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A tight association between microbial function and taxonomy is the basis of functional
prediction based on taxonomy, but such associations have been controversial in
water biomes largely due to the probable prevalence of functional redundancy.
However, previous studies on this topic used a relatively coarse resolution of
ecosystem functioning, potentially inflating the estimated functional redundancy. Thus,
a comprehensive evaluation of the association between high-resolution functional traits
and taxonomic diversity obtained from fresh and saline water metagenomic data is
urgently needed. Here, we examined 938 functionally and taxonomically annotated
water metagenomes obtained worldwide to scrutinize the connection between function
and taxonomy, and to identify the key driver of water metagenomes function or
taxonomic composition at a global scale. We found that pairwise similarity of function
was significantly associated with taxonomy, though taxonomy had higher global
dissimilarity than function. Classification into six water biomes resulted in greater
variation in taxonomic compositions than functional profiles, as the key regulating
factor was salinity. Fresh water microbes harbored distinct functional and taxonomic
structures from microbes in saline water biomes, despite that taxonomy was more
susceptible to gradient of geography and climate than function. In summary, our results
find a significant relationship between taxonomic diversity and microbial functioning
in global water metagenomes, although microbial taxonomic compositions vary to a
larger extent than functional profiles in aquatic ecosystems, suggesting the possibility
and necessity for functional prediction of microorganisms based on taxonomy in global
aquatic ecosystems.

Keywords: metagenomics, microbes, taxonomy, function, salinity, freshwater

INTRODUCTION

Microbial communities are major regulators of biogeochemical processes and ecosystem functions
(Hall et al., 2018). While global decline in biodiversity will negatively impact ecosystem functions
and services in both aquatic and terrestrial ecosystems (Jousset et al., 2016; Schmidt et al., 2017),
understanding the relationship between microbial functional profile and taxonomic composition
is essential for predicting ecosystem functioning based on microbial diversity under various
environmental disturbances (Torsvik and @vreas, 2002; Wellington et al., 2003; McGill et al., 2006).
It is often presumed that though microbial communities are sensitive to disturbance, their overall
ecosystem functioning remains relatively stable, as many microbes are probably functionally
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redundant (Allison and Martiny, 2008). The association between
microbial diversity and ecosystem functioning may be obscure
due to functional redundancy. Yet, the extent to which such
functional redundancy could affect our potential to evaluate the
global consequences of shifting microbial diversity on ecosystem
functioning remains largely unknown.

In contrast to the theory of functional redundancy, increasing
evidence has shown that species richness can be positively related
to multiple aspects of ecosystem functioning, including resource
usage, nutrient cycling, and biomass accumulation (Covich
et al,, 2004; Downing, 2005; Balvanera et al., 2006). Compared
to richness, species identity in community composition may
be more suitable for predicting the ecosystem functioning.
By analyzing community composition, it has been found that
a decreasing gradient of microbial diversity in freshwater
metagenomes could impact both broad and specialized functions
(Peter et al,, 2011; Delgado-Baquerizo et al,, 2016a). Thus,
any shift in bacterial composition could cause at least a
proportional depletion of microbial capability to support
ecosystem functions, implying minor functional redundancy
in freshwater metagenomes. However, the characterization of
ecosystem functioning of these studies was generally of low
resolution, mostly in terms of certain biogeochemical processes
only. A comprehensive understanding of the correlation between
microbial functional and taxonomic diversities will require a
thorough evaluation of microbial functional composition, which
has not been analyzed and thus leaving a wide gap of knowledge
that needs to be addressed.

In an analysis of global marine metagenomes, decoupling of
function and taxonomy has been suggested, as the taxonomy
is highly variable within specific functional groups, and
environmental conditions strongly influence the distribution
of functional groups while only weakly affect taxonomic
composition within individual functional groups (Louca et al.,
2016b). However, a lower deviation in functional profiles than
taxonomic composition alone, which suggests a certain extent
of functional redundancy, cannot refute the dependency of
microbial functional profiles on taxonomic compositions if
there exists a significant association between the two. More
importantly, it has been found that salinity is the major
factor regulating global aquatic microbial community, even
more influential than sampling types, extreme temperature,
and pH (Lozupone and Knight, 2007). Since aquatic microbes
are strongly affected by physical and chemical properties of
aquatic ecosystems, solely focusing on marine microbiomes may
underestimate the significant effects of salinity on microbial
distribution and relevant function in water biomes. Thus, it is of
great importance to combine both fresh and saline water biomes
in quantitative analysis to determine the relationship between
functional and taxonomic diversities so as to understand the
impact of future global change on diversity loss and ecosystem
functioning in water biomes.

The importance of multifunctionality (Hector and Bagchi,
2007), which is the assessment of multiple functions performed
by different species at the same time, has been highlighted to
avoid overestimating functional redundancy (Gamfeldt et al.,
2008). The microbial multifunctionality index composed by

multiple assays needs to be quantified to better represent
functional traits corresponding to taxonomic diversity (Bastida
et al., 2016; Delgado-Baquerizo et al., 2016b). In recent decades,
metagenomics has been increasingly used as a promising
comparative tool (Tringe et al., 2005) to assess microbial
functional diversities (Fierer et al., 2012a,b, 2013), since the
abundance of each gene can be specific to a particular
environmental process and numerous ecosystem functions can
be examined all together in one environmental sample (Allison
and Martiny, 2008). To date, open-source web servers, such as
Metagenomic Rapid Annotations using Subsystems Technology
(MG-RAST) (Meyer et al, 2008), are publicly available for
meta-analyses (Nelson et al, 2016; Ramirez-Flandes et al,
2019) based on simultaneous metagenomic annotation against
functional and taxonomic databases, allowing direct comparisons
between functional profiles and taxonomic compositions. Yet, a
comprehensive metagenomic analysis to elucidate the extent to
which microbial functional profiles respond to different scales of
variations in taxonomic compositions is still lacking for global
water metagenomes.

Here, we constructed a dataset of 938 water metagenomes,
functionally and taxonomically annotated, acquired from peer-
reviewed publications and MG-RAST database. Based on this
dataset of global water metagenomes, we specifically tested the
hypotheses that (1) across the globe, microbial functional profiles
are associated with taxonomic compositions, though taxonomy
may harbor less similarity and larger variation than function; (2)
salinity is the potential key driver for significant shifts in both
functional and taxonomic diversities across the globe.

MATERIALS AND METHODS

Data Collection

Instead of directly obtaining available shotgun metagenomic
data from a public server as in previous global metagenomic
studies (Nelson et al.,, 2016; Ramirez-Flandes et al., 2019), we
strategically selected water metagenomes published in peer-
reviewed journals to ensure the quality and completeness of the
data. Specifically, we searched peer-reviewed publications from
2006 to 2019 from the Web of Science database using the terms
such as “water metagenome,” “shotgun sequencing,” and “MG-
RAST.” We included studies directly deposited or analyzed water
metagenomes using shotgun sequencing without amplification
in the MG-RAST database, and water metagenomes publicly
available in the MG-RAST database. Based on the Study ID
and/or MG-RAST ID reported in the publications, we extracted a
data matrix of water metagenomes from the MG-RAST database.
Specifically, in the “Analysis” function of the MG-RAST server,
we typically loaded both SEED Subsystems (Overbeek et al., 2013)
(Function, level 3, 2, and 1) as functional profiles and RefSeq
(Tatusova et al., 2013) databases (genus, family, order, class, and
phylum levels) as taxonomic compositions.

The analyses were performed using default settings
(maximum e-value cutoff was le™>, minimum identity cutoff
was 60%, and minimum alignment length was 50) (Meyer et al.,
2008). We further merged the data matrix of each function
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extracted from different studies together to build up new datasets
of microbial functional profiles annotated in the Subsystems
database and taxonomic compositions annotated in RefSeq
database. We chose Subsystems database for functional grouping
rather than KEGG Orthology (KO; Kanehisa et al, 2015),
Clusters of Orthologous Groups (COG; Galperin et al., 2014),
and Non-supervised Orthologous Groups (NOG; Huerta-Cepas
et al, 2015) databases because Subsystems showed diverse
classification at level 1, allowing us to conduct more detailed
comparison of functions among water biomes. We chose RefSeq
database rather than traditional ribosomal RNA databases,
such as Ribosomal Database Project (RDP; Cole et al., 2008),
Greengenes (DeSantis et al., 2006), or Silva LSU/SSU (Pruesse
et al., 2007) databases because taxonomic hits in RefSeq
database were over 1000-fold higher than rRNA databases,
which was comparable to functional hits for comparison. To
expand our datasets, water metagenomes with/without assembly
were both included.

In total, this study included 938 water metagenomes around
the world extracted from 55 MG-RAST studies published in 55
peer-reviewed papers (Figure 1). Detailed information of each
water metagenome extracted from publications and the MG-
RAST database was given (Supplementary Table 1). Study ID,
MG-RAST ID, sample name, base pair (bp), and reads were
obtained from the metadata of each water metagenome in the
MG-RAST database. The geographic coordinates of latitudes
(LAT) and longitudes (LONG) of each water metagenome were
directly obtained from publications or MG-RAST studies. All
water metagenomes were grouped into six categories, including
three freshwater biomes (groundwater, surface freshwater, and
urban wastewater), and three saline water biomes (coastal
seawater, marine seawater, and surface saline water).

Statistical Analyses

Hits of each functional or taxonomic category in the data matrix
were standardized to relative abundance through dividing by
total hits to remove bias in difference in sequencing depths
and read lengths among different studies. To calculate the
pairwise similarity of taxonomy, based on the relative taxonomic
abundance at the genus level, we calculated the Bray-Curtis
similarity following log transformation of the compositional
taxonomic data by constructing a pairwise Bray-Curtis similarity
matrix between each pair of two samples, which were further
transformed to lists of pairwise Bray-Curtis similarities ordered
by sample pair names in PRIMER 7 (Plymouth Routines in
Multivariate Ecological Research Statistical Software, v7.0.13,
PRIMER-E Ltd., United Kingdom). To calculate the pairwise
similarity of function, based on the functional abundance
at the function gene level, we calculated the Bray-Curtis
similarity following log transformation of the compositional
functional data by constructing pairwise Bray-Curtis similarity
matrix between each pair of two samples, which were
further transformed to lists of pairwise Bray-Curtis similarities
ordered by sample pair names in PRIMER 7. To examine
the relationship between functional and taxonomic diversities,
Pearson’s correlations were constructed between the transformed
lists of pairwise Bray-Curtis similarity of metagenomes annotated

using the Subsystems database at Level 3 (Function) and the
RefSeq database at the genus level (Taxonomy). These data
processing approaches for the analyses followed the requirement
of processing relative abundance of compositional data (Gloor
etal., 2017). The box plots were constructed based on the pairwise
similarity of function and taxonomy to compare similarity
ranges of functional and taxonomic compositions related to
the aquatic metagenomes. The triangular pairwise Bray-Curtis
similarity matrix was used to analyze functional and taxonomic
composition structures of water metagenomes by principal
coordinates analysis (PCoA) and permutational multivariate
analysis of variance (PERMANOVA) among biomes in PRIMER
7. Linear and non-linear regression models were constructed
to examine whether functional diversity depends on taxonomic
diversity. In addition, the RELATE analysis was performed
to evaluate the relatedness between functional and taxonomic
diversities by calculating a Spearman’s Rho correlation coefficient
in PRIMER 7. Difference in the relative abundance of dominant
microbial functional and taxonomic compositions for fresh vs.
saline and among six water biomes was analyzed by the linear
discriminant analysis effect size (LEfSe) method' (Segata et al.,
2011). Heatmaps were constructed using HeatMapper (Babicki
et al., 2016). The significance level was set at o = 0.05 unless
otherwise stated.

Co-occurrence network analysis was performed using the
Molecular Ecological Network Analyses Pipeline’ (Zhou et al.,
2011; Deng et al, 2012). The data matrix of standardized
relative abundance multiplied by 10° that meets the requirements
of the pipeline was uploaded to construct the network with
default settings, including (1) only keeping the species present
in more than a half of all samples; (2) only filling with
0.01 in blanks with paired valid values; (3) taking logarithm
with recommended similarity matrix of Pearson’s correlation
coefficient; (4) calculation order to decrease the cutoff from the
top using regress Poisson distribution only. A default cutoff
value (similarity threshold, S;) for the similarity matrix was
generated to assign a link between the pair of species. Then,
the global network properties, the individual nodes’ centrality,
and the module separation and modularity calculations were run
based on default settings using greedy modularity optimization.
Network files were exported and visualized using Cytoscape
software (Shannon et al., 2003).

RESULTS AND DISCUSSION

Correlation Between Function and

Taxonomy

To examine the connection between function and taxonomy,
a total of 938 water metagenomes was used to create
439,453 pairwise comparisons of Bray-Curtis similarity between
functional and taxonomic diversities to find out whether
the correlation of function and taxonomy was significant in
the global aquatic metagenomes (Figure 2). The correlations

Uhttp://huttenhower.sph.harvard.edu/lefse/
Zhttp://iegd.rccc.ou.edu/MENA/
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FIGURE 1 | Global distribution of water metagenomes. Locations are grouped into six water biomes from 55 publications used in this study. Sample sizes of each

showed that pairwise similarity of function was positively
correlated to that of taxonomy as indicated by the logarithmic
regression (r* = 0.3344, P < 0.0001) (Figure 2A), which
had higher coefficient than the linear regression (> = 0.3209,
P < 0.0001) (Supplementary Figure 1). This suggested that in
water microbiomes, the variation of functional traits responds
positively to taxonomic shifts, so the dependency of microbial
function on taxonomy could be expected across fresh and
saline water biomes. The box plots were constructed based on
the pairwise similarity of function and taxonomy to compare
similarity ranges of functional and taxonomic compositions
related to the aquatic metagenomes. For the functional
compositions at specific function gene levels, the average pairwise
similarity of function at three levels of SEED Subsystems was
greater than taxonomy at five phylogenetic levels (Figure 2B),
suggesting that the variation of function and taxonomy had
different sensitivity to environmental selection.

Since functional composition of higher resolution can
be yielded from metagenomic analyses, we were able to
better elucidate its relationship with taxonomic diversity
in microbiomes than previous studies. Cross-biome soil
metagenomics have shown that alpha diversity levels of microbial
community were significantly associated with functional
attributes (Fierer et al., 2012b). Thus, community richness can
be potentially useful for inferring functional diversity. Based

on regional metagenomics of soil microbial communities,
a strong correlation has been observed between functional
and taxonomic community composition (Fierer et al., 2013),
suggesting a potential connection between beta diversities of
taxonomy and function across global microbiomes. Our results
turther strengthened this argument by demonstrating significant
associations between shifts in microbial taxonomy and functional
variation in the water microbial community across the globe.
This is also strong evidence for an insignificant, if any, functional
redundancy in microbes at this resolution.

Functional and Taxonomic Diversities
Across Water Biomes

Based on pairwise Bray-Curtis similarity, Principal Coordinates
Analysis (PCoA) was performed to examine how microbial
functional profiles and taxonomic compositions differ globally
among water biomes (Figure 3). The PERMANOVA showed
that both function and taxonomy of water microbiomes among
the six water biomes were significantly distinct (P < 0.0001).
Compared to taxonomy (Pseudo-F = 70.41, Sq. root = 25.96),
function had lower variation (Pseudo-F = 48.16, Sq. root = 9.29)
across global water biomes. Greater between-sample dissimilarity
in taxonomy than function suggests that the taxonomic structure
of microbial communities was more sensitive to environmental
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FIGURE 2 | Pairwise similarity of functional and taxonomic diversities.

(A) Logarithmic regression between pairwise Bray-Curtis similarity of water
metagenomes annotated in the Subsystems database at level 3 (Function)
and RefSeq database at the genus level (Taxonomy). Regression equations
and coefficients are given. The logarithmic regression line was shown as the
red dashed line. (B) Box plots and mean values of pairwise Bray-Curtis
similarity of water metagenomes annotated in the Subsystems database at
levels 3, 2, and 1 (Function) and RefSeq database at genus, family, order,
class, and phylum levels (Taxonomy). The mean values of pairwise Bray-Curtis
similarity was shown as the red dashed line.

selection, though environmental conditions also influence the
functional traits in microbial communities. Specifically, for
functional distribution, the three saline water biomes (coastal
seawater, marine seawater, and surface saline water) were
grouped together, whereas among the three freshwater biomes
groundwater and urban wastewater were distributed near each
other with surface freshwater in the middle (Figure 3A).
The taxonomic compositions showed that the three freshwater
biomes clustered together and were distinct from the three saline
water biomes (Figure 3A), suggesting a key role of salinity in
driving taxonomy and function of water microbiomes.

The relative abundances of functions were similar across
global water microbiomes, while the taxonomy of microbial
community was significantly more variable across the six
water biomes (Figure 3B). Similar functional structures but
high taxonomic variability have also been found in microbial
communities from replicates of “miniature” aquatic ecosystems
(Louca et al., 2016a). It is often assumed that genome
streamlining (Morris et al., 2012) and horizontal gene transfer
(David and Alm, 2011), common in prokaryotic populations,
have contributed to similar functions performed by distinct taxa.
In addition, it has been suggested that the taxonomic composition
may be influenced by environmental factors distinct from those
affecting the functional structure of microbial communities
(Louca et al., 2018).

In functional profiles, the most significant difference was
observed in genes involved in virulence, disease, and defense
(VDD) as indicated by the LEfSe analysis (Figure 3B). These
genes were markedly more abundant in groundwater and urban
wastewater than the others, possibly because these waters were
closer to human activity and hence more susceptible to pathogen
and disease, leading to the proliferation of genes associated with
VDD functions, such as antibiotic resistance genes (Czekalski
etal., 2014). Coastal and marine seawater had greater proportion
of genes associated with functions related to phages, prophages,
transposable elements, and plasmids. Because the oceans are
the largest reservoir of genetic diversity of virus (Suttle, 2007),
the importance and focus of aquatic virology are perhaps most
evident and mainly on the viromes of marine environments
(Jover et al., 2014).

In terms of taxonomic compositions, surface freshwater
and urban wastewater harbored the highest proportion of
Actinobacteria among the biomes, while Euryarchaeota
was the most prevelent in groundwater and surface saline
water (Figure 3B). In addition, the two ocean biomes of
coastal seawater and marine seawater were dominated by
a-proteobacteria and y-proteobacteria. The percentage of
B-proteobacteria was greater in the three freshwater microbiomes
than the others. Groundwater had the highest proportion of
3-proteobacteria. In agreement with our results, it has been found
that a-proteobacteria and y-proteobacteria were significantly
enriched in marine ecosystems, while B-proteobacteria favored
fresh environment (Hu et al, 2014; Morrissey and Franklin,
2015; Pavloudi et al., 2017). Many halotolerant bacteria with the
capability to grow in a wide range of salinities are found to belong
to the class of a-proteobacteria and y-proteobacteria (Etesami
and Beattie, 2018). Our extensive lines of evidence suggest that
the global response of Proteobacteria was class-specific, mainly
due to salinity effects. In conclusion, these striking differences
in the relative abundance of dominant groups confirmed that
the taxonomy of water microbiomes was more variable than
function across global water biomes.

Salinity Is the Key Regulator

To test if salinity is a key driver for microbial function
and taxonomy, microbiomes from a freshwater environment
were compared with those from saline water (Figure 4). The
PERMANOVA revealed that fresh and saline water microbiomes
had distinct functional and taxonomic structures (P < 0.0001)
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(Figure 4A). The differences in function (Pseudo-F = 112.37, Sq.
root = 8.52) and taxonomy (Pseudo-F = 221.30, Sq. root = 27.92)
between fresh vs. saline water biomes were comparable to the
variation caused by grouping the microbiomes according to the
six water biomes, showing that salinity can be the key factor
regulating the variation of function and taxonomy in water
microbiomes. However, it should be noted that determinations
of salinity in this study are qualitatively based on the descriptions
in the publications or MG-RAST metadata files rather than
on direct measurements of salinity levels. The community
variation in both function and taxonomy in saline water biomes
was larger than fresh water microbiomes, probably due to

much wider distribution of sampling locations of coastal and
marine seawater.

To find out whether latitude gradient also drives taxonomic
and functional diversities besides salinity, Pearson’s correlations
were performed between the absolute latitude of sampling
locations and PCoAl scores of functional and taxonomic
beta-diversity structures in fresh and saline water microbiomes,
respectively (Figure 4B). Functional profiles showed no
significant latitudinal gradient in either fresh or saline
water microbiomes (P > 0.05). On the contrary, taxonomic
compositions in both fresh and saline environments had
significant associations with the absolute latitude (P < 0.001).
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FIGURE 4 | Salinity drives microbial functional and taxonomic diversities. (A) Principal coordinates analysis (PCoA) showing beta-diversity of microbial functional and
taxonomic diversities between fresh vs. saline water metagenomes annotated in Subsystems L3 (Function) and RefSeq at the genus level (Taxonomy). The error bars
represent the standard deviation of data ranges. Variations explained by two principal coordinate dimensions are given in parentheses by percentage. P values and
Sq. root of PERMANOVA are also given. (B) Pearson’s correlations of the absolute latitude of water metagenome locations with principal coordinate (PCoA) 1 scores
of Bray-Curtis similarity of fresh vs. saline water metagenomes annotated in Subsystems L3 (Function) and RefSeq at the genus level (Taxonomy). Regression
equations, coefficients (r), and P values are given. The linear regression lines of fresh and saline water metagenomes were shown as the brown and blue solid lines,
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With increasing latitude, microbial taxonomy in freshwater
biomes became more different from that in the saline water
biomes. Latitudinal diversity gradient, a decline of biodiversity
with latitude (Hillebrand, 2004), has been found in alpha-
diversity of microbes in the terrestrial (Zhou et al., 2016)
and aquatic (Fuhrman et al., 2008; Huerta-Cepas et al., 2015)
environments, probably attributable to temperature gradient.
For the first time, we further showed this latitudinal correlation
of beta-diversity in microbial taxonomic compositions rather
than functional profiles in the marine ecosystems. These results
suggest that global environmental drivers, such as geography
and climate factors, are impacting microbial diversity in aquatic
ecosystems, but the key regulator for functional traits was solely
salinity in water biomes.

Significant differences in function and taxonomy between
fresh and saline water microbiomes were revealed by LEfSe
analysis (Figure 5). Generally, functional profiles of freshwater

microbiomes were dominated by metabolisms of aromatic
compounds, iron, and nitrogen, membrane transport and
cell wall and capsule, and virulence, disease, and defense,
focusing more on functions associated with nutrient cycling
and defense mechanisms (Figure 5). By comparison, in the
saline microbiomes’ functional profiles, functions related to
primary metabolisms of nucleotides, amino acids, proteins, and
carbohydrates were more abundant (Figure 5). In taxonomy,
freshwater microbiomes were dominated by Actinobacteria,
Clostridia, and Bacilli of Firmicutes, Burkholderiales,
and Rhodocyclales belonging to B-proteobacteria and
3-proteobacteria (Figure 5). On the contrary, saline water biomes
had higher abundance of Archaea, Eukaryota, and viruses.
Among bacteria, only y-proteobacteria had consistently higher
abundance at class or lower levels in the saline environment,
though Bacteroidetes, Cyanobacteria, and a-proteobacteria were
also dominant at the phylum levels in saline water microbiomes
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(Figure 5). Our results suggested that microorganisms in water
environments are apparently under strong selective pressures
exerted by salinity, so the general biogeochemical properties,
such as salinity, still primarily determine the linkage between
function and taxonomy. It should be noted that the salinity is
just one factor that could be considered in this study, as not
all the metagenomes included had their metadata of all/certain
environmental variables reported. Thus, it became really difficult
to summarize and analyze a full list of environmental variables on
the diversity of taxonomy and function of metagenomes, which
may not rule out the effects of co-varying factors. Future work
should target a complete evaluation of environmental variables to
pinpoint specific environmental factors to drive both taxonomic
and functional diversities in aquatic microbes.

Functional and Taxonomic

Co-occurrence Networks

Co-occurrence networks of function and taxonomy were
generated to examine the potential interaction of functional
and taxonomic compositions in global water biomes (Figure 6).
Network graphs with submodule structures and key network
indexes indicated similar network topology and complexity
between functional and taxonomic interaction patterns. The
functional network had 738 positive interactions and 94 negative
links while taxonomy only had positive interactions (Figure 6).
Within each module, functional nodes were classified as
diverse functional categories. However, submodule structures of
taxonomy showed that each module was comprised of genera
that were mainly from the same phylum or class, such as
y-proteobacteria in module #3 and 7, a-proteobacteria in module
#4, Bacteroidetes in module #5, y-actinobacteria in module #6,
p-proteobacteria in module #8, and Cyanobacteria in module
#9 (Figure 6).

CONCLUSION

Our findings provide what is, to our knowledge, the first
direct global metagenomic evidence to support that microbial
functions are significantly correlated to taxonomy in aquatic
ecosystems, mainly because salinity drives microbial functional
and taxonomic diversities at the global level. However, the
taxonomic diversity was more significantly associated with
latitudinal gradient than the functional diversity. Our study
has also brought some new insights regarding the functional
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