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Toxoplasmosis is one of the most prevalent and neglected zoonotic global diseases
caused by Toxoplasma gondii. The current pharmacological treatments show clinical
limitations, and therefore, the search for new drugs is an urgent need in order to
eradicate this infection. Due to their intrinsic biological activities, β-carboline (βC)
alkaloids might represent a good alternative that deserves further investigations. In this
context, the in vitro anti-T. gondii activity of three βCs, harmine (1), 2-methyl-harminium
(2), and 9-methyl-harmine (3), was evaluated herein. Briefly, the three alkaloids exerted
direct effects on the parasite invasion and/or replication capability. Replication rates
of intracellular treated tachyzoites were also affected in a dose-dependent manner, at
noncytotoxic concentrations for host cells. Additionally, cell cycle analysis revealed that
both methyl-derivatives 2 and 3 induce parasite arrest in S/M phases. Compound 3
showed the highest irreversible parasite growth inhibition, with a half maximal inhibitory
concentration (IC50) value of 1.8 ± 0.2 µM and a selectivity index (SI) of 17.2 at 4 days
post infection. Due to high replication rates, tachyzoites are frequently subjected to
DNA double-strand breaks (DSBs). This highly toxic lesion triggers a series of DNA
damage response reactions, starting with a kinase cascade that phosphorylates a
large number of substrates, including the histone H2A.X to lead the early DSB marker
γH2A.X. Western blot studies showed that basal expression of γH2A.X was reduced
in the presence of 3. Interestingly, the typical increase in γH2A.X levels produced by
camptothecin (CPT), a drug that generates DSB, was not observed when CPT was
co-administered with 3. These findings suggest that 3 might disrupt Toxoplasma DNA
damage response.

Keywords: β-carbolines, 9-methyl-harmine, 2-methyl-harminium, toxoplasmosis, cell cycle arrest, γH2A.X

INTRODUCTION

Toxoplasma gondii is an obligate intracellular protozoan parasite that belongs to the phylum
Apicomplexa, which infects a wide range of warm-blooded animals, causing toxoplasmosis. This
is one of the most prevalent infections among humans (Flegr et al., 2014). Its apparent success or
high prevalence is a direct consequence of the quite high infection rate of parasites, as well as its
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benign coexistence with immunocompetent hosts and the
large distribution without geographical or climatic barriers
(Carruthers, 1999).

Toxoplasmosis is usually asymptomatic in immunocompetent
persons (over 80% of primary cases) (Alday and Doggett, 2017)
and leads to chronic infection, with cyst formation mainly in
the central nervous system (CNS) (Martins-Duarte et al., 2006).
Symptoms may include bilateral cervical lymphadenopathy,
accompanied by low-grade fever, and usually, treatment is not
required (Durlach et al., 2003). However, it is noteworthy
that ocular toxoplasmosis is an important cause of ocular
impairment in immunocompetent persons, being one of the
most frequent etiologies of posterior uveitis (de la Torre
et al., 2014). In patients with impaired cellular immunity, i.e.,
patients with AIDS, with cancer, or under immunosuppressive
treatments, toxoplasmosis requires lifelong therapy to control
progressive infection and prevent relapse (Dubey and Jones,
2008; Martynowicz et al., 2020). In this respect, the primo-
infection or the reactivation of a chronic T. gondii infection can
cause neurological, systemic, and ocular diseases, with multifocal
necrotizing encephalitis being the predominant manifestation
(Rajapakse et al., 2013). In congenitally acquired toxoplasmosis,
the severity of the symptoms depends on the gestational age at the
time of maternal infection. Clinical manifestations might include
chorioretinitis, blindness, mental or psychomotor retardation,
intracranial calcifications, encephalitis, hydrocephalus, and even
death (Belk et al., 2018).

The gold standard for treating acute toxoplasmosis is a
combination of sulfadiazine (SDZ) and pyrimethamine (Araujo-
Silva et al., 2020). However, these two drugs may produce
severe side effects including thrombocytopenia, leucopenia,
neutropenia (Rajapakse et al., 2013; Montazeri et al., 2018),
and other adverse reactions such as agranulocytosis, toxic
epidermal necrolysis (McLeod et al., 2006), allergy, and hepatic
and renal complications (Mui et al., 2005). In addition,
clarithromycin, azithromycin, spiramycin, and atovaquone have
also been used for clinical toxoplasmosis, showing poor
pharmacological tolerance (Montazeri et al., 2017). Furthermore,
current chemotherapy is not able to destroy tissue cysts, and
the emergence of T. gondii strains resistant to current drugs is
ongoing (Montazeri et al., 2018). In the absence of an effective
human vaccine to treat toxoplasmosis, the development of novel,
safe, and more effective drugs is a real need.

β-Carbolines (βCs) are naturally occurring alkaloids present
in a broad spectrum of living species (Dai et al., 2018). In
particular, βCs are the most important constituents of the
plant Peganum harmala, used for generations as folk medicine
for the treatment of diverse illnesses, including parasitosis
(Moloudizargari et al., 2013). Due to their biological activity
against a wide range of protozoans, these compounds represent
excellent candidates. For example, harmine (1) caused necrosis
by a nonspecific membrane damage in Leishmania donovani
promastigotes and exerted antileishmanial activity both in vitro
and in vivo (Lala et al., 2004). In addition, 1 and harmane
were active against both promastigote and amastigote forms
of Leishmania infantum, whereas harmaline exerted a strong
antileishmanial activity toward the intracellular amastigote form,

preventing the promastigote internalization within macrophages
by inhibiting parasite protein kinase C (Di Giorgio et al.,
2004). Norharmane, harmane, and 1 were also effective against
Trypanosoma cruzi epimastigotes, in vitro, by inhibiting the
parasite’s respiratory chain (Rivas et al., 1999). Additionally, 1
and some chloro- and bromo-tetrahydro-βC derivatives were
reported to act as antiplasmodial agents (Shahinas et al., 2012;
Bayih et al., 2016). The quite high binding affinity of the latter βCs
and the ATP-binding domain of Plasmodium heat shock protein
90 (Hsp90) would be a key step in the mechanism of action. These
compounds also showed a significant reduction of parasitemia
in vivo, exerting a synergistic effect when co-administered with
other existing antimalarial drugs (Shahinas et al., 2012; Bayih
et al., 2016).

In a previous work, we found that 1, norharmane, and
harmane inhibited T. gondii invasion and replication in a dose-
dependent manner, with 1 being the most effective compound in
blocking a parasite’s growth (Alomar et al., 2013). In this context
and based on the fact that methyl-substituted βCs show enhanced
biological and/or antimicrobial properties (Dai et al., 2018),
the in vitro antitoxoplasmic activity of 2-methyl-harminium (2)
and 9-methyl-harmine (3) (Figure 1) was evaluated herein. In
particular, the effect on parasite invasion, replication, and growth
processes was assessed.

MATERIALS AND METHODS

Parasite Source, Culture, and
Manipulation
Tachyzoites of the virulent T. gondii strains RH 1hxgprt and
RH RFP [red fluorescent protein-tagged (Li et al., 2013),
kindly provided by Dr. Silvia Moreno, University of Georgia,
Athens, Georgia] were propagated in Vero (epithelial kidney
Cercopithecus aethiops) or hTERT immortalized human foreskin
fibroblast cells, incubated with Dulbecco’s modified Eagle
medium (DMEM, Gibco BRL) supplemented with fetal bovine
serum (FBS, 1% or 10% v/v for Vero and hTERT fibroblasts,
respectively), penicillin (100 UI/ml; GIBCO), and streptomycin
(100 µg/ml; GIBCO) in a humidified 5% CO2 atmosphere
at 37◦C.

Chemicals
Compound 1, SDZ, and CPT were provided by Sigma-Aldrich
at the highest purity available (>98%) and were used without
further purification. Syntheses of 2 and 3 (purity > 98%) were
described previously (Rasse-Suriani et al., 2018). Stock solutions
were prepared in DMSO (Biopack) and stored at 4◦C. All working
solutions were freshly prepared in supplemented DMEM at a final
DMSO (vehicle) concentration of 0.5% v/v.

Cytotoxic Effect of Studied βCs on Host
Cells
To evaluate the viability of host cells after treatment with the
different compounds, a colorimetric 3-[4,5-dimethylthiazol-
2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay
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FIGURE 1 | Chemical structures of βCs studied in this work.

(Mosmann, 1983) was performed. Briefly, monolayers of
Vero cells, grown in 96-well plates, were exposed to several
dilutions of the assayed compounds or the vehicle (DMSO) as
negative control, prepared in supplemented DMEM (see above).
After 2 days of incubation, the medium was removed, cells were
washed once with phosphate-buffered saline (PBS), and treated
with 0.5 mg/ml MTT (Sigma-Aldrich, 100 µl per well) in PBS, for
2 h, at 37◦C and 5% CO2. Supernatants were newly removed, and
formazan crystals were solubilized in DMSO (100 µl per well).

The same assay was performed for hTERT fibroblasts,
incubated for 4 days with different concentrations of 3.
Absorbance was read at 540 nm (reference wavelength: 700 nm)
in a plate reader (Synergy H1 Hybrid Reader, BioTek). Average
absorbance from background wells (without cells, treated as the
samples) was subtracted out, to obtain corrected values (A540
corr). The percentage of cell viability was calculated as follows:

Cell viability (%) =
A540 corr treated cells

A540 corr untreated cells
× 100

CC50 values were obtained by nonlinear regression analysis of
cell viability (%) vs. log[compound] with a variable Hill’s slope,
using the GraphPad Prism 5.03 software. Each concentration was
assayed in triplicates, in three independent sets of experiments.
To avoid effects of evaporation, outer wells were not used.

Invasion Assay
Extracellular tachyzoites of RH 1hxgprt strain (2 × 106) were
preincubated for 1 h (at 37◦C and 5% CO2) with different doses
of the assayed compounds (up to 40–50 µM) or the vehicle
(DMSO) diluted in supplemented DMEM. Parasites were, then,
centrifuged, resuspended in supplemented DMEM, and were
allowed to invade Vero cell monolayers grown on coverslips in
24-well plates by incubation for 10 min on ice followed by 1 h
at 37◦C. Invasion assay was performed as described elsewhere
(Yañuk et al., 2017). To facilitate counting, cells were analyzed
by indirect immunofluorescence assay (IFA). Immunostaining
was performed using anti-SAG1 mouse monoclonal (Novus
Biologicals, 1:50)/goat anti-mouse Alexa Fluor 488 (Invitrogen,
1:4,000) antibodies. Fifty random fields per sample, with a similar
number of host cells, were analyzed under microscope (Zeiss
Axio Observer Colibri 7, magnification × 63). The number of
parasitophorous vacuoles per field (PV/field) was counted. Data
are presented as means of PV/field ± SEM. Two independent
experiments were performed in duplicates.

Replication Assay
The effect of βCs on the replication process was evaluated on
both extracellular and intracellular treated tachyzoites of the
strain RH 1hxgprt. In the first case, the procedure followed
was described above (see invasion assay), but after allowing the
invasion, samples were washed with PBS and incubated for 1 day
with supplemented DMEM (without drugs), before fixing and
staining. To investigate βCs’ action on intracellular parasites,
confluent Vero cells grown in 24-well plates were infected with
2 × 106 tachyzoites per well and treated for 2 days with different
concentrations of the investigated drugs or the vehicle (DMSO)
as negative control. Finally, they were fixed and immunolabeled
as detailed previously. The number of tachyzoites per PV was
analyzed under a microscope with × 63 magnification. At least
100 PVs selected at random were scored in triplicates, per
compound dose, in two independent sets of experiments. Results
are depicted as the mean percentage of PVs (% PV) that contained
a geometric progression 2n (with “n” being a natural number≥ 0)
of tachyzoites per PV± SEM.

Cell Cycle Analysis
Tachyzoites of the RH 1hxgprt strain (3 × 106) were added
to hTERT cell monolayers grown into six-well plates. After
invasion was allowed, the medium was changed, and infected
cells were incubated for 2 days with 1, 2, and 3 (7.5 µM); SDZ
(500 µM, positive control); or the vehicle (negative control),
diluted in supplemented DMEM. Then, cells were detached
using trypsin/EDTA solution and gently ruptured by successive
passages through 27- and 30-gauge needles in order to obtain free
parasites. Samples were centrifuged (2,000 rpm, 10 min), washed
with PBS, fixed with 70% ethanol, and stored for 1 day at−20◦C.
Afterward, samples were processed and stained as described
previously (Munera Lopez et al., 2019). At least 10,000 tachyzoites
per sample were analyzed by flow cytometry measurements,
carried out in a BD FACSCalibur equipment. Results were
analyzed using FlowJo software 7.6. All assays were performed
in duplicates, in two independent experiments.

Lytic Cycle
Tachyzoites (1 × 104) of the RH RFP strain were allowed
to invade hTERT fibroblast monolayers grown into 96-well
plates, by incubation for 10 min on ice and 1 h at 37◦C
and 5% CO2. Then, cells were washed with PBS and treated
with different concentrations of the investigated drugs (up to
10 µM), SDZ (250 and 500 µM) as positive control, or the
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vehicle (DMSO) as negative control diluted in supplemented
DMEM (200 µl per well). Fluorescence measurements were
carried out at 3 d.p.i. (and also at 4 d.p.i. for 3) using a Synergy
H1 Hybrid Reader (BioTek). Samples were excited at 544 nm,
and fluorescence emission was collected at 590 nm from the
bottom (gain: 150). Data were obtained in triplicates, in two
independent experiments, and fluorescence values (expressed
as relative fluorescence intensity units or RFU) were corrected
by subtracting the respective average RFU of background wells
(containing samples without parasites but treated in the same
manner). IC50 values were obtained by nonlinear regression
analysis of % RFU normalized to negative controls vs. log[3] with
a variable Hill slope, using GraphPad Prism 5.03 software. Outer
wells were not used, in order to prevent effects of evaporation.

Plaque Reduction Assay
Monolayers of hTERT fibroblasts grown into 24-well plates
were infected with 1 × 104 tachyzoites per well of the RH
1hxgprt strain. Then, they were washed with PBS and treated
with different concentrations of 3 or the vehicle (DMSO)
diluted in supplemented DMEM. After 6.5 days of incubation,
monolayers were washed, fixed with ethanol (70% v/v), and
stained with crystal violet (Sigma). The IC50 value was obtained
by nonlinear regression analysis of the number of plaques vs
log[3] (variable Hill’s slope). The area of the plaques was analyzed
by ImageJ software.

Time of Removal Assay
Monolayers of hTERT cells, grown in 96-well plates, were infected
with 1 × 104 tachyzoites of the strain RH RFP. Afterward, cells
were washed with PBS and treated with 5, 7.5, and 10 µM of 3
or the vehicle (DMSO), diluted in supplemented DMEM (200 µl
per well). Finally, the medium was replaced by fresh DMEM
without drugs after 0.7, 1.7, 2, or 15 days of incubation, and
fluorescence emission data were collected at different times, up to
15 d.p.i., as was detailed for lytic cycle experiments. RFU values
were corrected by subtracting the average RFU of appropriate
background wells (with the same treatment to that of samples,
but without parasites). Results were obtained in triplicates.

Western Blot
Monolayers of hTERT cells grown in 12-well plates were infected
with 5 × 106 tachyzoites of the RH 1hxgprt strain. After the
invasion process, cells were washed with PBS and incubated with
3 (7.5 µM), CPT (10 µM), 3 (7.5 µM) plus CPT (10 µM), or
the vehicle (DMSO), diluted in supplemented DMEM for 2 days.
Then, infected cells were harvested by trypsinization, centrifuged,
resuspended in PBS, and lysed by freeze–thaw cycling. Samples
were resolved by SDS-PAGE (15%), and a western blot assay
was conducted. Membranes were incubated (1 h, RT) with
rabbit anti-T. gondii γH2A.X (1:500) (Contreras et al., 2021) and
murine anti-SAG1 (Novus Biologicals, 1:500). Finally, they were
washed several times with PBS-T and incubated with alkaline
phosphatase-conjugated anti-rabbit or anti-mouse secondary
antibodies, diluted to 1:4,000 (Santa Cruz Biotechnology).
Immunoreactive protein bands were visualized by the NBT-BCIP

(Promega) method. Densitometric analysis of scanned images
was performed using the Image-Pro Plus software.

Statistical Analysis
Data were analyzed by one-way ANOVA, followed by Dunnett’s
test or Kruskal–Wallis one-way ANOVA on ranks followed by
Dunn’s method, depending on the data set characteristics. Results
were considered significant for p < 0.05. GraphPad Prism 5.03
was used to this end.

RESULTS

Cytotoxicity of 1–3 on Vero Cells
To establish the operational concentration range for the
antiparasitic studies, cytotoxicity of 1–3 was tested on host
cells (Vero). Cell viability was evaluated by MTT assay after
2 days of treatment under similar conditions used for T. gondii
replication studies and cell cycle assays (see below). Data obtained
from dose–response curves (Supplementary Figure 1) revealed
that neutral compounds 1 and 3 were more cytotoxic than the
quaternary derivative, 2, with CC50 values of 57 (±4) µM,
>500 µM, and 59 (±8) µM for 1, 2, and 3, respectively. In
addition, under identical experimental conditions, SDZ showed
a CC50 value of >500 µM (Table 1).

Effects of 1–3 on Extracellular and
Intracellular Tachyzoites
The effect of βCs on the invasion and replication capability of
T. gondiiwas then evaluated. To this end, extracellular tachyzoites
were preincubated (1 h) with different βC concentrations ranging
from 0 up to ∼50 µM. Results depicted in Figure 2 (column A)
show that the invasion process was inhibited when parasites were
pretreated with 1. On the contrary, a negligible or rather low
effect was exerted by compounds 2 and 3. Also, the replication
process was affected after a pretreatment with the three drugs
(Figure 2, column B). Briefly, in the range of 5–50 µM, 2
and 3 produced around fourfold and fivefold increases of the
percentage of PV with just one parasite (% PV (1P)), whereas
tachyzoites pretreated with 1 produced a sharp increase in the
percentage of PV with two parasites (% PV (2P)) with respect
to the controls only at the higher doses (25–40 µM). Thus, 1
would have a lower and more retarded action than 2 and 3. It
is noteworthy that in the latter assays, the number of PV/field
followed the same trend observed in the invasion experiments
(data not shown).

The activity of the three studied compounds was also tested
in infected Vero cell culture. Experiments were performed at
noncytotoxic doses to host cells, according to the dose–response
curves (Supplementary Figure 1). Briefly, upon 2 days of
incubation of infected cells with 1, 2, and 3, a detrimental
effect on tachyzoite replication was clearly observed, in a dose-
dependent manner (Figure 2, column C, and Supplementary
Figure 2). This effect was also dependent on the chemical
structure of the βC tested. Compound 3 was the most effective
since at 7.5 µM, this particular drug led to the formation of 78%
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TABLE 1 | Cytotoxicity and anti-T. gondii activity of compounds 1–3.

1 2 3 SDZ Pyrimethamine

CC50 (µM) 57 ± 4a

49 ± 2b
>500a 59 ± 8a

31 ± 2b
>500a >40.2c

IC50 (µM) >10d,e >10d 1.6 ± 0.2d

1.8 ± 0.2e

3.1 ± 0.9f

∼500d

2,397–2,797g

307.7h

3.4c

0.8g

SI <5 – 17.2 – >11.9c

a,bCytotoxic effects of compounds tested on Vero cells and hTERT fibroblasts after 2 and 4 days of incubation, respectively. Values listed are the mean ± SEM of three
independent experiments in triplicates.
cData reported for RH strain and HFF host cells (Abugri et al., 2018).
d,e,f IC50 values obtained by RFP assay after 3 and 4 days of incubation and by plaque assay after 6.5 days of incubation, respectively. Results are means ± SEM of two
independent experiments in triplicates.
gData reported for RH strain (van der Ven et al., 1996).
hData reported for RH strain (Doliwa et al., 2013).

of PV (1P), whereas 1 and 2 induced the formation of 65 and 68%
PV (1P), respectively.

Effect of βCs in Tachyzoite Cell Cycle
To this aim, infected hTERT fibroblasts were incubated for 2 days
in the presence of 1, 2, or 3 (7.5 µM). Treatments with SDZ
(500 µM) and the vehicle were used as positive and negative
controls, respectively. We found that N-methyl-derivatives 2 and
3 produced a significant enrichment in tachyzoite DNA content
compatible with S/M phases (Figure 3 and Supplementary
Figure 3). A similar behavior was observed for tachyzoites
treated with SDZ, which inhibits the dihydropteroate synthase,
an important enzyme for pyrimidine biosynthesis in the parasite
(Montazeri et al., 2018). On the contrary, a negligible or null effect
on intracellular tachyzoites treated with 1 was observed.

Role and Effect of βCs on the Lytic Cycle
of T. gondii
The T. gondii lytic cycle is essential for parasite survival
within the host cells and, therefore, toxoplasmosis progression
(Wang et al., 2020). The effect of the studied βCs on the
parasite’s growth was then explored. RFP-expressing tachyzoites
were cultured in hTERT fibroblasts, in the presence of the
vehicle (negative control), different concentrations of 1–3 or
SDZ (positive control), and emission fluorescence measurements
were performed at 3 d.p.i. Our results show that compounds
1 and 2 had no major impact on the tachyzoite’s growth
(Figure 4), despite 1 producing certain inhibitions of the invasion
process and both 1 and 2 inducing significant replication
rate reductions. On the contrary, 3 exhibited a strong growth
inhibition in a dose-dependent manner, with an IC50 value
of 1.6 (±0.2) µM. In particular, for this compound, the same
assay was performed at 4 d.p.i., and results revealed that growth
inhibition was maintained throughout the experiment period,
as depicted in overlaid dose–response curves in Figure 4,
and the corresponding IC50 value of 1.8 (±0.2) µM was
obtained. Additionally, host cell viability in the presence of
different amounts of 3 was evaluated by MTT assay at the
later conditions (4 days of incubation). We obtained a CC50
value of 31 (±2) µM and, hence, a calculated selectivity

index (SI) of 17.2 (Table 1). It is important to note that at
10 µM (the higher concentration used in the parasite’s growth
assays), nonlinear regression analysis of MTT data showed
no impact of 3 on fibroblast metabolism (Supplementary
Figure 4). Furthermore, although treatment with SDZ 250 and
500 µM produced a decrease in the parasite’s growth (see a
decrease of ∼50% in RFU values being reached with respect
to untreated controls in the inset of Figure 4), this effect was
certainly lower than that achieved after treatment with 5, 7.5, or
10 µM of 3.

The antiproliferative effect of 3 was also confirmed by plaque
reduction assays (Supplementary Figure 5) that yielded an IC50
value of 3.1 (±0.9) µM when tachyzoites of the RH 1hxgprt
strain were incubated with different concentrations of 3 for
6.5 days (Table 1). Under these conditions, no parasite growth
was observed in cultures treated with 7.5 µM of 3, whereas
untreated wells showed a considerable number of plaques.
Interestingly, the analysis of the area of plaques showed the
same trend: a decrease in the plaque size as a function of
βC concentration.

Recovery of Parasite Growth After
Treatment With 3
Time of removal assays were carried out to further analyze
whether the growth effect induced by 3 was reversible or
irreversible. In these experiments, intracellular RFP-expressing
tachyzoites were exposed to 3 at those levels of concentration that
reached the higher growth inhibition (i.e., 5, 7.5, and 10 µM)
in the growth assay, and after different times post infection,
the medium with the drug (or the vehicle in control samples)
was replaced by fresh DMEM. Fluorescence measurements were
performed up to 15 d.p.i. Results indicated that 0.7 days of
treatment was not effective for any compound concentration
(Figure 5A). Instead, 1.7 and 2 days of treatment showed
a significant reduction of tachyzoite growth for 7.5 µM and
total growth inhibition for 10 µM. These data suggest that
compound 3 induces an irreversible but concentration- and
time-dependent tachyzoite growth inhibition (Figures 5B,C).
Additionally, continuous treatment with 3 (up to 15 days)
resulted in a complete inhibition of parasite growth (Figure 5D).
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FIGURE 2 | Effects of 1–3 on Toxoplasma invasion and replication. (A) Invasion process. Extracellular tachyzoites, treated with different doses of βCs or the vehicle
(DMSO) for 1 h, were allowed to invade Vero cell monolayers. Data are presented as means of PV/field ± SEM. Graphs are representative of two independent
experiments performed in duplicates. (B,C) Replication process. Percentage of PV with 1, 2, 4, 8, 16, 32, or 64 tachyzoites (from dark-colored to light-colored
stacked bars) were obtained for (B) 1-h-pretreated parasites after 1 day of incubation and (C) intracellular tachyzoites after 2 days of incubation with different
concentrations of the investigated βCs or the vehicle. Results are expressed as means of % PV ± SEM obtained from two independent experiments performed in
triplicates. Data were analyzed by Kruskal–Wallis/Dunn’s (asterisks) or ANOVA/Dunnett’s (hash symbols) tests. Marks indicate significant differences in PV/field or in
% PV having one parasite [or two parasites for 1 in column (B)] between treated samples and controls (*,#p < 0.05; ***p < 0.001). For 1, results in columns (A,B)
were previously published by Alomar et al. (2013) and were included here for comparative purposes.

It is noteworthy that in this experiment, the plateau reached
in RFU values starting around 6 d.p.i. for controls and those
ineffective conditions correlates with extended lysis of the
host cells. Furthermore, fluorescence intensity results were in
agreement with MTT data obtained from the same culture
plates at 15 d.p.i.; i.e., the highest fluorescence intensity
matched with the lowest absorbance value (Supplementary
Figure 6), indicating cell monolayer break due to the
progression of lytic cycle.

Effect of Compound 3 on Toxoplasma
H2A.X Phosphorylation
It has been well documented that βCs are able to inhibit key
enzymes including topoisomerases I (Cao et al., 2005) and II

(Deveau et al., 2001) and also certain DNA repair enzymes such
as phage T4-induced UV endonuclease (Warner et al., 1981). In
this context, and considering that the studied compounds are
able to arrest T. gondii’s cell cycle in S/M phases, the influence of
3 (the most effective compound) on γH2A.X levels was further
evaluated herein. The accumulation of this phosphorylated
protein reveals double-strand break (DSB) formation, one of the
most damaging types of DNA damage (Shrivastav et al., 2008;
Fenoy et al., 2016), albeit other replication-associated defects
may also trigger γH2A.X activation (Munera Lopez et al., 2019).
To this aim, intracellular tachyzoites were incubated with 3
(7.5 µM), CPT [10 µM, which corresponds to two times the
reported IC50 value of this compound for RH and RH RFP
strains (Munera Lopez et al., 2019)], or a mixture of 3 and CPT
(7.5 and 10 µM, respectively) for 2 days. Western blot assay

Frontiers in Microbiology | www.frontiersin.org 6 August 2021 | Volume 12 | Article 716534

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-716534 July 30, 2021 Time: 16:49 # 7

Alomar et al. Methylharmines as Novel Anti-T. gondii Agents

FIGURE 3 | Effects of 1–3 (7.5 µM) and SDZ (500 µM) on tachyzoite cell
cycle distribution. Results are expressed as the mean percentages of
tachyzoites in G1 (black) or S/M (white) phases ± SEM. Hash symbols
indicate significant differences between drug treatments and controls,
according to ANOVA/Dunnett’s tests (p < 0.05).

FIGURE 4 | Effect of βCs on the lytic cycle of T. gondii. Intracellular tachyzoites
(RH RFP strain) were cultured in the presence of studied compounds or the
vehicle. Results are means of % RFU (normalized to negative controls) ± SEM
obtained after 3 or 4 days of treatment with several concentrations of 1–3.
The graph includes results from two independent experiments made in
triplicates. Inset: Effect of SDZ (positive control) at the same conditions.

was performed afterward. As depicted in Figure 6, Toxoplasma
tachyzoites cultured in vitro showed detectable basal levels of
γH2A.X (Dalmasso et al., 2009; Nardelli et al., 2013; Munera
Lopez et al., 2019), due to their high DNA replication rates
that lead to replication stress (Munera Lopez et al., 2019). Also,
CPT treatment yielded a notable increase of γH2A.X levels,
as expected for an inhibitor of topoisomerase I, that produces
fork collapse and generates DSB (Rybak et al., 2016). Finally,

treatment of intracellular tachyzoites with 3 not only decreased
basal levels of γH2A.X but also reduced them significantly when
it was co-administered with CPT.

DISCUSSION

The current pharmacological treatments of toxoplasmosis have
strong clinical limitations (Mui et al., 2005; McLeod et al., 2006;
Rajapakse et al., 2013; Montazeri et al., 2017, 2018). Hence, the
search for novel and safe anti-toxoplasmic drugs is an urgent
need. Evaluation of βCs, a family of alkaloids with a broad
spectrum of antimicrobial action (Dai et al., 2018), could reap
benefits for the ongoing search for effective treatments against the
devastating effects of apicomplexan infection. This context led us
to study the in vitro effect of three harmine derivatives against
T. gondii.

It is known that T. gondii and βCs might exert antagonistic
effects on the host cells. On one hand, this parasite stimulates
the PI3K/Akt signaling pathway in ARPE-19 cells, to reduce
both NADPH oxidase 4 (Nox4) expression and intracellular
reactive oxygen species (ROS) levels, generating an optimal
microenvironment for its growth (Zhou et al., 2013). On the
other hand, βC alkaloids and, in particular, 1 depress the
PI3K/Akt/mTOR signaling pathway, which results in autophagy
of the insect Spodoptera frugiperda Sf9 cell line (Cui et al.,
2019). In addition, N(2)-benzyl-β-carboline derivative induces
cell apoptosis through suppression of PI3K/Akt signaling in
HepG2, A549, and HeLa cells (Zhang et al., 2016). With this
in mind, extracellular parasites were first treated with each βC
(1–3) prior to cell infection. Data showed that pretreatment
with the drugs led to a significant reduction in tachyzoite
replication. The latter effect was more evident for 2 and 3. In
contrast, pretreatment with 1 produced a higher decrease in
invasion rate. These results confirm that, despite any putative
effect that might affect the host cell, βC alkaloids clearly exert
a direct effect on the parasite. A similar behavior has been
previously described for other related βCs including norharmane
and harmane (Alomar et al., 2013).

Since extracellular tachyzoite is not a replicative stage,
the pretreatment success could be due to (i) the residual
βCs accumulated into the parasites that might act when the
replication process occurs and/or (ii) an alteration of the parasite
fitness needed to recover after invasion. Interestingly, in a recent
work, Denofrio et al. (2020) demonstrated that related βCs
accumulate mainly into the mitochondria of HeLa cells after
a short incubation time (20 min), and upon longer incubation
times, 1 might also accumulate in other intracellular components
(Vignoni et al., 2014). It is noteworthy that atovaquone, a drug
currently under use for human acute toxoplasmosis treatment,
exerts its anti-T. gondii action by inhibiting the mitochondrial
electron transport processes (McFadden et al., 2000).

Prior to studying the effect of the drugs on intracellular
tachyzoites and to dismiss apparent antiparasitic effects induced
by the loss of host cell viability, the intrinsic cytotoxicity of
these three alkaloids was evaluated against host cells. Our results
revealed that neutral compounds 1 and 3 were more cytotoxic
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FIGURE 5 | Time of removal assays. Intracellular tachyzoites (RH RFP strain) were cultured in the presence of 5, 7.5, and 10 µM of 3 or the vehicle, and after (A)
0.7, (B) 1.7, and (C) 2 days of treatment, the medium was changed. Parasite growth was monitored by fluorescence emission measurements in the absence of the
compound at different times up to 15 d.p.i. (D) The compound was present during the whole assay. Results are means (triplicates) of RFU ± SEM.

(CC50 ∼ 60 µM) than compound 2 (CC50 > 500 µM) when
Vero cells were treated with these drugs for 2 days (Table 1).
Interestingly, a similar trend has been previously described for
the cytotoxicity of other related βCs (i.e., norharmane and
harmane) and their respective 9-methyl-derivatives on Vero
(Gonzalez et al., 2018) and HEK (Wernicke et al., 2007) cell lines.
On the other hand, a marked cytotoxicity reduction observed
for the quaternary derivative 2 was also reported for other
related quaternary βCs on cells lacking a dopamine transporter
(Wernicke et al., 2007).

Finally, our data demonstrated that 1–3 were able to decrease
the T. gondii replication rate, when intracellular tachyzoites (i.e.,
infected Vero cells) were exposed to alkaloids. However, only
3 was able to strongly abolish the parasite’s growth. The latter
effect cannot be ascribed to the difference rate or dynamic of
βC release from the cells, since it was recently proven that, after
washing, quaternary alkaloids (such as 2) remain inside the cell

longer than the neutral derivatives such as 1 and 3 (Denofrio
et al., 2020). It is noteworthy that 3 was also more effective than
the gold standard SDZ, used herein as positive control, even
at concentration levels 100 times lower. Additionally, the effect
shown by compound 3 is comparable to the IC50 value reported
for pyrimethamine on the RH strain, ranging from 0.8 to 3.4 µM,
depending on the experimental condition (Table 1). Recovery
experiments demonstrated that 3 exerted an irreversible action
on the tachyzoite’s growth, but in a concentration- and time-
dependent manner. These results show that methylation of the
harmine skeleton at position N(9) is crucial for anti-toxoplasma
effects. Note that other biological effects including cytotoxicity
against different cancer cell lines (Cao et al., 2004) and antiviral
activities (Gonzalez et al., 2018; Quintana et al., 2020) are also
enhanced by 9-methylation of the β-carboline skeleton.

To delve into the mechanism by which compounds 1–3 act
against T. gondii tachyzoites, the progression of parasite cell
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FIGURE 6 | (A) Expression of T. gondii γH2A.X evaluated by western blot after 2 days of treatment with CPT (10 µM), 3 (7.5 µM), CPT (10 µM) + 3 (7.5 µM) or the
vehicle (DMSO). (B) Density measurements of western blot bands, relativized to SAG-1 expression.

cycle in the presence of the studied compounds was evaluated,
since different βCs have proven to induce cell death through
arresting cell cycle at different phases or transitions between
them, in different cancer cell lines, yeast (Ahmad et al., 2020),
and parasites (Di Giorgio et al., 2004). According to our results,
2 and 3 produced an increase of tachyzoite population in S/M
phases, which agree with reported data for related compounds.
For instance, 1 induces cell cycle arrest of hepatoma (Zhang et al.,
2015) and SW620 cells (Liu et al., 2016) in S and G2/M phases.
The same behavior was found for SCG-7901 cancer cells upon
treatment with harmaline (Wang et al., 2015) and for L. infantum
promastigotes treated with 1 and harmane (Di Giorgio et al.,
2004). Compound 1 did not show a significant effect, probably
due to the low concentration range tested.

High speed in cell division, as occurs in cancer cells
(Halazonetis et al., 2008) or tachyzoites, needs high rates of
DNA replication, which are associated with replication stress
and collapsed replication forks that lead to DNA DSB. This
kind of lesion is extremely toxic, and a failure or delay in
its repair may result in cell death. Therefore, cells initiate the
DNA damage response (DDR) signaling, mediated by three
members of the phosphatidylinositol 3′-kinase (PI3K)-like kinase
(PIKK) family: DNA-dependent protein kinase (DNA-PK), ataxia
telangiectasia mutated kinase (ATM), and ATMRas-3-related
kinase (ATR) (Fenoy et al., 2016). Both DNA-PK and ATM
are involved mainly in DSB repair, whereas ATR responds to
single-stranded DNA structures, associated with resected DNA
DSB or stalled replication forks (Mukherjee et al., 2019). These
kinases, present in T. gondii (Fenoy et al., 2016; Angel et al.,
2020), activate by phosphorylating several proteins implicated
in DDR, such as histone H2A.X, which is phosphorylated at a
SQE motif becoming γH2A.X, an early DBS marker. γH2A.X
recruits repair factors near DSB sites and also plays a role
in constraining the broken DNA ends (Dickey et al., 2009).
Recently, Munera Lopez et al. (2019) demonstrated that ATM
mediates H2A.X phosphorylation in response to DSB produced
by CPT in T. gondii tachyzoites, and such phosphorylation

was reduced in the presence of the specific ATM inhibitor
KU-55933. Our results also showed that the γH2A.X increase
caused by CPT was drastically reduced in a joint treatment with
CPT and 3. Then, the latest compound would be altering the
ATM function, as well as other PI3Ks that also phosphorylate
the SQE motif of H2A.X (i.e., ATR or DNA-PK) under DSB.
Additionally, basal levels of γH2A.X decreased in the presence
of 3. Although other targets can also be affected, the latter results
suggest a connection between compound 3 and the alteration of
the DNA damage response of T. gondii. Moreover, the specific
ATM inhibition by KU-55933 leads to tachyzoite cell cycle
arrest in the G1 phase (Munera Lopez et al., 2019), as occurs
when cancer cells are treated with the same compound (Li and
Yang, 2010). Since cell cycle analysis showed a clear increase in
S/M phases when 2 and 3 are present, their inhibitory effect
may indicate that other DDR effectors could be implicated.
Nevertheless, further analysis should be done to find other drug
targets. In this regard, cell cycle arrest in G2/M phases occurs,
for example, when both ATM and ATR are simultaneously
inhibited in HeLa cells treated with chemical DSB inducers
(Lima et al., 2016) and also when DNA-PK is specifically
inactivated by NU7026 in γ-irradiated ATM-deficient AT5BIVA
cells (Shang et al., 2010).

It is well known that βCs bind to DNA molecules. Particularly,
previous studies demonstrated that 1, 2, and 3 partially intercalate
into ctDNA with overall binding constants of 7.7 ± 0.2
(Yañuk et al., 2018), 5.9 ± 0.3 (Denofrio et al., 2020), and
16.8 ± 0.5 (Vignoni et al., 2014) × 103 M−1 in bp, respectively,
under physiological pH conditions (pH 7.4). However, as most
intercalating agents, they do not induce DSB (or other DNA
damages) in extracellular DNA (Gonzalez et al., 2012; Denofrio
et al., 2020). Although the in vivo interaction could affect the
topoisomerase activity (Tomczyk and Walczak, 2018), reported
data show that 1 and 3 do not inhibit the human topoisomerase II
at 600 µM. In addition, albeit topoisomerase I activity is inhibited
by 1 and 3 at 150 µM, the latter effect strongly decreases at 50 µM
in a cell-free system (Cao et al., 2005). It is important to note that
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these levels of concentrations are higher than the corresponding
doses used herein for the intracellular tachyzoite treatments. Even
though these compounds could act at DNA damage and/or DNA
repair level, all these evidences suggest that βCs would exert their
action impairing DNA repair pathways. In agreement with this
argument, Zhang et al. demonstrated that 1 blocks homologous
recombination by inhibiting Rad51 recruitment, causing death
of hepatoma cells (Zhang et al., 2015). Moreover, 1 and several
harmine derivatives do not induce any damage to the DNA
integrity in A549 cells (Geng et al., 2018). Nevertheless, further
research is needed to assess and to unambiguously elucidate the
role of 1–3 at the DNA level in T. gondii tachyzoites.

In summary, data reported in this work clearly demonstrate
that smooth chemical modifications, i.e., 9-methylation,
represent a key tool to enhance the antitoxoplasmic activity of
this family of alkaloids. Briefly, a promising harmine derivative,
showing irreversible action on T. gondii’s growth, was identified
herein. Data may suggest that compound 3 would affect the DNA
repair machinery of the parasite, which is an important source of
therapeutic targets. However, further research is still needed to
better understand and confirm the mechanism of action.
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