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Studies have shown an association between bacterial load and virulence; however, not
much is known about the diversity in this phenotypic characteristic of Mycobacterium
tuberculosis complex (MTBC). This study was therefore aimed to determine the
differences in bacterial load of the three most prevalent MTBC genotypes (L4, L5,
and L6) in West Africa at the time of diagnosis. A total of 170 paired fresh sputum
samples were collected; one part in guanidinium thiocyanate (GTC) was used for RNA
extraction and tuberculosis molecular bacterial load assay (TB-MBLA), and the other
part without GTC was confirmed for TB positivity using GeneXpert MTB/RIF, smear
microscopy grading, and culture on Löwenstein–Jensen media slants. The 170 sputum
samples comprised 155 new cases, three follow-up cases, and 12 TB negative sputum
samples. The time-to-culture positivity (TTP) and degree of culture positivity (DCP) were
recorded. All 122 isolates obtained were spoligotyped for lineage (L) classification, but
spoligotypes were obtained from 120 isolates. Of the typed isolates, 70.0, 10.8, 10.8,
4.2, 2.5, 0.8, and 0.8% were lineages 4, 5, 6, 2, 3, 1, and Mycobacterium bovis,
respectively. Further analysis of the three most prevalent lineages showed significantly
shorter TTP and higher DCP by L4 compared to L5 and L6, respectively: TTP 20.8, vs.
26.5, and 28.2 days; p-value = 0.005 and DCP 1.27, vs. 0.81 and 0.29, p < 0.001. The
average TB-MBLA measured bacterial load of L4 was 3.82 Log10eCFU/ml which was
not significantly different from 3.81 and 3.80 Log10eCFU/ml of L5 and L6, respectively,
p = 0.84. Degrees of smear microscopy L4 = 1.20, L5 = 1.20, and L6 = 0.92 and
GeneXpert Cq values L4 = 17.08, L5 = 18.37, and L6 = 17.59 showed no significant
difference between the lineages, p = 0.72 and p = 0.48, respectively. Retrospective
analysis of a larger sample confirmed the difference in TTP, p < 0.001. In conclusion,
the observed shorter TTP and high DCP of L4 could signify high growth rate in culture
that is independent of total bacterial load at diagnosis.
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INTRODUCTION

Tuberculosis (TB) remains a global health challenge and the
leading cause of death from a single infectious pathogen
(WHO, 2020). In 2019, it was estimated that about 10 million
individuals fell ill from TB with an estimated 1.4 million deaths
(WHO, 2020). Human TB is mostly caused by Mycobacterium
tuberculosis sensu stricto (Mtb) and M. africanum (Maf)
which are members of the M. tuberculosis complex (MTBC)
(Gagneux et al., 2006). Members of the MTBC appear genetically
monomorphic yet host specific but occasionally cross-infect other
hosts (Gagneux et al., 2006; Jagielski et al., 2016). A further
classification of the MTBC clusters the human-adapted species
into lineages with specific geographical distribution. The Mtb is
made up of six lineages (L1-4, L7, and L8) which are generally
widely distributed globally while Maf comprising lineages 5 and
6 and the newly identified lineage 9 are mainly restricted to West
Africa for reasons not clearly understood (Filliol et al., 2006; Coll
et al., 2014; Nebenzahl-Guimaraes et al., 2016; Ngabonziza et al.,
2020; Coscolla et al., 2021).

Mycobacterium africanum has been reported to cause up to
about 50% of human TB in some West African countries as
well as four other lineages (lineages 1, 2, 3, and 4) causing TB
infection in the subregion (de Jong et al., 2010). In total, six
different lineages have been reported to cause TB in West Africa,
making the subregion one of the geographical areas with the
highest diversity of the pathogen (de Jong et al., 2010; Yeboah-
Manu et al., 2016). However, L4, L5, and L6 are the most prevalent
genotypes in West Africa (de Jong et al., 2010; Asante-Poku et al.,
2016; Yeboah-Manu et al., 2016).

Infection with MTBC does not necessarily imply having the
TB disease. There are three main possible outcomes upon entry
into the lungs: (1) the innate immunity may be able to clear
the pathogen leading to no disease, (2) the pathogen may be
contained in the lungs to form granuloma by attracting other
immune effector cells to surround the activated macrophages to
reduce tissue damage and proliferation of the bacteria, thereby
leading to establishment of latent TB infection, and (3) the
immune system may not be able to keep the pathogen under
check, allowing an active replication of the bacilli and hence
leading to active TB disease (Handzel, 2013; de Martino et al.,
2014, 2019). These outcomes of TB infections can be attributed
to the host immune response, the environmental conditions, and
the bacterial factors such as its virulence (Handzel, 2013).

One of the key virulence factors of bacteria is its ability to grow
fast to large numbers to frustrate the host immunity; thus, the
bacterial load at diagnosis of TB could be used as a marker for
virulence (Forrellad et al., 2013; Tram et al., 2018). More virulent
lineages of MTBC are able to replicate better under the harsh
conditions of the host macrophages, leading to high bacterial
load required for subsequent transmission events (Tram et al.,
2018). Although studies have shown that there is an association
between bacterial load and virulence, not much is known about
the diversity in this phenotypic characteristic of MTBC (Malik
and Godfrey-Faussett, 2005; Tram et al., 2018). Different strains
of the bacilli may express different levels of bacterial load in
sputum based on the variation in their virulence, which may

lead to different disease outcomes. Our aim therefore was to
determine the differences in bacterial load of the three most
prevalent MTBC genotypes in West Africa (L4, L5, and L6) at
the time of diagnosis.

MATERIALS AND METHODS

Ethical Consideration
Ethical clearance for the study was obtained from the
Institutional Review Boards (IRB) of Noguchi Memorial Institute
for Medical Research (NMIMR), University of Ghana (federal-
wide assurance number: FWA00001824) and the Korle-Bu
Teaching Hospital (KBTH). The ethical clearance documentation
included informed consent of participants to be enrolled
voluntarily. For participants below 18 years, child assent
was sought from the participants and consent from their
parents or guardians. After the consent was obtained, a
questionnaire was administered to the participants to capture
their demographic data.

Study Design
Patients showing clinical symptoms of active pulmonary TB
(PTB) and sputum positive for GeneXpert MTB/RIF were
prospectively recruited into the study. Samples were collected
between November 2018 and October 2020 from three health
facilities in the Greater Accra region of Ghana: Korle-Bu
Teaching Hospital, University of Ghana hospital, and “37
Military” Hospital. This study sought to recruit new TB cases of
all ages who reported to the above listed health facilities; however,
a few follow-up cases were included.

Sample Collection and Bacterial
Cultivation
Two tubes of spontaneously expectorated sputum samples were
collected from each PTB patient before the start of anti-TB
therapy. To preserve the RNA, samples in the first tubes
were treated with guanidine thiocyanate (GTC) solution within
15 min of sputum production and stored at −80◦C. The
second tubes with sputa were transported to the laboratory
for bacteria cultivation. The samples were decontaminated by
5% oxalic acid, as previously described (Yeboah-Manu et al.,
2004) and inoculated on four Löwenstein–Jensen (LJ) media
slants; two slants supplemented with glycerol and the other
two supplemented with pyruvate. The inoculated slants were
incubated at 37◦C and observed every day for the first week
for possible contamination and subsequently observed for
macroscopic growth. The time to culture positivity (TTP) was
recorded as the number of days it took for the first mycobacterial-
like growth to be observed and the DCP according to the
Mycobacteriology Laboratory Manual (Stinson et al., 2014)
was also recorded. The TTP and DCP were used to assess
the relationship of lineage and growth rate and implications
for bacterial load.

In total, we collected 170 sputum samples comprising 155 new
cases, three follow-up cases, and 12 TB negative sputum samples
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FIGURE 1 | The study workflow of sputum sample collection.

as controls (Figure 1). Majority of the cases (n = 61; 39.9%) were
within the age group of 31–45 years, followed by 41 (26.8%) in
the 15–30-year group, 37 (24.2%) in the 46–60-year group, 13
(8.5%) above 60 years, and 1 (0.6%) case below the age of 15. Most
of the TB cases 118/158 (75%) were males, and the remaining
25% were females.

The 12 negative control participants comprised of eight
(66.7%) males and four (33.3%) females, and they were in the
age categories of 15–30 (n = 5, 41.7%), 31–45 (n = 4, 33.3%), and
45–60 (n = 3, 25.0%).

Smear Microscopy
Smears were made from the sediments obtained after
decontamination on microscope slides. The slides were stained
with Ziehl–Neelsen staining technique and microscopically
examined for the presence of acid-fast bacilli. The bacterial load
at the time of diagnosis was estimated as the number of acid-fast
bacilli which was recorded as the degree of positivity according
to the WHO standard (WHO et al., 2001).

Mycobacterium tuberculosis Complex
Lineage Identification
All obtained mycobacterial isolates were first confirmed as
members of the MTBC by amplification of the Insertion
Sequence 6110 (IS6110). Mycobacterial isolates confirmed
as MTBC were then genotyped by spacer oligotyping
(spoligotyping) by amplification of the direct repeat (DR)
region followed by hybridization onto a film. Binary data
obtained from either the presence or absence of spacers
in the DR region were analyzed in the MIRU-VNTRplus
database to determine the infecting lineage/sub-lineage
(Kamerbeek et al., 1997).

GeneXpert MTB/RIF Assay
The bacterial load in all the sputum samples obtained was
quantified using Xpert MTB/RIF Ultra (Cepheid, Sunnyvale,
CA, United States), an automated nucleic acid amplification

(NAA) test. The quantification cycle (Cq) values from the
real-time PCR assay which targets the rpoB gene with five
probes were used for the quantification of mycobacterial DNA.
This method uses a disposable cartridge with the GeneXpert
(GX) instrument as per the manufacturer’s instructions
(WHO, 2013a). Briefly, fresh sputum samples collected
from TB suspected patients were mixed with GX reagent
(2 × the sample volume) and incubated for 15 min at room
temperature with intermittent shaking. An aliquot of 2 ml
of each diluted sample was transferred into the cartridge
and subsequently run in the GX instrument. Results were
reported as the average quantification cycle (Cq) values
of five probes, which was used to estimate bacterial load.
Data generated were analyzed with the GX software version
4.3 where the mean Cq values were categorized as high
(Cq < 16), medium (Cq 16–22), low (Cq 22–28), and very low
(Cq > 28) (WHO, 2013a,b).

Tuberculosis-Molecular Bacterial Load
Assay
The TB molecular bacterial load assay (TB-MBLA) is a reverse
transcriptase real-time quantitative PCR (RT-qPCR) method that
detects and quantifies viable MTBC in sputum by determining
the amount of MTBC 16S ribosomal RNA (16S rRNA). It is a two-
step process consisting of a) extraction of total RNA and b) RT-
qPCR (Sabiiti et al., 2017, 2020b).

Extraction of Total RNA
Spontaneously expectorated sputum samples collected into GTC
solution were used for RNA extraction. An aliquot of 1 ml of
the homogenized sputum was collected into a new vial, and
total RNA was extracted using FastRNA Pro Blue Kit (MP
Biomedicals LLC, Illkirch-Graffenstaden, France) according to
the manufacturer’s instruction. Briefly, 100 µl of internal control
(IC) suspension was added directly into each sample followed
by cell lysis. Phase separation was obtained by adding the
lysed cells to 300 µl of chloroform. The aqueous phase was
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pipetted out into a new 2-ml vial followed by the addition
of 500 µl of 100% ice-cold ethanol and incubated at −20◦C
overnight. The extracted RNA was washed with 70% ice-
cold ethanol and dried at 50◦C in a heating block. The
extract was then treated with Turbo DNase using the Turbo
DNA-free Kit (Ambion AM1907, Thermo Fisher Scientific,
Vilnius, Lithuania) to remove genomic DNA following the
manufacturer’s instruction.

Reverse Transcriptase–Quantitative PCR
Specific primers and probes for the MTBC 16S ribosomal
RNA were added to the master mix (QuantiTect Multiplex
RT-PCR NR Kit (QT) (Qiagen Inc., Hilden, Germany)
(Sabiiti et al., 2020b). All RNA samples were analyzed in
duplicates: as diluted (1 in 10 dilution) and neat (without
dilution). The Cq values for the duplicate standard
curves were constructed with known RNA concentrations
for MTBC and the extraction control (Vitalbacteria St
Andrews Applied Research Ltd., United Kingdom) which
served as reference for translating Cq values into bacterial
load measured as estimated colony forming unit per
milliliter (eCFU/mL).

Data Analysis
Statistical analyses to determine the differences between the three
lineages were carried out using analysis of variance (ANOVA)
in RStudio Version 1.2.5033 (RStudio, Inc., Boston, MA,
United States). Further specific differences were determined with
ad hoc test and Tukey test. The significance level for all statistical
analyses was set at a p-value less than 0.05 at a confidence level
of 95%. Figures were developed using RStudio, and data for the
three lineages were represented by their respective standard color
codes: red = L4, brown = L5, and green = L6.

TABLE 1 | Frequency of lineages and sub-lineages.

Lineage Sub-lineage Total number (%)

Cameroon 53 (44.2)

Ghana 17 (14.2)

L4 Haarlem 7 (5.8)

Uganda1 5 (4.2)

X 1 (0.8)

X3 1 (0.8)

L5 L5 13 (10.8)

L6 L6 13 (10.8)

L2 Beijing 5 (4.2)

L3 Delhi/CAS 3 (2.5)

L1 EAI 1 (0.8)

M. bovis bovis 1 (0.8)

Total 120

RESULTS

Sputum Samples and Mycobacterial
Isolates
Out of the 155 new cases, 122 were culture positive. Therefore, the
culture positivity rate was calculated as 78.7%. We were able to
genotype 120 of the 122 culture-positive isolates by spoligotyping,
of which TB-MBLA was carried out for 118. GeneXpert MTB/RIF
Cq values were obtained for all the samples received. All the
negative control sputum samples and the follow-up cases were
negative for culture on L-J media slants.

Mycobacterium tuberculosis Complex
Lineages and Sub-Lineages
All six lineages prevalent in West Africa were observed in this
study but at different frequencies. The highest prevalent lineage

FIGURE 2 | Comparison of the colony-forming unit per mL (Log10eCFU/mL) of the lineages. Log10eCFU/mL values obtained from MBLA were plotted against the
three lineages.
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FIGURE 3 | Comparison of smear microscopy results of the lineages. The degree of positivity from the smear microscopy was compared for the three lineages.

FIGURE 4 | A large-scale comparison of the smear microscopy results of the lineages. The degrees of positivity of the lineages were compared using a total number
of 2,043 isolates from a previous study (L4 = 1,563, L5 = 289, and L6 = 191).

was L4 with 84 (70.0%) isolates (Table 1). The sub-lineages
under L4 were Cameroon (53, 44.2%), Ghana (17, 14.2%),
Haarlem (7, 5.8%), Uganda1 (5, 4.2%), X (1, 0.8%), and X3 (1,
0.8%). There were 13 (10.8%) L5 and 13 (10.8%) L6 isolates
as well as 5 (4.2%) L2 isolates all belonging to the Beijing
sub-lineage. There were three (2.5%) L3 isolates all belonging to
the Delhi/CAS sub-lineage. In addition, we observed one (0.8%)
L1 isolate of the EAI sub-lineage and one (0.8%) Mycobacterium
bovis isolate. Comparison of results was made only between the
three main prevalent lineages in West Africa and Ghana, that
is, L4, L5, and L6.

Mycobacterial Load at Diagnosis
Three microbiological methods were used to determine the
bacterial load of the prevalent genotypes of MTBC in West Africa.
The log10eCFU/mL values obtained from TB-MBLA were plotted
against the three lineages (Figure 2). Although the average
log10eCFU/mL of L4 was the highest (3.82), followed by L5 (3.81)
and L6 (3.80) respectively, there was no observed significant
difference, ANOVA p = 0.84.

Degrees of smear microscopy for the three lineages were
compared revealing no significant difference across the three
lineages, ANOVA p = 0.72 (Figure 3). The average degrees of
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FIGURE 5 | Comparison of the mean Cq values of the lineages using Gene Xpert. The mean of the Cq values of the five probes from the GeneXpert machine was
calculated and plotted against the three lineages.

FIGURE 6 | The time to positivity (TTP) on L-J media slants for the lineages. The number of days for the first distinct colony to appear on the media slant was
recorded as the time to positivity for the lineages.

positivity for both L4 and L5 were the same (1.20) with 0.92
for L6. We further compared the smear microscopy results of
retrospective data with a larger sample size of 2,043 isolates
(Asare et al., 2018) (L4 = 1,563, L5 = 289, L6 = 191) (Figure 4).
Lineage 4 showed the highest average degree of positivity of 1.57
followed by L6 (1.52) and then L5 (1.48), and still no significant
difference was observed ANOVA, p = 0.38.

The mean of the Cq values for the five probes from the
Xpert MTB/RIF Ultra was compared among the three lineages,
as shown in Figure 5. The lowest average of the mean
Cq-value was recorded for L4 (17.08) followed by L6 (17.59)
and L5 (18.37), respectively. The lower the Cq, the higher the

bacterial load, but the difference was not significant across the
three lineages (p = 0.48), which is consistent with TB-MBLA
measured bacterial load.

The Relationship of Lineage and Growth
Rate
The impact of lineage on growth rate was assessed by using the
time to positivity (TTP) and degree of culture positivity (DCP)
on L-J media slants for the isolates. The number of days for
the first distinct colony to appear on the L-J media slant was
recorded as the TTP for the three lineages (Figure 6). There was
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FIGURE 7 | Time to positivity on L-J media slants considering a larger sample size. The TTP of the three lineages was assessed for a previous study with a total of
2,219 isolates (L4 = 1,712, L5 = 306, and L6 = 201).

FIGURE 8 | Degree of culture positivity on L-J slants supplemented with either glycerol or pyruvate. Positivity was recorded at the same time as the TTP. Error bars
were generated from the standard deviation (SD).

a significant difference in the TTP among the lineages, ANOVA
p = 0.005. Lineage 4 showed the lowest average TTP (20.8 days)
followed by L5 (26.5 days) and then L6 (28.2 days). The difference
seems to have been driven by the difference between L4 and L6
(p = 0.01) because there was no significant difference between L5-
L6 (p-value = 0.87). Since there was a propensity for a significant
difference between the TTP of L4 and that of L5 (p-value = 0.09),
we assessed this in a large sample size by retrospectively analyzing
data generated from a previous study with a larger sample size
(Asare et al., 2018) with a total of 2,219 isolates (L4 = 1,712,
L5 = 306, L6 = 201), as shown in Figure 7. Again, L4 showed
the lowest average TTP (23.7 days) followed by L5 (29.4 days)
and then L6 (31.9 days). There was also a significant difference

between the TTP of the lineages (p-value < 0.001). In these data,
there was significant difference between L4-L6 (p < 0.001) and
L4-L5 (p < 0.001). Again, there was still no significant difference
between L5 and L6 (p = 0.13).

Assessment of the degree of culture positivity also showed that
L4 had the highest average degree of culture positivity of 1.27
with an average DCP of 1.38 on L-J supplemented with glycerol
(L-J_Glycerol) and 1.15 on L-J supplemented with pyruvate (L-
J_Pyruvate), as shown in Figure 8. Lineage 5 followed with
an average DCP of 0.81 (average DCP on L-J_Glycerol = 0.69;
L-J_Pyruvate = 0.94) and L6 had the least average DCP of 0.29
(average DCP on L-J_Glycerol = 0.21; L-J_Pyruvate = 0.37).
There was a significant difference between the three lineages,
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p < 0.001, specifically between L4 and L5 (p < 0.001) and
between L4 and L6 (p < 0.001). However, there was no statistical
significance difference between L5 and L6 (p = 0.20).

DISCUSSION

The virulence of MTBC can be evaluated by its (1) ability to
survive in the host, (2) ability to multiply in the midst of the harsh
host environment, and (3) ability to be transmitted successfully
to new host for its propagation (Coscolla and Gagneux, 2014;
Echeverria-Valencia et al., 2018; Ly and Liu, 2020). The MTBC
is able to exploit the host machinery to transmit to other
individuals through the evolution of their specific adaptations to
the host immunity (Mehrotra et al., 2014; Brites and Gagneux,
2015). The higher the bacterial load of an index TB patient, the
higher the chance of successful transmission to another person
(Turner and Bothamley, 2014; Turner et al., 2017; Migliori et al.,
2018). Therefore, high bacterial load is essential to ensuring
continuous propagation of the MTBC and hence considered a
very important virulence factor (Rouillon et al., 1976; Salinas
et al., 2007; Brites and Gagneux, 2015). This property can
be exploited to investigate the differences in virulence for the
different lineages of MTBC. We explored and compared bacterial
load of the three dominant MTBC lineages in West Africa
(L4, L5, and L6) using TB-MBLA, sputum-smear microscopy,
Xpert MTB/RIF Ultra, time-to-culture positivity, and degree of
culture positivity.

We found that L4 had the lowest TTP and shows the
fastest growth on L-J media slants followed by L5 and then
L6. Also, L4 showed the highest degree of culture positivity
compared to L5 and L6. This suggests that either L4 replicates
at a relatively faster rate or the sputum samples containing
L4 had higher bacterial load than the Maf lineages (L5 and
L6). To verify this, we compared the TB-MBLA results for the
lineages which confirmed L4 with the highest bacterial load,
but this was not significantly different from L5 and L6. The
insignificant difference in bacterial loads of the three lineages
is an indication that the growth rate in culture cannot be fully
explained by the underlying bacterial load. Studies have shown
the existence of dormant bacilli that cannot grow in culture and
may explain why the growth rate does not correlate with bacterial
load particularly measured by assay like TB-MBLA that detects
both dormant and actively growing bacilli (Mukamolova et al.,
2010; Dusthackeer et al., 2019). The trend of higher bacterial
load and shorter time-to-culture positivity demonstrated by L4
is consistent with the reported inverse relationship between
TTP and TB-MBLA measured bacterial load (Sabiiti et al.,
2020b). Since TB bacillary load has been shown as an early
marker of disease severity, future studies should investigate the
relationship between L4 with disease severity and treatment
outcomes (Sabiiti et al., 2020a).

The assessment of the sputum-smear microscopy gradings
of the three MTBC lineages showed no significant difference
in the bacterial load. The low sensitivity of smear microscopy
of 20–80% in TB prevalent regions could account for its
potential inaccurate estimation of bacterial loads (WHO, 2009;

Chadha et al., 2019). Therefore, to verify that L4 either
has the highest bacterial load or as the fastest replication
compared to L5 and L6, we compared Xpert MTB/RIF
Cq values among the three lineages. The lower the mean
Xpert MTB/RIF Cq value, the higher the bacterial load.
Although L4 had the lowest mean Cq values followed by
L6 and L5, respectively, the difference was not statistically
significant. Tram et al. (2018) were able to show an association
between MTBC virulence and bacterial load using a linear
trend test. Although they showed that increased MTBC
virulence was associated with increased bacterial load using
the East Asian/Beijing lineage (Tram et al., 2018), they
did not compare the bacterial load of different lineages as
done in this study.

Overall, there was no significant difference in the bacterial load
for the three lineages using smear microscopy, Xpert MTB/RIF,
and TB-MBLA. Our findings corroborate a previous study where
they showed a similar transmission for both Mtb and Maf but
different rates of progression to disease (de Jong et al., 2008).
Our study showed that all three lineages had similar bacterial
loads at the point of diagnosis, but there was diversity in
the TTP and DCP.

Moreover, TB patients irrespective of the infection genotype
may have high variation in the time between exposure and the
time of reporting to the hospital. This can potentially affect
the time each genotype/lineage of the MTBC has to replicate
within each affected TB patient; hence, there is no correlation
between replication rate and bacterial load at the time of
diagnosis. Additionally, a major challenge to the fight against
TB in Ghana and Africa is stigmatization (Lawn, 2000; Dodor
et al., 2008). Due to stigmatization, many individuals with signs
and symptoms of TB are reluctant to report to the hospital
for diagnosis (Dodor et al., 2008; Amo-Adjei, 2016). This leads
to delay in reporting of cases, consequently leading to high
bacterial burden before treatment irrespective of the infecting
lineage of the MTBC.

CONCLUSION

In conclusion, our data show that L4 grows faster than L5
and L6 irrespective of the pretreatment bacterial load. This can
possibly be attributed to the intrinsic properties of L4 such as
higher proportion of actively growing bacilli that can easily be
recovered in culture. We therefore recommend a larger study that
will recruit more participants infected with the different MTBC
lineages who can be monitored to determine the difference
in their rate of sputum bacterial load clearance and treatment
outcomes using the TB-MBLA in comparison to the current
standard-of-care tests.
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