA-SCID mice
resulted in a more pronounced engraftment (Meuleman et al.,
2005). Indeed, a high (1010 copies/ml) and long-lasting viral titre
could be achieved (Tsuge et al., 2005). Now the uPA-SCID model
has been widely utilized for evaluation of antivirals (Oehler et al.,
2014; Mueller et al., 2018), engineered immune therapy (Koh
et al., 2018), and mechanism of innate immune response against
HBV (Lütgehetmann et al., 2011; Belloni et al., 2012).

A major drawback of the uPA-SCID model is that the
uncontrolled expression of the uPA gene in very early life
requires human hepatocytes xenograft soon after birth, which
is difficult to manipulate and easily causes severe hemorrhage
during operation (Meuleman and Leroux-Roels, 2008). The
later development of the Fah (Fumaryl acetoacetate hydrolase)
knockout mice largely resolved this issue. Fah is an enzyme
that catalyze the last step of Tyrosine/Phenylalanine catabolism.
The loss of Fah gene causes the accumulation of toxic
metabolic intermediates in this pathway. Supplementation of 2-
(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC),
an inhibitor that blocks the enzymatic conversion of upstream
intermediate, to the drinking water prevents the liver toxicity
(Grompe et al., 1995). This feature provides much more control
over the extent of mouse liver damage and the timing of
hepatocyte xenograft. Based on this, several humanized models
were established (Azuma et al., 2007; Bissig et al., 2007), among
which the Fah−/− mice with additional immune deficiency
(Rag2−/− and IL-2rγ−/−), hence named FRG triple KO mice
achieved the highest engraftment rate (90%) (Azuma et al., 2007).
FRG KO mice have been successfully used to establish HBV and
HCV infection (Bissig et al., 2010) and to evaluate the antiviral
action of interferon-α subtypes (Chen et al., 2021).

A major limitation of the humanized mice described above
is the lack of the adaptive immune system that can recognize
the incoming HBV and make responses that contribute to viral
clearance or immunopathology. To solve this, an A2/NGS-
hu-HSC/Hep mice model was established (Bility et al., 2014).
In this model, the human HLA-A2 allel was introduced
into NOD/SCID/IL-2Rγ−/− background and transplanted with

human CD34+ cells from fetal liver which serve as hematopoietic
stem cells and liver progenitor cells for the reconstituted mice
(Bility et al., 2014). Injection of anti-Fas agonistic antibody
(Jo2) causes mouse hepatocyte damage and makes room for
the introduced progenitor cells to settle in the liver. The
human HLA-A2 transgene is thought to promote the HLA-
restricted human T cell function. This model achieved around
25% repopulation of human hepatocytes and successful infection
of HBV although with relatively low viral load (< 5 × 105

copies/ml). Importantly, HBV specific CD8+ T cell response
was elicited, and significant liver inflammation and fibrosis
was observed. Notably, the authors observed intrahepatic
accumulation of M2-like macrophage which is associated with
accelerated liver fibrosis in CHB patients. The authors did not
report humoral immune response against HBV. In another
study, researchers developed the HIS-HUHEP model, in which
CD34+ fetal derived human hematopoietic stem cells (HIS),
and adult human hepatocytes (HUHEP) were introduced into
a BALB/c Rag2/IL2rγ KO NOD, sirpa, uPA transgenic mice
(Dusseaux et al., 2017). The introduction of adult hepatocytes
caused much higher HBV viral load and antigens. Inflammatory
cell infiltration surrounding core antigen positive hepatocytes
was observed although no sign of fibrosis was found. The
infiltrating lymphocytes included NK cells, CD4+ and CD8+
T cells with activation/exhaustion markers such as PD-1 and
CTLA-4. Importantly, antibodies to surface and core antigens
were detected. As the access to fetal hematopoietic stem cells and
primary hepatocytes became more limited, other sources of stem
cells were explored. Yuan et al. used human bone mesenchymal
stem cells to repopulate in FRG mice in BALB/c SCID
background (Yuan et al., 2019). Depletion of mouse hepatocytes
was achieved by anti-Fas agonistic antibody (Jo2) combined
with withdrawal of NTBC. Elimination of murine immune
cells was secured by the injection of busulfan. This resulted
in high liver chimerism and well differentiated hepatocytes.
Reconstitution of the human immune cells was also evident with
major myeloid and lymphoid cells. Persistent HBV infection
with high viral load and antigen titers was observed. A unique
feature of this model is that a large number of lymphocytes and
macrophages infiltrated the liver after HBV infection, which was
accompanied by high level of cytokines and chemokines. This
caused progressive liver fibrosis and cirrhosis although viral loads
and antigens were not significantly suppressed. Evaluation of the
total serum human IgG and IgM revealed significant elevation
during infection whereas antibodies to HBV antigens reached
a peak at about 12 weeks post infection and then declined.
It is possible that viral infection triggered an inflammatory
milieu that fostered a polyreactive humoral antibody response
in addition to viral antigens. Nevertheless, this dual humanized
model constitutes a robust and easy-to-implement system for
HBV pathobiology.

FUTURE DIRECTIONS

With the help of in vivo models, remarkable achievements have
been made in the inquiry into how HBV exploits the host

Frontiers in Microbiology | www.frontiersin.org 6 July 2021 | Volume 12 | Article 715450

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-715450 July 12, 2021 Time: 17:43 # 7

Zhang et al. HBV Animal Models

molecular and cellular machineries to propagate, and in the
development effective preventative and therapeutic measures to
contain the spread and progression of this disease. The initial
use of chimpanzees as the experimental host established the
transmissibility of the “Australian antigen” and unraveled many
key features of HBV induced immunologic responses. Studies
using woodchuck and pekin duck infected with Hepadnaviridae
family members elucidated the framework of viral life cycle and
provided surrogate models for antiviral assessment. The endeavor
to establish mouse models that can recapitulate different aspects
of HBV-mediated disease has also yielded substantial progress.

With the even higher coverage of preventive vaccines
and availability of antiviral therapies, the development of
a therapeutic scheme that effectively reverses virus-mediated
immunotolerance and establishes an immunodominance over
HBV without triggering overt liver damage becomes the
greatest challenge of our times. Such endeavor will require an
immunocompetent small animal model that accommodates most
steps of the viral lifecycle and is easy-to-manipulate genetically
and immunologically. Obviously, none of the current models
fully meet these requirements. The HBV transgenic mouse model
is overly tolerant toward the virus while the hydrodynamic
injection and Adenoviral transfer model are generally prone
to resolution. The AAV model mostly generates a chronic
infection reminiscent of a carrier state which seems to be a
suitable system for evaluation of therapeutic vaccines. However,

it remains to be shown that such an immunotolerant phenotype
is characteristic of HBV itself but not of the vector. The dually
humanized mice model is regarded as a promising direction.
Various immunopathology of CHB, such as inflammation,
liver fibrosis and cirrhosis have been recreated by the latest
models. However, the engraftment of xenogenic liver and
hematopoietic system causes mismatches in the HLA system
between the xenograft and the host. Although graft-versus-
host disease is not found in the reported systems (Dusseaux
et al., 2017; Yuan et al., 2019), there are still concerns over
whether the nature of immune recognition and reactions
against the virus in such a system is in line with that of
natural infection. This will directly affect their suitability in
studying the immunologic determinants of viral tolerance and
clearance. Indeed, disruptive innovations are required to remove
these obstacles before mechanistic details of virus-mediated
immunotolerance can be fully unveiled and therapies for a
cure can be made.
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