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Microorganisms display a stunning metabolic diversity. Understanding the origin of this 
diversity requires understanding how macroevolutionary processes such as innovation 
and diversification play out in the microbial world. Metabolic networks, which govern 
microbial resource use, can evolve through different mechanisms, e.g., horizontal gene 
transfer or de novo evolution of enzymes and pathways. This process is governed by a 
combination of environmental factors, selective pressures, and the constraints imposed 
by the genetic architecture of metabolic networks. In addition, many independent results 
hint that the process of niche construction, by which organisms actively modify their own 
and each other’s niches and selective pressures, could play a major role in microbial 
innovation and diversification. Yet, the general principles by which niche construction 
shapes microbial macroevolutionary patterns remain largely unexplored. Here, we discuss 
several new hypotheses and directions, and suggest metabolic modeling methods that 
could allow us to explore large-scale empirical genotype-phenotype-(G-P)-environment 
spaces in order to study the macroevolutionary effects of niche construction. We hope 
that this short piece will further stimulate a systematic and quantitative characterization 
of macroevolutionary patterns and processes in microbial metabolism.

Keywords: macroevolution, metabolism, innovation, diversification, niche construction, genotype-phenotype 
(G-P) map, genotype-by-environment (G × E) interaction, non-commutative epistasis

INTRODUCTION

Prokaryotes exhibit by far the most diverse collection of metabolisms on earth. Disentangling 
the mechanisms by which such diversity arises is paramount for understanding both the 
emergence of complex life and the structure and function of modern microbial ecosystems.

Our knowledge about the history of life on earth contains numerous examples suggesting 
that the process of niche construction might play a central role in diversification. An obvious 
one is the early appearance of autotrophic metabolism, which profoundly transformed the 
biosphere by generating complex, energy-rich carbon molecules and releasing oxygen to the 
atmosphere, creating new ecological opportunities (Schirrmeister et al., 2013; Chen et al., 2020). 
Many additional examples exist in nature, where niche construction has been observed to play 
important roles, from the early examples described by Darwin (1881) in his work on earthworms 
to diatoms or beavers (Odling-Smee et  al., 2013). Although, theoretical work has anticipated 
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numerous ways, in which niche construction might impact 
evolutionary outcomes (Laland et al., 1999; Silver and Di Paolo, 
2006; Krakauer et  al., 2009), most of these predictions remain 
empirically untested. From a general principles standpoint, 
many open questions remain: How does niche construction 
itself evolve, and what are the principles and mechanisms that 
govern it? How does it depend on the external environment, 
on the architecture of metabolic genotypes or on metabolic 
strategies? How does niche construction affect macroevolutionary 
processes such as innovation and diversification?

The short-term, microevolutionary consequences of niche 
construction have been extensively characterized, both 
theoretically and empirically (Laland et  al., 1999; Odling-Smee 
et  al., 2013). The most paradigmatic of such effects are 
eco-evolutionary dynamics, which arise because constructed 
environments (and their effects on selective pressures) depend, 
within certain limits, on the abundance of the organisms 
constructing them. This leads to a dynamic coupling between 
frequency and density-dependent selection, which occur in 
similar timescales. Because the nature of built environments 
in microbes is often determined by single genes or mutations, 
niche construction can link the fate of specific alleles to the 
current, instantaneous composition of a population (Sanchez 
and Gore, 2013; Chen et  al., 2014). When several species are 
involved, niche construction can also combine with other 
ecological interactions to generate more complex phenomena, 
such as the coexistence of three or more species through 
intransitive interactions (e.g., rock-paper-scissors; Kerr 
et  al., 2002).

In contrast to microevolution, the macroevolutionary 
consequences of niche construction, such as microbial 
innovation and diversification, have been less explored. A 
rare experimental example of a potentially macroevolutionary 
event is the appearance of aerobic citrate utilization in 
Escherichia coli in the Long Term Evolution Experiment (LTEE). 
Recent findings have shown that the two main mutations 
leading to this innovation, the aerobic expression of dctA 
and citT, were intimately linked to an eco-evolutionary 
interaction mediated by the release of metabolites to the 
environment (Bajić et  al., 2018; de Visser et  al., 2018). 
Furthermore, one of the main potentiating mutations that 
helped “prepare” the genetic background for the evolution 
of citrate use (gltA), likely achieved fixation because of its 
beneficial effect on acetate, a constructed niche (Quandt et al., 
2015). These observations suggest that niche construction 
might play a key role in microbial metabolic diversification. 
More broadly, they showcase the potential of microbial 
experiments to illuminate the mechanisms and the genetic 
basis underlying macroevolutionary patterns.

At the same time, experiments also have important limitations. 
In the LTEE, only one out of 12 E. coli evolution lines gained 
the ability to use citrate, and did so only after ~30,000 generations 
(~20 years of experiment). This illustrates that innovation and 
exploration of untapped ecological opportunities still depends 
on historically contingent, and thus rare, combinations of 
mutations (Blount et  al., 2008). Correspondingly, “blind” 
evolutionary explorations of genotype space still require 

timescales approaching the limits of what is experimentally 
feasible, even for organisms with some of the shortest generation 
times on Earth.

A promising alternative is provided by genome-scale metabolic 
models, which offer us the possibility to rapidly explore large 
regions of metabolic genotype-environment space. Using genome-
inferred metabolic networks, these models are able to quite 
accurately simulate the growth of real organisms in silico, 
providing us mechanistic insight into the function of biologically 
realistic genotype-phenotype-(G-P)-fitness maps. Genome-scale 
metabolic models have been already successfully applied, for 
instance, to gain insight into long-term phenotypic evolution 
in microbes (Plata et  al., 2015), study the genomic basis of 
metabolic innovations (Barve and Wagner, 2013; Hosseini et al., 
2015) and explore intriguing origin-of-life scenarios (Goldford 
et  al., 2017). Beyond purely computational studies, genome-
scale metabolic models have also proven a powerful tool for 
experiment design. An astonishing example was the recent 
obtention of an E. coli strain capable of autotrophic metabolism 
(Gleizer et al., 2019). This achievement used metabolic modeling 
to predict what new reactions might be  needed by E. coli to 
acquire carbon fixation capabilities. Once these reactions were 
included, experimental evolution took care of integrating them 
in the regulatory network, allowing E. coli to start fixing CO2 
and become autotrophic in a relatively short time. The potential 
niche construction consequences of such metabolic innovation 
are self-evident.

We thus believe that, in combination with experiments, 
genome-scale metabolic models can be  an invaluable tool to 
explore macroevolutionary patterns in microbes. In this short 
piece, we lay out several future directions, focusing in particular 
on the effects of niche construction or, more broadly, the 
two-way interaction between genotype and environment.

NICHE CONSTRUCTION AND THE 
PARALLEL EXPLORATION OF FITNESS 
LANDSCAPES

In their landmark work almost 40 years ago, Levins and Lewontin 
(1985) noted that evolution does not only proceed as a mere 
adaptation of organisms to the external environment. In addition, 
as they adapt, organisms also modify the environment, potentially 
affecting their own selective pressures (Levins and Lewontin, 
1985). Evolution becomes then better described as a “dialectic” 
process, in which genotype and environment perpetually modify 
each other. This logic, however, challenges the predictions of 
many established theories that only consider the adaptation 
of organisms to the “external” environment. For instance, fitness 
landscapes have been widely used as both a conceptual device 
and as a tool for predicting evolution (de Visser et  al., 2018; 
Gorter et al., 2018). But if fitness landscapes constantly “deform” 
during evolution, their utility would be  severely compromised 
(Doebeli et  al., 2017).

To what extent, then, is niche construction an ubiquitous 
process, and to what extent is it able to influence evolutionary 
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patterns and outcomes? Answering these key questions inevitably 
requires turning our attention to empirical systems. In recent 
work, we  used constraint-based metabolic modeling to 
systematically map the diversity of constructed niches on a 
metabolic genotype space, and their evolutionary consequences 
(Bajić et  al., 2018; de Visser et  al., 2018). We  found that when 
a newly constructed niche becomes available, as a result of a 
mutation, multiple subsequent mutations (often epistatic to 
each other) are typically needed to take advantage of this new 
niche. This led to a surprising conclusion: while in the shorter 
term “static” fitness landscapes are typically predictive, the 
deformations gain importance as changes in both the environment 
and the population genotypes accumulate. In addition, recent 
studies have identified that large numbers of metabolites can 
be  secreted by microbes, often at no cost (de Visser et  al., 
2018; Magdalena and Wagner, 2018; Pacheco et  al., 2019). 
These results point to the possibility that niche construction 
might play a preeminent role in evolutionary processes that 
typically occur over longer timescales, possibly including 
macroevolutionary patterns such as phenotypic divergence 
and diversification.

A particularly interesting possibility is that, by enabling 
the parallel exploration of different fitness landscapes, niche 
construction could facilitate bridging fitness valleys (Steinberg 
and Ostermeier, 2016), including those leading to innovations. 
An illuminating hint of how this might happen comes from 
a recent work showing that the emergence of complex 
innovations can be  facilitated by stepwise metabolic niche 
expansion (Szappanos et  al., 2016). In order to reach complex 
innovations requiring two or more mutations, organisms 
capitalize on more accessible “stepping stone” innovations, 
allowing them to navigate genotype-space by switching between 
environments. It is easy to imagine how such “stepping-stones 
to innovation” could be  provided through niche construction 
(Figure  1). In this way, niche construction could blur the 
lines between ecological and mutation-order speciation (Schluter, 
2009), making them contingent on each other. Exploring to 
what extent can constructed niches open evolutionary paths 
toward otherwise inaccessible ecological opportunities could 
provide a mechanistic explanation to the hypothesis that 
“diversity beget diversity” (Whittaker, 1972), which has been 
recently shown to apply in microbiomes in some conditions 
(Madi et  al., 2020).

LINKING NICHE CONSTRUCTION TO 
ADAPTIVE RADIATION

If niche construction facilitates innovation and diversification, 
this could have profound consequences for our understanding 
of adaptive radiations, a process considered integral to ecological 
and phenotypic diversity (Simpson, 1953; Schluter, 2000). 
Adaptive radiation is the process of phenotypic diversification 
of organisms into forms that fill different available ecological 
niches. Phenotypic novelties can facilitate adaptive radiation 
by allowing organisms to interact with their environments in 
new ways, in turn generating novel ecological opportunities 

upon which natural selection can act and prompting adaptive 
evolution (Simpson, 1953; Stroud and Losos, 2016; Erwin, 
2017). The connection between innovation and adaptive radiation 
has been extensively documented both within the fossil record 
and using diverse empirical and experimental systems (Schluter, 
2000; Losos, 2010; Yoder et al., 2010). Notable examples include 
the evolution of adhesive silk in spiders, which enhanced prey 
capture (Bond and Opell, 1998), alternate photosynthetic 
pathways in desert plants that reduce water loss (Silvestro et al., 
2014), and adhesive toe pads that unlock access to arboreal 
niches in anole lizards (Burress and Muñoz, 2021). However, 
the study of ecological opportunity has been largely structured 
around the evolution of features that facilitate access to novel 
peaks in the adaptive landscape. Comparatively less focus has 
been given to the role that organisms serve as arbiters of 
available niches, for example, by constructing new ones or 
bridging access to new peaks (Emerson and Kolm, 2005; Erwin, 
2005; Braakman et  al., 2017). In the microbial realm, adaptive 
radiations of phenotypically diverse lineages can be  obtained 
through experimental evolution, and often involve niche 
construction (Rainey and Travisano, 1998; Friesen et  al., 2004; 
Le Gac et  al., 2008; Kassen, 2009; Schick and Kassen, 2018). 
However, the scope of these studies in terms of environmental 
complexity, genetic diversity, and timescales is rather limited 
compared to plausible scenarios in nature (Consuegra et al., 2017).

A key question is to what extent are novelty, diversification 
and adaptive radiation in microbes constrained and directed 
by the spectrum of available genetic variation as opposed to 
just ecological opportunity (Schluter, 2009; Kassen, 2019). As 
shown by Schluter (1996), adaptive radiation often proceeds 
along “genetic lines of least resistance,” meaning that evolution 
occurs in the direction, where most genetic variation is available. 
If niche construction significantly alters microbial fitness 
landscapes, it could quantitatively bias the observed patterns 
of adaptive radiation by changing the distribution of fitness 
effects, and consequently altering the location of those lines 
of least resistance. Furthermore, complex genetic architecture 
(e.g., epistasis) also imposes strong constraints on adaptation 
(Weinreich et  al., 2005, 2006), but this question has been 
scarcely explored in the context of adaptive radiation, and 
more generally, macroevolutionary patterns. In the case of 
bacterial metabolism, the availability of detailed empirical 
genotype-phenotype maps and the possibility of their prediction 
has already been very useful to show how the epistatic architecture 
of metabolic networks can fundamentally constrain innovation. 
For example, the partial overlapping between the pathways 
used for different nutrients results in many innovations being 
readily accessible as a byproduct to the adaptation to a given 
nutrient (Barve and Wagner, 2013). Exploring in detail how 
epistasis shapes the response of populations to constructed 
niches, and how epistatic interactions themselves change with 
the environment, represents an interesting opportunity for 
future research.

Furthermore, if niche construction provides “stepping stones” 
toward other innovations, it could also contribute qualitatively 
to some of the most iconic patterns of adaptive radiation such 
as rapid diversification. If we consider that each new adaptation 
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bears the potential to transform the environment, we  could 
imagine a “cycle” in which innovation results in new constructed 
environments, which in turn open up adaptive paths to further 
downstream innovations, potentially leading to rapid 
diversification patterns. Scenarios similar to the “stepping stones” 
model in adaptive radiation have been hinted at by simulations 
(Sneppen et  al., 1995), but they have so far remained in the 
theoretical realm. Finally, an intriguing question is how niche 
construction plays out when considering more realistic genotype-
phenotype spaces, where the genetic accessibility of phenotypes 
can be  organized in asymmetric and nonrandom topologies 
(more precisely, “pre-topologies”; Fontana and Schuster, 1998; 
Stadler et  al., 2001; Erwin, 2017). Together, exploring to what 
extent could niche construction facilitate innovation and release 
adaptive radiation from the yoke of genetic constraint is a 
fascinating future direction.

DISCUSSION

In this piece, we  argued that the combination of genome-
scale metabolic modeling with experiments presents a great 
opportunity to tackle the role of different evolutionary forces, 
and niche construction in particular, in microbial 
macroevolution. Recently, platforms such as “Computation 
of Microbial Ecosystems in Time and Space” (COMETS; 
Dukovski et al., 2020) are extending the range of possibilities 
of genome-scale metabolic models by enabling us to simulate 
evolution in the context of multispecies ecosystems.  
COMETS combines population dynamics with a realistic, 
empirically calibrated genotype-phenotype map that is also 

environment-sensitive, where mutations can randomly appear 
as either metabolic reaction deletions or additions (e.g., 
through horizontal gene transfer) or by random changes in 
the maximum fluxes through each reaction. Importantly, 
niche construction emerges naturally in COMETS, as it 
predicts phenotypes such as secretion of metabolites. This 
offers an unique opportunity to explore evolution (including 
macroevolution) with mechanistic insight, allowing us to 
understand biological processes at lower levels of organization 
without isolating them from the eco-evolutionary processes 
in which they are embedded (Bergelson et  al., 2021; van 
Tatenhove-Pel et al., 2021). Furthermore, COMETS also offers 
sophisticated spatial capabilities. These could be  key in 
understanding the effects of metabolic niche construction 
(Maynard et  al., 2017; van Tatenhove-Pel et  al., 2021) as 
well as help understand observations in natural environments, 
as well as in emerging experimental platforms such as ecoFABs 
(Sasse et  al., 2019).

One of the hurdles in this path is our current lack of 
understanding of the relationship between the genotype and 
the organisms’ effects on the environment, particularly through 
secretion of metabolites. The release of some compounds, 
such as fermentation byproducts, is well understood (and 
predicted by metabolic models; Basan et  al., 2015; Mori 
et  al., 2016), suggesting that we  could generalize this finding 
and link genotype to build niches in a systematic way. 
However, exometabolomic analyses typically identify complex 
metabolite mixtures (Paczia et  al., 2012), whose origin is 
still poorly understood. Understanding the determinants of 
metabolic secretions represents one of the main current 
limitations for building a predictive theory of microbial 

A

C

B

FIGURE 1 | Niche construction could facilitate metabolic innovation and adaptive radiation in microbes. (A) Complex innovations, requiring two or more mutations, 
are hard to reach through adaptive evolution, needing the fixation of neutral or deleterious mutations. (B) Niche construction could provide “bridge” environments, 
which are known to facilitate the navigability of genotype space by adaptive evolution, making innovations readily accessible (Steinberg and Ostermeier, 2016; 
Szappanos et al., 2016; Pál and Papp, 2017). (C) By extension, we can imagine a hypothetical evolution of the number of resources that a microbial population can 
use, as a succession of innovation events. Changes in constructed niches could make new innovations accessible, which will spur adaptation and thus also building 
new niches. A hypothetical result of this cyclic process could be rapid bursts of innovation, a punctuated pattern characteristic of adaptive radiation.
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ecology and evolution, including macroevolutionary processes 
of qualitative change.
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