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Plant growth-promoting rhizobacteria (PGPR) deploy several mechanisms to improve 
plant health, growth and yield. The aim of this study was to evaluate the efficacy of two 
Pseudomonas spp. strains and three Bacillus spp. strains used as single treatments and 
in consortia to improve the yield of Cannabis sativa and characterize the impact of these 
treatments on the diversity, structure and functions of the rhizosphere microbiome. Herein, 
we demonstrate a significant C. sativa yield increase up to 70% when inoculated with 
three different Pseudomonas spp./Bacillus spp. consortia but not with single inoculation 
treatments. This growth-promoting effect was observed in two different commercial soil 
substrates commonly used to grow cannabis: Promix and Canna coco. Marker-based 
genomic analysis highlighted Bacillus spp. as the main modulator of the rhizosphere 
microbiome diversity and Pseudomonas spp. as being strongly associated with plant 
growth promotion. We describe an increase abundance of predicted PGPR metabolic 
pathways linked with growth-promoting interactions in C. sativa.

Keywords: cannabis, plant growth promotion, rhizosphere, pseudomonas, bacillus

INTRODUCTION

Plant-growth-promoting rhizobacteria (PGPR) are rhizosphere inhabitants associated with the 
root system that enhance the uptake of nutrients, produce beneficial phytohormones and protect 
against biotic and abiotic stressors, on the whole, augmenting plant growth and fitness (Cordovez 
et  al., 2019). Advantageously modulating the rhizosphere microbiome by inoculating with 
known PGPR has been practiced for nearly a century and is currently rooted in sustainable 
agriculture (Hartmann et  al., 2008; Adesemoye et  al., 2009; Bhattacharyya and Jha, 2012; Gupta 
et al., 2015). The isolation, identification and commercialization of PGPR inocula are implemented 
to promote plant growth and health in a variety of commercially important crops such as 
wheat, rice, corn and soybean (Etesami et  al., 2014; Timmusk et  al., 2017; Backer et  al., 2018). 
Similarly, the use of PGPR which have the capacity to colonize the rhizosphere and promote 
plant growth and yield could greatly benefit and dynamize the nascent cannabis industry (Lyu 
et  al., 2019). The numerous products derived from C. sativa, namely its fibers, nutritional 
food ingredients and secondary metabolites used both medicinally and recreationally are valuable 
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resources that have begun to garner scientific and economic 
interest (Andre et  al., 2016; Dolgin, 2018). Research centered 
around the characterization of C. sativa’s microbiome, although 
in its infancy, has highlighted the dynamism and plasticity of 
the plant’s microbiome along spatiotemporal axes and soil-type 
dependencies as well as potential PGPR isolated from multiple 
cultivars (Kusari et  al., 2012; Winston et  al., 2014; Scott et  al., 
2018; Comeau et  al., 2020). The flexibility and adaptability of 
the microbiome hint towards the amenable colonization of C. 
sativa with compatible bacterial treatments. Initial studies have 
demonstrated the feasibility of this approach using a consortium 
of PGPR (Azospirillum brasilense, Gluconacetobacter 
diazotrophicus, Burkholderia ambifaria and Herbaspirillum 
seropedicae) or previously commercialized inoculants that 
potentiated the growth of C. sativa (Conant et al., 2017; Pagnani 
et al., 2018). However, the mechanism by which these inoculants 
benefited plant yield in consortia was not thoroughly explored.

Among the phylogenetically diverse PGPR studied to date, 
Pseudomonas spp. and Bacillus spp. have been consequential 
in the development of commercial bio-formulations (Adesemoye 
et  al., 2009; Borriss, 2011; Santoyo et  al., 2012). They are 
common rhizosphere inhabitants, possess an array of growth-
promoting features and may potentially be  prospective early 
colonizers capable of niche pre-emption and modification (Parret 
et  al., 2003; Bottini et  al., 2004; Humphris et  al., 2005; Idris 
et al., 2007; Beneduzi et al., 2012; El-Sayed et al., 2014; Masciarelli 
et  al., 2014; Islam et  al., 2015; Souza et  al., 2015; Schreiter 
et  al., 2018; Ansari and Ahmad, 2019; Qessaoui et  al., 2019). 
Mechanistically, Pseudomonas spp. and Bacillus spp. have been 
shown to actively colonize the rhizosphere and to promote 
plant growth by rendering phosphorus, iron and nitrogen 
bio-available as well as producing beneficial phytohormones 
such as indole-3-acetic acid (Berg et  al., 2014; Qessaoui et  al., 
2019; Wei et  al., 2019). The biofilm formation properties of 
Bacillus spp. are influenced by multi-species interaction, such 
as with Pseudomonas spp., and are linked to increased 
competitiveness and colonization in the rhizosphere (Shank 
et  al., 2011; Powers et  al., 2015; Ren et  al., 2015; Ansari and 
Ahmad, 2019). In line with the current literature, these species 
have the potential to be  valuable PGPR in the cultivation of 
C. sativa (Lyu et  al., 2019).

In the present work, Pseudomonas spp. and Bacillus spp. 
isolates obtained from Canadian soils have been utilized to 
assess their ability to promote the growth of C. sativa when 
inoculated alone or in combination treatments in different 
commercial soil substrates commonly used to grow cannabis. 
To go beyond classical studies, the long-term effect of these 
treatments on the diversity, structure and functions of the 
microbiome have also been evaluated using Illumina marker 
gene sequencing of bacteria (16S rRNA gene) coupled to the 
QIIME2 pipeline for analysis. We  demonstrate that single 
treatments do not stimulate growth promotion under the 
conditions tested, but combinatorial treatments have a significant 
positive effect on plant growth. The results obtained suggest 
that Bacillus spp. modulates the rhizosphere microbiome of 
C. sativa and enables the colonization of Pseudomonas spp., 
complementing plant growth independently of substrate type, 

hence demonstrating an interaction between Bacillus spp., 
Pseudomonas spp. and C. sativa. Furthermore, marker-based 
pathway predictions highlighted known PGPR metabolic 
pathways related to C. sativa plant growth promotion.

MATERIALS AND METHODS

Bacterial and Plant Culture
Pseudomonas Spp. and Bacillus Spp.
Pseudomonas fluorescens LBUM223, Pseudomonas protegens 
LBUM825, Bacillus velezensis LBUM279, Bacillus subtilis 
LBUM979 and Bacillus siamensis LBUM1082 were previously 
isolated in our laboratory from the rhizosphere of Fragaria 
ananassa, i.e. strawberry plants (Bouctouche, NB, Canada) and 
either maintained in TSB media (Sigma-Aldrich) at 25°C/120 rpm 
(Pseudomonas) or at 37°C/120 rpm (Bacillus) for experiments 
and stocked at −80°C. These bacteria isolated from strawberry 
plants were beneficial to plant growth (data not shown), and 
as a beneficial bacterium from one plant could be  beneficial 
to another, we  used these bacteria to survey their efficacy in 
C. sativa (Smith et al., 2015; Lyu et al., 2019). For plant growth 
promotion experiments, bacterial cultures were diluted in water 
to a final concentration of 108 CFU/ml.

Cannabis sativa
The Anka cultivar was seeded in starting trays containing either 
coconut-based medium supplemented with commercial nutrient 
(Canna coco substrate and AB solution; Toronto, Canada) or 
a 1:4 mixture of vermiculite and Promix substrate (Premier 
Tech, Rivière-du-Loup, Canada). Canna coco (Canna coco, 
Toronto, Canada) is made up of coconut husks and Promix 
(Promix, Rivière-du-Loup, Canada) is a mix of peat moss, 
peat humus and perlite; both substrates were chosen because 
they are commonly used in the commercial growth of cannabis. 
After a week, the plantlets were transplanted to larger 1-l pots 
containing 800 ml of either Canna coco or Promix substrate.

Plant Growth Promotion Experiments
The plantlets were simultaneously inoculated with the different 
bacterial treatments at the time of transplantation. Plants were 
inoculated at the base of the stem with water (20 ml control 
treatment), a single bacterial species (10 ml of Pseudomonas 
spp. or Bacillus spp. + 10 ml of water) or a combination of 
2 species (10 ml Pseudomonas spp. + 10 ml Bacillus spp.) for 
a total of 10 different treatments (Control, LBUM223, LBUM825, 
LBUM979, LBUM1082, LBUM279, LBUM223/979, 
LBUM223/1082, LBUM825/279 and LBUM825/979). In order 
to keep the number of treatments to a reasonable size, some 
combinations not listed above were omitted as preliminary 
experiments indicated that these combinations did not yield 
plant growth-promoting effects (data not shown). Two additional 
controls were also prepared where plants were inoculated with 
double doses of Pseudomonas sp. LBUM223 (20 ml) or Bacillus 
sp. LBUM979 (20 ml) to ensure that plant growth was caused 
by synergy and not a dose–response relationship 
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(Supplementary Figure  1A). The pots were kept in growth 
chambers (PGR15, Conviron) at 70% humidity on repetitive 
cycles of 18 h at 28°C and 6 h at 22°C (Chandra et  al., 2017). 
The plants were watered every 2–3 days as needed. Four biological 
replicates were used per treatment and the experiment was 
repeated three times for a total of 12 biological replicates per 
treatment. Few plants displaying aberrant morphology were 
eliminated from the study to exclude any variables associated 
with genotype. The plants were harvested 3 weeks after 
transplantation and were dried in an oven at 70°C until 
completely dehydrated. The rhizosphere soil tightly bound to 
the roots and the bulk soil were also collected at the time of 
harvest, frozen in liquid nitrogen and stored at −80°C until 
the DNA was extracted for sequencing and marker-based 16S 
rRNA gene genomic analysis.

DNA Extraction and Marker-Based 
Genomic Profiling
Total DNA was extracted from the rhizosphere and bulk soil 
(Canna coco and Promix substrate) using the Qiagen DNeasy 
plant mini extraction kit (Qiagen, Mississauga, Canada) for Canna 
coco and DNeasy PowerSoil Kit (Qiagen) for Promix. The microbial 
DNA from Canna coco needed to be  extracted using a plant 
DNA extraction kit because it is a plant-based soil substrate; 
other soil extraction protocols do not work as efficiently (Comeau 
et  al., 2020). Canna coco samples were disrupted in a Tissuelyser 
(Qiagen) at maximum speed for 6 min before utilizing the DNA 
extraction kit. Promix soil samples were mechanically disrupted 
with a Fastprep (MP biomedicals) before utilizing the DNA 
extraction kit. The quantity of the isolated DNA was assessed 
with a Qubit fluorometer (Thermo Fisher, Mississauga, Canada). 
Subsequently, PCR amplification of the bacterial 16S rRNA gene 
as well as the Illumina sequencing was performed by the Centre 
d’Expertise et de Services Génome Québec (Montréal, Canada). 
The 16S rRNA gene V4 region was amplified using the primer 
pair 515F/806R (Caporaso et  al., 2011). Purified amplicons were 
pooled in equimolar concentrations and paired-end sequenced 
(2 × 250) on an Illumina MiSeq platform. The raw paired-end 
reads were processed with the QIIME2 (version 2019.7; 2020.8) 
pipeline (Bolyen et  al., 2019). DADA2 was used to assess the 
quality of the reads which included filtering, trimming, denoising, 
dereplicating, merging of the forward and reverse strands, as well 
as removing chimeras (Callahan et  al., 2016). We  obtained a 
total of 6,754,704 paired-end reads with 39,713 features identified 
after quality filtering. Amplicon sequence variants were aligned 
using MAFFT plugin which was subsequently used for the FastTree2 
plugin needed for the diversity analysis (Katoh et  al., 2002; Price 
et  al., 2010). Samples used in diversity metrics were rarefied to 
an appropriate sampling depth of 7,063 for analysis. Alpha-diversity 
and statistics were calculated with the Shannon distance metric 
and beta-diversity was calculated using weighted UniFrac and 
plotted using the Vega Editor (QIIME2). Taxonomy was assigned 
to the 16S rRNA gene data using a Naive Bayes pre-trained Silva 
132 99% OTU classifier bounded by the 515F/806R primer set 
(Quast et  al., 2013). Differences in the abundance of bacteria 
was assessed using analysis of composition of microbiomes 

(ANCOM) and Songbird plugins from QIIME2 (Mandal et  al., 
2015; Morton et  al., 2019). Quickly, the fit of the model for 
Songbird was optimized and validated by comparing to a built 
baseline model (Q2 > 0) and represented as Qurro rank plots 
(Fedarko et  al., 2020). The predicted metagenome functions were 
calculated using the Phylogenetic Investigation of Communities 
by Reconstruction of Unobserved States (PICRUSt2) QIIME2 
plugin (Segata et al., 2011; Langille et al., 2013; Douglas et al., 2020).

Statistical Analysis
All marker-based genomic statistical tests were performed using 
the QIIME2 platform (Bolyen et  al., 2019). More specifically, 
pairwise Kruskal–Wallis tests were used for assessing statistical 
significance of alpha-diversity (Shannon’s index) between several 
groups. Weighted UniFrac distance metrics were subjected to 
ADONIS (R2) and ANOSIM (R) statistical analysis. ANCOM 
or Songbird was used to assess statistical differences in taxonomy 
and pathway abundance between groups (Mandal et  al., 2015; 
Morton et al., 2019). Statistical significance (ANOVA; post-hoc 
Dunnett) of the plant’s dry weight was assessed using GraphPad 
Prism 9.0.2 (GraphPad Software, Inc., San Diego, CA).

RESULTS

Growth Promotion of C. sativa by 
Synergistic Pseudomonas–Bacillus 
Interaction
C. sativa was treated with two Pseudomonas (LBUM223 and 
LBUM825) and three Bacillus species (LBUM979, LBUM1082 
and LBUM279) alone or in combination (LBUM223/979, 
LBUM223/1082, LBUM825/279 and LBUM825/979) to test 
growth promotion in Promix and Canna coco substrates 
(Figures  1A,C,E, 1B,D,F, respectively). While each bacterial 
treatment alone had no significant effect on the above-ground 
(shoots and leaves) or below-ground (roots) growth of C. sativa, 
some combinatorial treatments yielded significant increases in 
plant growth. More specifically, in Promix, combinations 
LBUM223/1082, LBUM825/279 and LBUM825/979 augmented 
the above-ground growth of C. sativa and LBUM825/979 had 
a plant-growth-promoting effect below-ground (Figures  1A,C, 
respectively). When looking at the total dry plant weight, 
combinations LBUM223/979, LBUM223/1082 and LBUM825/979 
demonstrated roughly 30% increase (Figure 1E). Above-ground 
growth was promoted by combinations LBUM223/979, 
LBUM223/1082 and LBUM825/979  in Canna coco and both 
LBUM223/979 and LBUM825/979 had a positive effect below-
ground (Figures  1B,D, respectively). In line with Promix, 
combinations LBUM223/979, LBUM223/1082 and LBUM825/979 
significantly increased the total dry weight of the plant by up 
to 70% in Canna coco (Figure  1F). Furthermore, to ensure 
that the combinatorial treatments were not due to an increased 
microbial load (dose–response relationship), we  inoculated 
double amounts of single treatment Pseudomonas sp. (LBUM223) 
or Bacillus sp. (LBUM979) to plants. C. sativa treated with a 
double dose of Pseudomonas sp. did not increase plant yield, 
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and Bacillus sp. was detrimental to plant growth at double 
doses; in fact, Bacillus sp. negatively affected plant growth and 
vigor and no reliable measurements could be  taken at the 
time of cultivation (Supplementary Figure 1B). Taken together, 
these results illustrated that the additive effect between 
Bacillus spp. and Pseudomonas spp. was essential to the observed 
plant-growth-promoting effect.

Diversity Measurements Between Soil 
Type and Bacterial Inocula
To functionally address the impact of the bacterial treatments 
on growth promotion, we  extracted, sequenced and analyzed 
the diversity and structure of the rhizosphere and the bulk 
soil microbiomes from both substrates. Rarefaction curves 
confirmed that a sufficient sequencing quality and depth was 

A B

C D

E F

FIGURE 1 | Plant growth promotion of Cannabis sativa treated with Pseudomonas spp. and Bacillus spp. alone or in combination, grown in Promix and Canna 
coco substrates. Plant growth promotion above-ground (dry weight) in (A) Promix and (B) Canna coco. Plant growth promotion below-ground (dry weight) in 
(C) Promix and (D) Canna coco. Total dry weight in (E) Promix and (F) Canna coco. Statistical analysis: ANOVA (*p < 0.05, **p < 0.01, ***p < 0.001, ns, not 
significant); mean dry weight and standard deviation of at least 12 replicates per treatment condition.
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achieved (Supplementary Figure  3). We  first sought to 
understand native microbial differences between untreated soil 
types. Unsurprisingly, beta-diversity weighted UniFrac showed 
significant differences in microbiome composition between 
untreated substrates, Promix and Canna coco (bulk soils: 
R = 0.920; p = 0.001, rhizospheres R = 0.998; p = 0.001; Figure 2A). 
More interestingly, the microbial structure between the bulk 
soil and rhizosphere of Promix presented a greater shift than 
that of Canna coco (R = 1, p = 0.001; R = 0.732, p = 0.001, 
respectively; Figure  2A). The alpha–diversity measured by the 
Shannon index, taking into account both the richness and 
evenness of the community, was increased in the rhizosphere 
when compared to bulk soil albeit showed no differences 
between substrates (Figure  2B; Comeau et  al., 2020). 
Furthermore, the bacteria that inhabit the bulk soil and 
rhizosphere had notable varying frequencies between substrate 
and location (Figure 2C). Taken together, the native taxonomical 
differences and phylogenetic diversity (weighted UniFrac) between 
substrates intimated the idea that the combinatorial plant-
growth-promoting treatments, which are found in both evidently 
different substrates, are not only flexible but robust to diverse 
native microbial compositions.

Next, we  utilized the marker-based genomic information 
from the rhizosphere to uncover differences between treatments 
that promote plant growth and those that do not. The treatment 
groups showing above-ground or below-ground growth 
promotion in Promix and Canna coco were analysed for changes 
in beta-diversity using weighted UniFrac (Figures  3, 4, 
respectively). Alpha-diversity Shannon index was also measured 
but no changes were identified between treatment groups in 
the Promix and Canna coco substrates 
(Supplementary Figure  2A–D and 1E–H, respectively). All 
combinatorial treatments in Promix, namely LBUM223/979, 
LBUM223/1082, LBUM825/279 and LBUM825/979, clustered 
away from the untreated control (R = 0.510, p = 0.001; R = 0.504, 
p = 0.001; R = 0.677, p = 0.001; R = 0.597, p = 0.001, respectively), 
and this clustering could partially be explained by the bacterial 
treatment (R2 = 0.280, p = 0.001; R2 = 0.304, p = 0.001; R2 = 0.288, 
p = 0.001, respectively). Furthermore, treatment groups 
LBUM223/979 and LBUM223/1082 presented clustering on 
PCoA plot between Pseudomonas LBUM223 and untreated 
controls while Bacillus LBUM979 and LBUM1082 clustered 
with combinatorial treatments, highlighting Bacillus spp. as the 
main modulator of the microbiome’s diversity in Promix 
(Figures  3A,B, respectively). This, however, was not the case 
for combinatorial treatments LBUM825/279 and LBUM825/979 
(Figures  3C,D). In combinatorial treatment LBUM825/279, 
Pseudomonas LBUM825 and the water control still remained 
clustered together; however, Bacillus LBUM279 clustered slightly 
away from the combinatorial treatment (R = 0.134, p = 0.027; 
Figure  3C). This tendency was then reversed in combinatorial 
treatment LBUM825/979; Pseudomonas LBUM825 clustered 
slightly away from the water control (R = 0.119, p = 0.049) while 
LBUM979 remained grouped with the combinatorial treatment 
(Figure  3D). To corroborate these findings, diversity 
measurements using Bray–Curtis dissimilarity were also 
calculated. As demonstrated using weighted UniFrac, combination 

treatments clustered away from water control, Pseudomonas 
spp. clustered with the water control, and Bacillus spp. clustered 
away from the water control. Furthermore, Bacillus LBUM1082 
clustered with its respective combination treatment and Bacillus 
LBUM279 and LBUM979 clustered away from their respective 
combination treatments (Supplementary Figure  4).

As seen in the Promix substrate, the bacterial treatments 
in Canna coco presented similar clustering patterns, albeit with 
less discernable shifts on PCoA plots (Figure 4). Combinations 
LBUM223/979, LBUM223/1082 and LBUM825/279 caused a 
shift in beta-diversity away from the water control (R = 0.169, 
p = 0.002; R = 0.187, p = 0.003; R = 0.128, p = 0.003, respectively) 
and this clustering could also be partly explained by the bacterial 
treatments (R2 = 0.087, p = 0.004; R2 = 0.092, p = 0.002; R2 = 0.02, 
p = 0.001) (Figures  4A–C). Moreover, in combinations 
LBUM223/979, LBUM223/1082 and LBUM825/279, Pseudomonas 
LBUM223 and LBUM825 clustered with the water control and 
Bacillus LBUM979, LBUM1082 and LBUM279 clustered with 
their respective combinatorial treatment (Figures  4A–C). 
Although the combination LBUM825/979 demonstrated growth 
promotion in C. sativa, changes in microbiome beta-diversity 
in Canna coco was marginal, showing only Bacillus LBUM979 
as clustering away from the water control (R = 0.145, p = 0.009; 
Figure  4D). Bray-Curtis diversity measurement in Canna coco 
were not as conclusive as with weighted UniFrac. Although 
shifts in diversity in this substrate remained marginal, differential 
clustering was clearly observed between Bacillus spp. and all 
other combinations, that is to say, Bacillus spp. likely caused 
the greatest shift in diversity (Supplementary Figure  5). 
Altogether, beta-diversity measurements indicated that Bacillus 
spp. was driving changes in beta-diversity and, although not 
having had a substantial effect on beta-diversity, Pseudomonas 
spp. were essential to the observed growth promotion of C. sativa 
(Figure  1). We  thus hypothesized that Bacillus spp. and 
Pseudomonas spp. in combinatorial treatments may have had 
a positive effected on the native bacteria, or on each other, 
which in turn, could have had a plant-growth-promoting effect. 
To investigate this further, we  sought to identify taxonomical 
differences between treatment groups.

Identification of Taxonomic Differences in 
the Rhizosphere Between Bacterial 
Inocula
To better understand the interaction between Bacillus spp., 
Pseudomonas spp. and C. sativa, we utilized differential abundance 
measures to identify bacteria responsible for the shifts in beta-
diversity and those associated with plant growth promotion. 
The taxonomical differences responsible for the shift in diversity 
were brought to light using the stringent statistical framework 
ANCOM (Figure  5; Mandal et  al., 2015).

We used ANCOM to identify differential abundances between 
treatments, that is to say, between the control (water treatment), 
Bacillus spp., Pseudomonas spp. and combinatorial treatments. 
Furthermore, we  sought to find taxa which were differentially 
abundant in both substrates. Our reasoning was that, if the 
same taxonomical differences were found in both substrates, 
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they would have a greater chance of being vital to shifts in 
beta-diversity and plant growth promotion. Along with other 
bacteria, Pseudomonas spp. were identified as differentially 

abundant between treatments in Promix (Figure 5A). However, 
only Pseudomonas spp. and Bdellovibrio spp. were found to 
be  differentially abundant in both substrates (Figures  5A,B). 

A

B C

FIGURE 2 | Diversity metrics and taxonomical differences, between untreated substrates, in the bacterial microbiome of C. sativa’s rhizosphere and bulk soil. 
(A) Weighted UniFrac PCoA plot representative of substrate differences in the bulk soil and rhizosphere. Each point represents a sample and axis 1 and axis 2 
represent the percentage of variance explained by each coordinate. (B) Shannon’s index of variations between the bulk soil and rhizosphere of Promix and Canna 
coco. Kruskal–Wallis pair-wise test was used to assess statistical significance between groups (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (C) Taxonomic bar 
plots of the relative frequency of bacteria at the phylum level between soil location and substrate. Low abundance taxa included: Chloroflexi, Myxococcota, 
Cyanobacteria, Bdellovibrionota, Gemmatimonadota, Armatimonadota, Firmicutes, Patescibacteria, Delsufobacterota, Hydrogenedentes, Dependentiae, 
Abditibacteriota, Sporochaetota, Fibrobacterota, Sumerlaeota, SAR324, FCPU426, Elusimicrobiota, WPS-2, RCP2-54 and MBNT15.
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Notably, the addition of treatments in Promix had a greater 
effect on the inhabitants of the rhizosphere than in Canna 
coco; nevertheless, the plant-growth-promoting effect was 
observed in both substrates (Figures  5A,B). Songbird also 
estimates differential abundance by using reference frames that 
negate the need for measuring total microbial load or 
microorganism count while diminishing false discovery rates, 
even more so when compared to ANCOM (Morton et  al., 
2019). Using Qurro rank plots, taxonomic features are sorted 
as being weakly (far left) or strongly (far right) associated 
with a covariate (Fedarko et al., 2020). Here, Songbird differentials 
ranked Pseudomonas spp. as being amongst the bacteria most 
strongly associated with plant-growth-promoting combinatorial 
treatments in Promix (Figure  6A). Other bacteria identified 
using ANCOM, including Bdellovibrio spp., were not evidently 
associated with plant growth promotion. Using Songbird, changes 

in Canna coco substrate, as with ANCOM, were negligible 
when compared to Promix, and so it was difficult to associate 
with great certainty a treatment outcome to a covariate (Q2 
nearing 0). Nevertheless, the bacteria most highly ranked, and 
thus most associated with plant growth promotion in Canna 
coco, was Pseudomonas spp., as with Promix (Figure  6B). 
Although Songbird statistics were weak in Canna coco substrate, 
we  do not expect main conclusions to be  disputed when 
considering orthogonal methods used, i.e. ANCOM and Songbird 
statistics from both substrate types. Surprisingly, Bacillus spp. 
was not identified in the ANCOM or Songbird analyses. 
Altogether, ANCOM and Songbird hinted towards the importance 
of Pseudomonas spp. in plant-growth-promoting combinatorial 
treatments. However, because there was no species level 
identification, it was impossible to differentiate native 
Pseudomonas spp. from Pseudomonas spp. used as treatments. 

A B

C D

FIGURE 3 | Weighted UniFrac beta-diversity metric between treatment conditions in Promix rhizosphere. PCoA plot representative of beta-diversity between 
treatment groups; (A) LBUM223 and LBUM979, (B) LBUM223 and LBUM1082, (C) LBUM825 and LBUM279 (D) LBUM825 and LBUM979, alone or in 
combination (the control refers to plants inoculated with water). Pseudomonas spp. treatments are represented by orange circles, Bacillus spp. by pink circles, 
combinatorial treatments by purple circles and the controls in green. Each point represents a sample and axis 1 and axis 2 represent the percentage of variance 
explained by each coordinate. Statistical analysis is found in the text (ANOSIM and ADONIS).
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Although we  could not differentiate Pseudomonas spp. at the 
species level, we sought to elucidate predicted metabolic pathways 
responsible for plant growth promotion.

Predicted Pathway Abundance in PGPR 
Treatments
To identify possible metabolic pathways linked to PGPR in 
C. sativa, we  utilized the analytic pipeline PICRUSt2 (Langille 
et  al., 2013; Douglas et  al., 2020; Figure  7). This tool helps 
predict pathways differentially abundant between treatment 
groups, herein, between treatment groups having plant-growth-
promoting effects (combinatorial treatments LBUM223/979, 
LBUM223/1082, LBUM825/279 and LBUM825/979) and those 
that are neutral (single inoculants). ANCOM discerned 71 

differently abundant MetaCyc pathways in Promix, schematically 
represented by heatmaps (Figures  7A,B, respectively). Overall, 
pathways were more often predicted to be  more abundant in 
plant-growth-promoting combinatorial treatments; the pathways 
identified included many catabolic pathways necessary for life 
in the rhizosphere such as sugar, amino acid and aromatic 
compound metabolism, as well as the biosynthesis of plant 
mediators (Figure  7B). Notably, ANCOM identified a greater 
abundance of pathways in Promix than in Canna coco substrate 
(Figures  7A,C, respectively). In practical terms, pathways that 
have a greater W-statistic and centred log ratio are likely to 
reject the null hypothesis; this shift upwards and to the right 
was evidentially more pronounced in Promix than in Canna 
coco (Figures  7A,C, respectively). In fact, only five pathways 

A B

C D

FIGURE 4 | Weighted UniFrac beta-diversity metric between treatment conditions in Canna coco rhizosphere. PCoA plot representative of beta-diversity between 
the treatment groups; (A) LBUM223 and LBUM979, (B) LBUM223 and LBUM1082, (C) LBUM825 and LBUM279 (D) LBUM825 and LBUM979, alone or in 
combination (the control refers to plants inoculated with water). Pseudomonas spp. treatments are represented by orange circles, Bacillus spp. by pink circles, 
combinatorial treatments by purple circles and the control by green. Each point represents a sample and axis 1 and axis 2 represent the percentage of variance 
explained by each coordinate. Statistical analysis is described in the text (ANOSIM and ADONIS).
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could be  identified as differently abundant in Canna coco, all 
of which were also found in Promix: DHGLUCONATE-PYR-
CAT-PWY (oxidative glucose degradation), CRNFORCAT-PWY 
(creatinine degradation I), PWY-2941 (L-lysine biosynthesis 
II), PWY-4361 (S-methyl-5-thio-α-D-ribose 1-phosphate 
degradation I) and PWY-7527 (L-methionine salvage cycle III). 
These five pathways could easily be  linked back to either 
Pseudomonas spp. or Bacillus spp. metabolism. The 
DHGLUCONATE-PYR-CAT-PWY (oxidative glucose 
degradation) metabolic pathway, which was predicted to 
be  relatively more abundant in plant-growth-promoting 

treatments, has been documented in Pseudomonas spp., including 
the known PGPR P. fluorescens (Fuhrer et  al., 2005). Likewise, 
CRNFORCAT-PWY (creatinine degradation I), a pathway found 
in Pseudomonas spp., although not necessarily linked to PGPR 
metabolism, was also predicted to be  more abundant (Shimizu 
et al., 1989). Metacyc identifiers PWY-2941 (L-lysine biosynthesis 
II), PWY-4361 (S-methyl-5-thio-α-D-ribose 1-phosphate 
degradation I) and PWY-7527 (L-methionine salvage cycle III) 
are pathways commonly found in Firmicutes such as Bacillus 
spp. and were all predicted to be less abundant in plant growth 
promotion treatments. Amongst these pathways common between 

A B

FIGURE 5 | ANCOM analysis of statistically important taxonomical differences between treatment groups. ANCOM output in (A) Promix and (B) Canna coco. 
Bacteria identified as differentially abundant (rejecting the null hypothesis) are listed at the bottom of each graph.
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substrates, DHGLUCONATE-PYR-CAT-PWY (oxidative glucose 
degradation) and CRNFORCAT-PWY (creatinine degradation 
I) were also highly ranked by Songbird in Promix (Figure 7D). 
More likely, creatine metabolism is only linked to Pseudomonas 
spp. and not likely to plant growth promotion. As previously 
described, sugar metabolism, such as DHGLUCONATE-PYR-
CAT-PWY (oxidative glucose degradation) is a property common 
to plant associated bacteria in general but has also been 
documented in the C. sativa microbiome (Levy et  al., 2017; 
Comeau et  al., 2020). Phosphorus solubilization by PGPR has 
been associated to sugar metabolism which produces acids 
capable of solubilizing this essential element and making it 
bioavailable to plants (Rodríguez and Fraga, 1999; Goswami 
et  al., 2014). Conversely, the other three pathways identified 
by ANCOM; PWY-2941 (L-lysine biosynthesis II), PWY-4361 
(S-methyl-5-thio-α-D-ribose 1-phosphate degradation I) and 
PWY-7527 (L-methionine salvage cycle III) were not ranked 
as associated with plant growth promotion. Additional pathways 
not discerned by ANCOM were highly ranked in the Songbird 

analysis, namely the LIPASYN-PWY (phospholipases) pathway. 
All in all, most pathways identified had clear lines of evidence 
pointing towards typical Pseudomonas and Bacillus PGPR 
metabolic pathways and colonization traits.

DISCUSSION

We have identified C. sativa-growth-promoting consortia 
consisting of specific Pseudomonas spp. isolates and specific 
Bacillus spp. isolates. The analysis of marker-based Illumina 
sequencing from extracted rhizosphere DNA suggested that 
Bacillus spp. caused the greatest measurable shift in beta-diversity 
and that Pseudomonas spp., but not Bacillus spp., was associated 
to the plant-growth-promoting effect. As more molecular insight 
and interdisciplinary tools would be  needed to build inter-
species networks of interactions, we  can only infer plausible 
methods of interactions that could lead to growth promotion. 
For example, a linear interaction between Bacillus spp., 

A

B

FIGURE 6 | Songbird feature rankings of bacteria to plant growth promotion. Songbird differentials ranked in Qurro plot for substrates (A) Promix and (B) Canna 
coco. Highest ranked bacteria are highlighted in red and identified in the plots.
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Pseudomonas spp. and C. sativa could have been possible, 
where Bacillus spp. is a key contributor to Pseudomonas spp. 
colonization, potentializing an interaction between the latter 
and C. sativa. It is also plausible that instead of a schematic 
linear interaction, Bacillus spp. could directly interact with the 
root system of C. sativa, mediating a systemic root response 
such as the systematically induced root exudation of metabolites, 

favorable to the colonization of other species in the rhizosphere 
microbiome (Korenblum et al., 2020). Alternatively, interactions 
between Bacillus spp. and Pseudomonas spp. might have favored 
or hindered the proliferation of native bacteria, fungi or 
oomycetes, amongst others, which then had a positive effect 
on C. sativa growth. Furthermore, as Bacillus spp. was not 
identified as differently abundant between treatments in the 

A

C

D

B

FIGURE 7 | PICRUSt2 predicted pathway variations in plant-growth-promoting treatments compared to those with no effect. (A) ANCOM analysis in Promix 
(B) Heatmap of ANCOM output in Promix of relative abundance of pathways between treatments having a plant-growth-promoting effect and no effect (pathways in 
red have been identified by both ANCOM and Songbird) (C) ANCOM analysis in Canna coco (D) Songbird analysis in Promix. In blue are the top pathways 
associated with plant growth promotion and in orange the pathways least associated with this feature.
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ANCOM or Songbird analyses, it is possible that these bacteria 
modulate the rhizosphere microbiome but do not colonize 
over long-term periods. The direct quantification of Pseudomonas 
spp. and Bacillus spp. colonization over time would help in 
delineating these hypotheses. Greater molecular insight into 
this tripartite interaction is needed to better understand the 
events leading to plant growth promotion.

Manipulating the agroecosystem remains a formidable task 
owing to the complexity and interconnectedness between 
countless microorganisms and the host (Berendsen et al., 2012; 
Agler et  al., 2016; Busby et  al., 2017). Although this study 
focused solely on the bacterial microbiome, understanding the 
fungal, viral and archaeal microbiomes, and how they interact 
with one another and with their host, is essential to understanding 
the microbiome as a whole and remains a formidable challenge. 
In this study, predictive pathway analysis identified several 
known PGPR pathways possibly responsible for inter-species 
interaction and plant growth promotion, notably, sugar 
metabolism, protocatechuate and aromatic compounds 
degradation, 2,3-butanediol biosynthesis, amongst others. 
Phospholipase metabolic pathway identified in the study is 
also an important secondary messenger pathway in plants, 
regulating response to phytohormones and pathogen elicitation 
(Ryu, 2004). In addition, a great deal of phosphorus in the 
soil is bound to biomolecules including nucleic acids, 
phosphorylated proteins and phospholipids. Secreted bacterial 
phospholipases have the capacity to liberate phosphorus from 
phospholipids, which the plant could assimilate, potentially 
augmenting plant growth (Martínez et  al., 2012; Tapia-Torres 
et  al., 2016). The phospholipase pathway together with sugar 
metabolism in Pseudomonas spp. might significantly increase 
the availability of essential soil nutrients for the plant and 
promote plant growth. An increase in the plant sugar content 
for example, following inoculation with PGPR, has been 
previously associated with increased plant stress tolerance (Kang 
et  al., 2019; Khan et  al., 2019). This might have contributed, 
amongst others, to plant biomass accumulation under our 
conditions. Metabolomics studies would be  helpful in this 
context to better characterize changes in plant metabolite profiles 
that directly contributed to the observed plant growth increase. 
Not limiting our analysis to pathways common between 
substrates, we  found many other pathways highlighted by 
ANCOM that have been previously associated to Pseudomonas 
spp. and Bacillus spp. PGPR. To name a few, the 
PROTOCATECHUATE-ORTHO-CLEAVAGE-PWY pathway 
(protocatechuate degradation II) is habitually found in plant-
growth-promoting microorganisms, including PGPR 
pseudomonads (Harwood and Parales, 1996; Shen et al., 2013). 
Pathways PW5431 (aromatic compounds degradation via 
β-ketoadipate) and 3-HYDROXYPHENYLACETATE-
DEGRADATION-PWY (4-hydroxyphenylacetate degradation) 
were also identified in a comparative genomic study of plant-
growth-promoting pseudomonads (Li et  al., 2010; Shen et  al., 
2013). The production of an important PGPR volatile compound, 
2,3-butanediol, by Bacillus spp. superpathways PWY-6396 
(superpathway of 2,3-butanediol biosynthesis) and P125-PWY 
[superpathway of (R,R)-butanediol biosynthesis], has also been 

associated with plant growth promotion, induced systemic 
resistance and more recently to the ability to modulate rhizosphere 
bacteria colonization (Ryu et  al., 2004; Hahm et  al., 2012; Yi 
et al., 2016). Given the limitations of marker-based sequencing 
in identifying metabolic pathway activation, we  are mindful 
not to overly infer. As these are only predictions, the importance 
of these pathways should be addressed in the bacteria surveyed 
by reverse genetics and by targeted metabolic studies.

Intriguingly, the combination LBUM825/LBUM279 only 
demonstrated above-ground growth promotion in Promix and 
none in Canna coco, presenting contrariety in this treatment 
combination between substrates, possibly because of soil type 
dependencies linked to this treatment combination. As previously 
demonstrated, soil physicochemical properties have a considerable 
effect on the overall health of the plant but also on the soil 
microbiome, which may explain the observed soil type dependencies 
linked to this treatment combination (Fierer and Jackson, 2006; 
Leite et al., 2017). The lack of efficacy for combinatorial treatment 
LBUM825/LBUM279  in Canna coco, and a generally higher 
standard deviation for all treatment groups in this substrate might 
also be  due to the required addition of fertilizers which would 
mask the PGPR effect in nutrient enriched conditions. Despite 
its usefulness in the present study for validating taxonomical finds 
in Promix, Canna coco demonstrated very weak fluctuations in 
the diversity and structure of the microbiome. Although this 
substrate is used commercially in the cultivation of cannabis, the 
lack of changes in these features may be indicative of the drawback 
for using this substrate, possibly hindering the root system to 
call to specific microbes under varying conditions, namely under 
stress (Fierer, 2017).

Under the conditions used in this study, we cannot completely 
rule out the possibility that some microbial metabolites could 
have been added during inoculation as part of the culture 
medium. These metabolites might have growth-promoting effects 
and/or effects on the resident bacteria. These effects, if any, 
could also potentially have been modulated by the different 
soil substrates used under our conditions. However, the fact 
that the experiments were performed over many weeks and 
that proper controls using double inoculation doses did not 
yield increased plant-growth-promoting effects suggest that 
these metabolites did not have a significant impact on the 
main results presented in thus study.

A common issue with the commercialization of PGPR 
remains the lack of reproducibility and consistency in practice 
(Girlanda et al., 2001; Walsh et al., 2003; Castro-Sowinski et al., 
2007). To better understand growth promotion, more mechanistic 
insight, and description of the effect of the treatments on the 
microbiome as a whole are needed. More precisely, describing 
how the diversity, structure and function of the microbiome 
has changed post-treatment with PGPR could avoid pitfalls in 
practice (Lozupone et  al., 2012; Dessaux et  al., 2016; Hartman 
et  al., 2018; Toju et  al., 2018). Our work creates an essential 
base that will facilitate further work in acquiring deeper 
molecular insight into the interactions between bacterial 
inhabitants and their host, which could enable a more tailored 
matching and engineering of PGPR to C. sativa, in lieu of 
arduous screening methodologies.
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