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Class A β-lactamases are known for being able to rapidly gain broad spectrum catalytic 
efficiency against most β-lactamase inhibitor combinations as a result of elusively minor 
point mutations. The evolution in class A β-lactamases occurs through optimisation of 
their dynamic phenotypes at different timescales. At long-timescales, certain conformations 
are more catalytically permissive than others while at the short timescales, fine-grained 
optimisation of free energy barriers can improve efficiency in ligand processing by the 
active site. Free energy barriers, which define all coordinated movements, depend on the 
flexibility of the secondary structural elements. The most highly conserved residues in 
class A β-lactamases are hydrophobic nodes that stabilize the core. To assess how the 
stable hydrophobic core is linked to the structural dynamics of the active site, we carried 
out adaptively sampled molecular dynamics (MD) simulations in four representative class 
A β-lactamases (KPC-2, SME-1, TEM-1, and SHV-1). Using Markov State Models (MSM) 
and unsupervised deep learning, we show that the dynamics of the hydrophobic nodes 
is used as a metastable relay of kinetic information within the core and is coupled with 
the catalytically permissive conformation of the active site environment. Our results 
collectively demonstrate that the class A enzymes described here, share several important 
dynamic similarities and the hydrophobic nodes comprise of an informative set of dynamic 
variables in representative class A β-lactamases.
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INTRODUCTION

β-lactams are the most frequently prescribed antibacterial drugs 
due to their minimal toxicity profiles (Bush and Bradford, 
2016). They include the derivatives of penicillins, cephalosporins, 
carbapenems, and monobactams and have in common the 
presence of a β-lactam ring, which when hydrolysed by 
nucleophilic serine of target penicillin-binding protein (PBP), 
leads to irreversible PBP acylation that prevents formation of 
peptidoglycan transpeptide crosslinks (Tooke et  al., 2019). The 
accumulation of long-lived acyl-enzyme PBP adducts inhibits 
reproduction of Gram positive and negative bacteria by preventing 
biosynthesis of new bacterial cell wall layers (Fisher and 
Mobashery, 2009).

Among a handful of mechanisms, which the bacteria have 
evolved to survive and grow in the presence of β-lactams, the 
most problematic phenotypes are observed in Gram-negative 
bacteria, including Escherichia coli, Klebsiella pneumoniae, and 
Pseudomonas aeruginosa (Tooke et  al., 2019). These organisms 
rapidly exchange plasmids that often carry genes encoding 
broad-spectrum β-lactamase enzymes, found on transposable 
elements (Davies and Davies, 2010). These enzymes hydrolyse 
the endocyclic amide bond of the β-lactam ring, releasing the 
inactivated product in which the β-lactam ring is open and 
cannot inhibit PBPs (Palzkill, 2018; Supplementary Figure S1). 
Moreover, there is nothing to prevent these bacteria from 
simultaneously expressing multiple different β-lactamases received 
from a single plasmid, especially where selective pressures 
remain significant (e.g., in a healthcare setting; Fisher and 
Mobashery, 2016; Partridge et  al., 2018).

In most diagnosed cases of Gram-negative infection, class 
A β-lactamases such as TEM and SHV are often implicated 
in multidrug resistant phenotype in response to aminopenicillins 
and early-generation cephalosporins (Tooke et  al., 2019). It is 
also common for the early variants of these enzymes (TEM-1 
and SHV-1) to acquire elusively minor point mutations, granting 
them the extended-spectrum β-lactamase (ESBL) phenotype 
(as, e.g., in TEM-3 and SHV-2), which extends their catalytic 
efficiency to include oxyimino-cephalosporins and monobactams 
(Hart et  al., 2016; Bush, 2018).

The rapid gain of function in ESBLs is not only scientifically 
interesting, but clinically important, because unless a patient 
is specifically tested positive for ESBL; penicillins and 
cephalosporins remain the most frequently prescribed antibiotics 
(Dolk et al., 2018). Only if and when ESBL mediated-resistance 
is suspected, carbapenems have been used as an effective 
monotherapy (Harris et al., 2018). In TEM and SHV variants, 
carbapenems remain effective by forming a stable long-lived 
acyl-enzyme adduct with the active site serine residue (S70). 
However, another Class A β-lactamase, KPC-1, can rapidly 
hydrolyse and deacylate the acyl-enzyme intermediate; a rapid 
process for which the active site topology in KPC, and in 
the closely related enzymes like SME, is more energetically 
favourable (Zafaralla and Mobashery, 1992; Ke et  al., 2007; 
Kalp and Carey, 2008; Fonseca et  al., 2012; Chudyk et  al., 
2014). It was soon found that KPC-2 is identical to KPC-1, 
and since then many more variants have been discovered, 

differing by only one or two amino acid substitutions (Arnold 
et  al., 2011). By now, these highly evolved enzymes can 
be  found worldwide and can hydrolyse all clinically available 
β-lactams, including clavulanates, extended-spectrum 
cephalosporins, monobactams, and carbapenems (Leavitt et al., 
2007; Drawz and Bonomo, 2010; Stoesser et  al., 2017; Bush, 
2018; Tooke et  al., 2020). For example, KPC-2 and SME-1 
can both hydrolyse imipenem at 125- and 183-fold higher 
kcat/Km efficiency, respectively, compared to TEM-1 (Ke et al., 
2007). In turn, Gram-negative infections involving these two 
enzymes have been linked with >40% mortally rates (Cho 
et  al., 2018).

Currently, there exist only four clinically approved treatments 
against carbapenem-resistant Enterobacterales: avibactam (a 
mechanism based competitive inhibitor based on a bicyclic-
core scaffold) in a combination with advanced generation 
cephalosporin (ceftazidime); a combination of vaborbactam 
(monocyclic boronate slowly reversible inhibitor) with a 
carbapenem (meropenem); and a combination of ceftolozane-
tazobactam and a recently approved combination of imipenem-
relebactam (Lagacé-Wiens et al., 2014; Cho et al., 2018; Krajnc 
et  al., 2019; Papp-Wallace et  al., 2020; Pemberton et  al., 2020; 
Heo, 2021). Since Avibactam was introduced in 2015, naturally 
occurring mutations in KPC family were shortly reported in 
North America; conferring significant resistance to ceftazadime-
avibactam, albeit with a partially restored susceptibility to 
carbapenems (Haidar et  al., 2017; Shields et  al., 2017). 
Nonetheless, the global dissemination of KPC-2, as well as 
ESBL variants of TEM and SHV is still an on going concern, 
placing this whole class A family of enzymes under spotlight.

Although the novel bicyclic-boronate derivatives, including 
taniborbactam (which is currently undergoing phase III trials), 
are predicted to be  highly effective in the short term, there 
is no certainty that resistance to these novel active site inhibitors 
will not emerge after several years in circulation. To work 
towards addressing such a risk, which history is teaching us 
to anticipate, this study provides supporting evidence in line 
with the alternative allosteric approach for inhibition of class 
A enzymes; a strategy which has already been receiving steady 
interest in TEM-1 and KPC-2 (Horn and Shoichet, 2004; 
Meneksedag et  al., 2013; Bowman et  al., 2015; Avcı et  al., 
2016; Hart et al., 2016; Grigorenko et al., 2017; Galdadas et al., 
2018, 2021).

A set of highly conserved stretches of 3–9 hydrophobic 
residues (each stretch is referred to as a node) has been 
identified within the core of all class A β-lactamases (Galdadas 
et  al., 2018). The nodes appear as repeats throughout the 
sequence, both in direct proximity to the active site, stabilising 
helices α2, α5, and α6 and as flanking residues to those that 
are directly involved in catalysis (S70, K73, S130, E166, and 
K234) and active site integrity (N132, T237). Hydrophobic 
nodes are found to be in local contact with each other (packing), 
flexibly stabilising the tertiary structure of class A enzymes. 
The network of hydrophobic interactions was named according 
to the sub-domains, which they stabilise (α-network or β-network; 
Galdadas et  al., 2018). Both networks contain six nodes each, 
comprising of 29 and 19 hydrophobic residues, respectively. 

https://www.frontiersin.org/journals/microbiology
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The low sequence variation of the nodes in the α-domain 
(α-network) suggests a more conserved functional significance 
(Figure  1).

From a structural point of view, the hydrophobic core in 
class A β-lactamases is highly conserved, and therefore the 
least likely to mutate. This makes it an attractive target for 
therapeutic intervention. The motivation behind targeting 
class A β-lactamases via an allosteric approach is to inhibit 
functionally permissive protein conformations by preventing 
concerted motions, which are involved during substrate 
processing (functional dynamics) or by altering the kinetics 
of the enzyme towards catalytically unfavourable configurations 
or by kinetically biasing the dynamics towards free energy 
(FE) minima where the active site environment is least able 
to support the key reaction steps (Laskowski et  al., 2009; 
Motlagh et  al., 2014). Mutagenesis studies directed at the 
hydrophobic network have already shown significant results 
in KPC-2 enzyme, both experimentally and using molecular 
dynamics (MD) simulations (Galdadas et  al., 2018). 

Furthermore, the observation that the allosteric signals 
propagate through the hydrophobic core and reach common 
structural elements surrounding the active site, despite starting 
from opposite ends of the protein, in TEM-1 and KPC-2 
(Galdadas et al., 2021), warranted a closer look at the dynamic 
role of hydrophobic network in representative class A 
β-lactamases. To sample the conformational FE landscape 
explored by the hydrophobic networks, we performed adaptive 
sampling equilibrium MD simulations of four representative 
class A β-lactamases (KPC-2, SME-1, TEM-1, and SHV-1) 
and investigated the metastability of loops and the hydrophobic 
nodes via Markov State Models (MSM). To visualize the 
major metastable conformations of hydrophobic network 
alone, unsupervised low dimensional embeddings were created 
using a convolutional variational autoencoder. These and 
various supplementary observations, align well with our 
previous experimental findings where the highly conserved 
hydrophobic nodes comprise of an informative set of dynamic 
variables in all class A β-lactamases.

A

B C

FIGURE 1 | Hydrophobic networks in class A β-lactamases. (A) General structure of class A β-lactamase, as represented by the KPC-2 enzyme (PDB id 3DW0). The 
conservation of α-network (green) and β-network (magenta) has been highlighted for KPC-2 (PDB id 2OV5), SME-1 (PDB id 1DY6), SHV-1 (PDB id 3N4I), and TEM-1 
(PDB id 1XPB). (B). Sequence alignment between the four class A β-lactamase sequences. The sequence is annotated by the secondary structure elements. The 
position of residues in α-network (green box) and β-network (magenta box) is highlighted in bold font. (C) In spite of the sequence identity between the enzymes 
(KPC-2 – grey; SME-1 – blue; SHV-1 – magenta; and TEM-1 – green) is ~35%, the structures can align with each other with <0.91 Å rmsd (details in Supplementary 
Figure S2).
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MATERIALS AND METHODS

Markov State Model-Based Adaptive 
Sampling Molecular Dynamics Simulations
The crystal structures of KPC-2 (PDB id 2OV5), SHV-1 (PDB 
id 3N4I), and -SME-1 (PDB id 1DY6)-and-TEM-1 (PDB id 
1XPB) were downloaded from the Protein-Data-Bank. From 
each file, chain A was saved and protonated at pH 7.0 using 
propka as implemented in the playmolecule (Martínez-Rosell 
et  al., 2017). One intramolecular covalent disulphide bond was 
specified in each system and structures were hydrated with 
TIP3P water molecules in a cubic periodic box. Spacing between 
the protein and the edges of the box was set to 10 Å. Sodium 
or chloride ions were added to neutralise the net charge in 
each system. The Amber ff14SB force field was used to 
parameterise protein atoms (Maier et al., 2015); with electrostatic 
interaction distances set to ≤8Å. Long-range electrostatic 
interactions were computed using particle mesh Ewald summation 
method (Wells and Chaffee, 2015). Systems were energy 
minimised for 1,000 iterations of steepest descent and then 
equilibrated for 5 ns at 1 atmospheric pressure using Berendsen 
barostat (Feenstra et  al., 1999). Initial velocities within each 
simulation were sampled from Boltzmann distribution at 
temperature of 300 K. Multiple short MSM-based adaptively 
sampled simulations were run for 60 ns in each system using 
the ACEMD molecular dynamics engine (Harvey et  al., 2009; 
Doerr et  al., 2016). Isothermic-isobaric NVT ensemble using 
a Langevin thermostat with a damping of 0.1 ps−1 and hydrogen 
mass repartitioning scheme to achieve time steps of 4 fs. 
Production trajectory frames were saved every 0.1 ns. Resulting 
trajectories are summarised in Table  1.

Markov State Models
Pyemma v2.5.7 was used to build the MSM (Scherer et  al., 
2015). Backbone dihedral angles (φ and ψ) of all residues, and 
the χ1 angle from the residues of the hydrophobic nodes were 
chosen as input features. A detailed list of hydrophobic nodes 
is presented in the supplementary section 
(Supplementary Table S1). The featurised trajectories were 
projected onto top three principal components, and then clustered 
using k-means. The optimal number of k-means clusters was 
set to 150. A lag time of 5 ns was selected from the implied 
timescales plot. The MSM was deemed acceptable after passing 
the Chapman-Kolmogorov (CK) test within narrow confidence 
intervals. This implies that the model agrees with the data and 
is therefore statistically significant for use in subsequent steps. 

To gain access to these confidence intervals, Pyemma’s Bayesian 
MSM was used to make the final model in each system. Finally, 
the Transition Path Theory function was used to calculate net 
flux pathways between the macrostates, originating from state 1. 
State 1 was chosen as the source because it presented the lowest 
stationary probability in each system, which make state 1 a 
reasonable starting point to explain all of the relevant kinetic 
transitions thought the full FE landscape, i.e., before the net 
flux eventually reaches the global FE minimum (the sink). The 
structural results were collected from each perron cluster cluster 
analysis (PCCA) distribution. These structures represent large-
scale variations in protein conformation, which are unique to 
each given prominent FE minimum.

Fpocket software was used to find pockets in each PCCA 
frame (Le Guilloux et  al., 2009). Vertices generated by fpocket 
were processed to link the information collected about each 
pocket to the relevant structural locations where pocket-forming 
propensities are the highest (cryptic sites). Volumes of these 
cavities, including the active site volume, sampled within the 
five or six largest FE minima, are presented in this study.

Convolutional Variational Autoencoder
Distance maps were built as a function of Cα trajectories of 
the hydrophobic node residues. Spatial positions of the 48 
residues are defined in all class A β-lactamases (Galdadas et al., 
2018; Supplementary Table S1). Every fifth frame from the 
trajectories summarised in Table  1 was saved to build the 
distance maps. In each of these frames pairwise distances 
between the relevant Cα atoms, which are ≤8 Å were saved 
as non-zero elements. The resulting distance matrices were 
stacked in a 3D array. Identical procedure was followed to 
for all systems. Prior to training, the ordering of the frames 
in these arrays was randomised, and a simple training vs. 
validation split of 80:20 was then defined. In Convolutional 
Variational Autoencoder (CVAE) approach where the training 
objective was to cluster the conformations of hydrophobic 
nodes between all four enzymes, the four arrays were concatenated 
prior to randomisation. During training, a batch-size of 300 
was used, and data were re-shuffled after each completed epoch. 
After completion of the training, signified by converged gradient 
descent, the complete dataset was embedded for visualisation. 
To label the embeddings, collective variables (CVs) 1–3, as 
well as Cα root mean squared deviation (Cα-RMSD) of the 
hydrophobic node residues were pre-computed for each trajectory 
frame. CV1, CV2, and CV3 represent the distances between 
the following pairs of residue’s atoms, respectively: ||105 (Cγ)-167 
(Cγ)||2, ||105(Cγ)-216(Cβ)||2, and ||167(Cγ)-216(Cβ)||2. 
Collectively, these distances are arranged in a triangle and 
describe the dynamics in the three loops surrounding the active 
site (α3-α4 loop, the hinge region, and the start of α8 helix), 
with specific attention to residue 105-side chain conformations. 
The choice of this CVs is adopted from Galdadas et  al. (2018), 
where analogous distances between these side chains were used 
in KPC-2.

Illustrations of the CVAE neutral network architecture, which 
were used, as well as further details about the hyper-parameter 

TABLE 1 | Summary of multiple adaptively sampled trajectories. Each trajectory 
is 60 ns (600 frames) at a time step of 0.1 ns.

System Number of trajectories Total simulation time 
(μs)

KPC-2 936 56.16
SME-1 268 16.08
TEM-1 404 24.24
SHV-1 593 35.58

https://www.frontiersin.org/journals/microbiology
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choices, are addressed in Supplementary Figure S3. Analogous 
to CVAE architectures, the objective was to minimise the combined 
loss (Kingma and Welling, 2014). The Python code for the 
model implemented in the current work was adopted from 
Bhowmik et  al. (2018) and has been successfully implemented 
previously (Bhowmik et  al., 2018; Romero et  al., 2019; Akere 
et al., 2020; Cho et al., 2021). The combined loss was minimised 
by gradient descent using RMSprop optimiser, and no dropout 
was used. The upgraded weights, as well as the training and 
validation combined losses were saved after every epoch. The 
two individual losses were monitored during training for signs 
of overfitting. In the case of VAE, overfitting behaviour often 
involves the rise of the VAE-loss after the likelihood loss has 
reached its natural limit (under the conditions of being regularised). 
Training was stopped as soon as this was observed.

Structural Analysis
The structural analysis was carried out using Gromacs tools 
(Abraham et  al., 2015), pytraj (Roe and Cheatham, 2013) and 
mdtraj (McGibbon et  al., 2015). All trajectories were least 
squares fit to their corresponding crystal structures using 
Moleculekit as implemented in HTMD tools (Doerr et  al., 
2016). To analyse relative mobility at different region of the 
backbone, the MDLovofit algorithm was used (Martínez, 2015). 
The Cα-RMSD cut off was set as <1 Å for the alignment subset. 
There are three kinds of Root mean square fluctuation (RMSF) 
plots shown in this study: (a) conventional Cα RMSF plots 
generated by using all frames in the trajectory; (b) conformational 
drift plots generated from the MSM-derived PCCA structures 
relative to the crystal structure; and (c) filtered Cα RMSF 
plots that highlight backbone regions undergoing the slowest 
orthogonal linear autocorrelations, where the RMS distances 
were computed relative to the globally average structure and 
not the crystal structure. The conformational drift plots in 
MSM results also include Kruskal Wallis ANOVA values of p 
(Daniel, 1990). These were computed using scipy.stats.kruskal 
function. For covariance overlaps and linear discriminant analysis 
(LDA), structurally analogous Cα atoms in all four systems 
were least squares fit relative to the average Cα conformation 
in KPC-2 using mdtraj. Small number of non-homologous 
insertions and terminal residues were omitted from this 
calculation to align structurally homologous regions accurately. 
A further step was added by computing the subspace overlap 
from vectorised contact maps, which was expected to represent 
a more robust comparison.

To approximate relative dynamic information of residues 
within the global dynamics of the systems, normalised mutual 
information was computed using: [(H(X)+H(Y))/H(X,Y)]−1; 
where H(X,Y) in a joint entropy and H(X) and H(Y) are 
marginal entropies of two random variables X and Y. This 
symmetric function outputs a scalar value between 0 and 1, 
which represents magnitude of correlation between the two 
input variables. In this study, {X, Y} were all possible pairs 
of backbone dihedral angles. Probability densities were estimated 
using standard histogram method using a small number of 
10 bins for each dihedral angle, consistently in all four enzymes.

The trajectories were visualised in Pymol-mdanalysis1 and 
VMD (Humphrey et  al., 1996). The structural figures were 
generated in VMD (Humphrey et al., 1996) and Protein Imager 
(Tomasello et  al., 2020).

RESULTS AND DISCUSSION

Evolutionary Trends in Structure and 
Dynamics
KPC-2, SHV-1, SME-1, and TEM-1 β-lactamases are homologs. 
The average root mean-squared deviation (RMSD) between 
analogous Cα atoms ranges between 0.38 and 0.90 Å 
(Supplementary Figures S2A–C). Phylogenetic analysis indicates 
KPC-2 and SME-1 are more similar than TEM-1 and SHV-1 
(Supplementary Figure S2D). The sequence identity ranges 
between 34 and 67% and sequence similarity is between 54 
and 81% (Supplementary Figures S2E,F).

The dynamic mobility of the systems was assessed using 
Cα-RMSD profiles. The low RMSD of the systems are consistent 
with the previous observation that class A β-lactamases are 
stable structures when studied on long timescales (Galdadas 
et  al., 2018, 2021; Gobeil et  al., 2019). Conventional RMSD 
methods are unable to differentiate between regions of high 
vs. low mobility. To resolve this, a fraction (%) of the Cα 
atoms were used for alignment. Beyond this fraction, there is 
a steep increase in RMSD value for the rest of the Cα atoms 
(Supplementary Figure S4). In KPC-2, only 4% of Cα RMSD 
is greater than 1 Å. These residues include the distal flap, the 
Ω-loop, α7-α8 loop, and the β9-α12 loop. In SME-1, 8% of 
Cα RMSD is greater than 1 Å. The dynamic regions included 
the α3 helix, hinge-α11 region, and the loop between β8 and 
β9 strands. In TEM-1, 10% residues displayed Cα RMSD >1 Å. 
These included the α7-α8 loop, the hinge-α11 region, and 
β8-β9 loop. About 35% of residues showed Cα RMSD > 1 Å 
in SHV-1. The regions of high mobility in SHV-1 include the 
loops between α3-α4, α8-Ω, β7-β8, β8-β9, β9-α12, and the 
α11-hinge region. The apparent rigidity of these structures is 
consistent with the experimental data, based on thermal melting 
experiments, that KPC-2 is a more stable enzyme than many 
other class A β-lactamases (Mehta et  al., 2015).

The structural flexibility was further assessed using Cα RMSF 
(Supplementary Figure S5). Two different methods were used 
to assess RMSF. The first method involved filtering all simulated 
trajectories seven times through separate linear matrices {A1,…
,Ai,…,A7} to make each RMSF curve. Each matrix (Ai) was 
an outer product between one set of left and right time-lagged 
independent component (IC), scaled by the corresponding i’th 
largest eigenvalue. These RMSF plots highlight how different 
regions in backbone can have dynamic correlations at different 
timescales (Supplementary Figure S5A). Second, was the 
conventional method of assessing RMSF, over all simulated 
conformations (Supplementary Figure S5B). Higher RMSF 
values indicate regions of flexibility. The overall pattern of 
flexibility is similar in all systems. The largest variance is 

1 https://github.com/bieniekmateusz/pymol-mdanalysis
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observed in loop regions that connect secondary 
structural elements.

The dynamic subspace overlap was calculated from trajectories 
of structurally analogous Cα atoms, using both raw coordinates 
and vectorised contact maps with a cut-off distance of <8 Å 
(Supplementary Figure S2G). This was repeated on a subset 
of Cα atoms from residues of the hydrophobic nodes 
(Supplementary Figure S2H). The dynamic comparisons based 
on the contact maps align closely with the anticipated evolutionary 
trends, as seen in the phylogenetic tree of the four enzymes 
and their residue similarities. Moreover, the average level of 
similarity between pairwise dynamics in the four enzymes is 
greater when comparing the hydrophobic nodes in isolation, 
indicating that dynamics within the hydrophobic networks are 
more conserved. Interestingly, the high similarity value observed 
between dynamics of Cα atoms in TEM-1 and SME-1 
(Supplementary Figure S2H, bottom triangle), was absent 
when repeating a similar procedure using the contact maps 
as features (Supplementary Figure S2H; top triangle), while 
all the other comparisons remained relatively consistent.

Markov State Models
It was possible to build a converged MSM using the backbone 
dihedral angles of the residues in the hydrophobic nodes for 
TEM-1 and SHV-1, but not for SME-1 and KPC-2. For better 
resolution of metastability, MSMs were instead built based on 
the full set of backbone dihedral angles of all residues and 
the χ1 angle from the residues in the hydrophobic nodes at 
a lag time of 5 ns. This choice of features allows us to make 
a valid link between the FE landscape (dominated by dynamics 
of the loops) in relation to any significant structural differences 
seen in the hydrophobic node residues.

From the MSM results, significant differences in structure 
attributed to each unique large FE minimum are observed by 
comparing the metastable trajectory frames sampled from the 
course-grained PCCA distributions. These conformations underlie 
the stationary distribution in a reversible Markov matrix, which 
has been lumped to explain dynamics between the most 
prominent FE minima. In turn, any significant differences 
between metastable conformations of hydrophobic node residues, 
as well as unique conformations of the loops, can be considered 
as evidence of significant structural coupling between dynamics 
of the loops and the regions of the hydrophobic core, as per 
locations on FE plot. The Cα-RMSF plots with Kruskal-Wallis 
ANOVA values of p  < 0.05 shown, indicate regions of the 
backbone where metastable dynamics is more pronounced 
(Figure  2).

The Dynamics of KPC-2
The slowest dynamics in KPC-2 are recognizable from the 
Cα-RMSD plot where KPC-2 follows a large-scale double-well 
potential (Supplementary Figure S6). The regions in the 
structure, which are coupled upon transitioning between these 
two ensembles, are well resolved by the first PCA eigenvector 
(PC1), which separates states 1–3 apart from states 4 to 5 
(Figure  2). As seen from the mean first passage times, this 

is the slowest dynamic process in KPC-2, which collectively 
describes cooperative conformational changes throughout the 
whole enzyme, albeit especially well in the α/β subdomain 
which are neighbouring the C69-C238 disulphide bond.

The backbone regions which are significantly involved in 
the double-well dynamics include the α1 helix (residues 
32–47), β3-α2 loop (residues 66–73), α3-α4 loop (residues 
102–108), α5-α6 loop (residues 129–132), α6 helix (including 
both α6 hydrophobic nodes), α7-α8 loop (residues 158–164), 
the distal region of α8 and the Ω-loop (residues 171–180), 
backbone region between the Ω-loop and α9 helix (residue 
180–187), β7-β8 loop partially involving both strands (residues 
235–247), and β9-α12 loop with the end of β9 strand (residues 
262–279).

The dynamics of the distal flap (residues 86–93) are explained 
primarily by PC2, where states 1 and 5 show this loop visiting 
a particularly stable conformation, analogous to that which is 
seen in the crystal structure (Figure  2). The metastability of 
the distal flap was described to involve “open” and “closed” 
conformations. The open conformation of this highly mobile 
loop was linked with opening of a cryptic pocket at the distal 
end of the α-helical sub-domain, granting access to α2 and 
α5 hydrophobic nodes (Galdadas et  al., 2018). To confirm that 
states 1 and 5 indeed describe the open-flap conformation, 
the distance between G89(Cα) and A201(Cα) was measured, 
which presented two peaks (Supplementary Figure S7A). The 
prevalence of the open conformation, where the distance between 
G89(Cα) and A201(Cα) is higher (~17.5 Å) was approximately 
1.6-fold higher than closed (~14 Å). The G89(Cα) atom visits 
a particularly stable open conformation only in states 1 and 
5, while in the other states (2–4), the distal flap is in a closed 
conformation (Supplementary Figure S7).

The distal flap is the most flexiible loop within the α-helical 
subdomain of KPC-2, as seen from the RMSD and RMSF 
results (Supplementary Figures S4 and S5). To visualise the 
relative involvement of the distal flap in the global dynamics 
of KPC-2, a 2D information map from a normalised mutual 
information (MI) distance matrix was built 
(Supplementary Figure S8), which indicated that the distal 
flap along with the Ω-loop and the α7-α8 loop (residues 
155–159) collectively form a trio of loops that describe the 
most informative subset of dynamic correlations within the 
system. At the centre of this map are the structures which 
are in the direct neighbourhood of the disulphide bond and 
which significantly obey the longest-distance dynamics of the 
double-well (e.g., including the β7-β8 loop, β9-α12 loop, and 
the Ω-loop). Further out, the map shows structures that may 
share dynamic coupling at faster timescales. The α3-α4 loop 
appears on the edge of this map adjacent to the α6 node, 
which is nearest to the α5-α6 loop. The RMSF plots show 
metastability in the α5-α6 and the α3-α4 loops as being well 
described by the double-well potential (Figure  2J and 
Supplementary Figure S5). However, the side chain conformation 
of W105 (located at the tip of α3-α4 loop) is not well resolved 
in PCCA samples of states 1–3 vs. states 4–5. It is worth 
emphasising that the W105 side chain conformation was 
anticipated to be  highly represented by the conformation of 
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the α3-α4 loop and especially the W105(Cα) atom. LDA results 
(Supplementary Figure S9) illustrate this point in all four 
enzymes, highlighting correlations among the conformations 
of the α3-α4 loop, α5-α6 loops, and the α6 hydrophobic nodes. 
Moreover, the hydrophobic interactions between α5 and α6 
nodes and α3-α4 loop node were anticipated to play a crucial 
role in the dynamics of W105, given that the mutations that 
can abolish these interactions, significantly alter the FE landscape 
of the W105 side chain in KPC-2 (Galdadas et  al., 2018). 
Taken together, the lack of resolution of W105 by the MSM 
indicates that functionally significant dynamics in this region 
may occur at faster timescales and may not be  resolved by 
the course grained 5-state MSM approach. Although, the slowest 
dynamic influence on α3-α4 loop may originate primarily from 
the α7-α8 loop, and arrive via the α6-α7 loop, α6 hydrophobic 
node, and the α5-α6 loop. It was also interesting to estimate 
how much meaningful correlation may exist between the W105 

side chain and the distal flap, which is located >28 Å away. 
The results show a weak positive correlation between only the 
highly stable “open” conformation (unique to states 1 and 5), 
and the “flipped-in” W105 conformation. Admittedly, this 
positive correlation is weak in magnitude, but may explain 
why α3-α4 loop is found near to the distal flap on the information 
map. In turn, it is likely that stabilization of the “open” 
conformation of the distal flap in states 1 and 5 can significantly 
modulate the allosteric landscape surrounding the α3-α4 loop 
at faster timescales, primarily by altering the hydrophobic 
interactions, which are present within the α-helical domain 
(between α2-α7, α5, and α6 helices). This observation is 
supported by pathways of signal propagation in KPC-2 that 
were recently reported by Galdadas et  al. (2021).

The structure of the oxyanion hole is one of the hallmarks 
of β-lactamases (Pemberton et  al., 2017; Cortina et  al., 2018). 
Functionally, it is well recognised that the structure of the 
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FIGURE 2 | KPC-2 Dynamics. (A) The five metastable conformations sampled from the MSM. The ensemble of backbone geometries contained in each state is 
illustrated by displaying overlays of the most probable structure of the state (cartoon) on top the samples of the entire state (transparent lines) to highlight both the 
intrastate conformational variability and the interstate conformational differences. The highly dynamic loop regions have been labelled; (B) Implied timescale plot; 
(C) Free energy landscape; (D) Net Flux plot highlighting the probabilities of each transition in the relevant direction per unit time (5 ns), between the highest energy 
state 1, and all other states. (E) Different pathways taken by trajectories when reaching state 5, having started in state 1, and the flux plot shows the probabilities 
of each transition in the relevant direction per unit time; (F) Mean first passage times between metastable states per ns; (G) Macrostate distributions of 
conformations projected onto the first two principal components (PC); (H) The population of each state (π) and its free energy estimates; (I) Chapman-Kolmogorov 
(CK) test plots and (J) Each RMSF line is based on Cα distances from the crystal structure conformation, as an average over 20 frames. The plot shows the 
positions of the α and β hydrophobic node residues within green and pink vertical bands, respectively. The small dots, where present, represent Kruskal Wallis 
ANOVA values of p < 0.05.
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oxyanion hole, is described by the backbone of residue 237 
and the amide of S70, and serves as a hydrogen bond donor 
to stabilize the negatively charged carbonyl oxygen of the 
β-lactam ring during acylation (upon formation of the first 
unstable acyl-enzyme tetrahedral covalent intermediate; 
Pemberton et  al., 2017; Cortina et  al., 2018). Moreover, the 
oxyanion hole may also need to be intact during ligand release. 
This occurs after S70 has recovered its proton and the side 
chain can rotate away from K73, towards the oxyanion hole 
(Pemberton et  al., 2017; Supplementary Figure S1). It has 
been speculated that side chain dynamics of S70 may have a 
functional significance in carbapenemases (KPC-2 and SME-1), 
where S70 (along with other key residues) is structurally 
displaced closer to the entrance of the active site by 0.5–0.8 Å 
compared to the active site topology in non-carbapenemases 
(Ke et al., 2007; Papp-Wallace et al., 2010; Fonseca et al., 2012; 
Naas et  al., 2016). Dynamic considerations in this region of 
the active site are therefore important, given the fact that only 
carbapenemases maintain a highly conserved disulphide bond 
between C69 and C238, connecting the end of the β7 strand 
to the β3-α2 loop.

Functionally, the side chain at position at 237, due to its 
prominent location just above the active site on the β7 strand, 
may interact with carboxyl group in cephamycin and in 
carbapenem compounds, with likely significance for ligand 
binding and repositioning (Ke et al., 2007). This region appears 
highly conserved in both carbapenemases (KPC-2 and SME-1) 
and very different in SHV-1 and TEM-1, which both have 
hydrophobic A237 at this position instead.

The β7 strand backbone dynamics near residue 237 is 
additionally important due to its direct covalent relationship 
to the backbone near S70, via the C69-C238 disulphide bond. 
A constrained conformation of the β7 strand in KPC-2 is 
linked to the rotation of the ψ angle in C238, resulting in 
the flipping of the C238 backbone carbonyl group by ~180° 
towards the active site in states 1, 2, and 3. Incidentally, in 
KPC-2, the slowest order parameter is the ψ angle of C238, 
where the rotameric state of this angle is directly coupled to 
the global double well in FE (Supplementary Figure S10). 
This angle is therefore strongly correlated with multiple structural 
changes throughout the enzyme and is related to significant 
differences in side chain conformations of residues in the active 
site, including T237, N170, H274, as well as S70 (at higher 
FE in state 1). Specifically, when the C238 backbone carboxyl 
group is rotated towards the active site in the higher FE states, 
the end of the β7 strand acquires a constrained (straightened) 
conformation directed towards the Ω-loop. This change causes 
T237 side chain to become displaced upwards (away from the 
centre of the active site), where it also appears less stable. On 
the other hand, the two of the lower FE states (states 4 and  5) 
represent relaxed β7 strand conformation where T237 side 
chain resembles the crystallographic conformation. Furthermore, 
in states 4 and 5, the aromatic side-chain of H274 (located 
on β9-α12 loop) also adopts a crystallographic pose, and can 
positively contribute to the stability of T237 side chain via 
van der Waals interaction with the methyl group. Moreover, 
the hydrogen bond between R220 side chain and the T237(Oγ) 

atom in states 4 and 5 is also collectively more stable, due 
to globally consistent high stability of the hinge region in 
KPC-2. Interestingly, within the dataset near state 1 there exists 
an even higher metastable FE state (at approximately 5.3G/
kT), with relatively low occupancy at 300 K, and is therefore 
not represented separately by this MSM model. In that state, 
the centre of mass of the entire disulphide bond experiences 
a metastable displacement, significantly effecting the conformation 
of the β3-α2 loop, which becomes “pushed in” towards the 
back of the active site. Such conformation was in turn linked 
with S70 side chain becomes highly unstable, as well as the 
oxyanion hole becoming consistently blocked by the backbone 
carbonyl oxygen of the C69, which also becomes rotated towards 
the active site.

In addition to the oxyanion hole to be  intact, KPC-2 
β-lactamase can only be catalytically efficient when the Ω-loop 
is stable. Moreover, the stable conformation of Ω-loop should 
not exceed 8 Å distance between E166(Cδ) and N170(Cγ; 
Cortina et  al., 2018). This criteria were calculated from the 
KPC-2 meropenem acyl-enzyme MD simulations (Cortina et al., 
2018). Since our simulations were performed on the apo KPC-2 
structure, we  wanted to confirm that we  sampled the 
conformations of the Ω-loop as described previously. Therefore, 
we  measured the distance between E166(Cδ) and N170(Cγ). 
Collectively, 99.5% of frames were <8 Å distance between these 
two atoms. In turn, the relative displacement of N170, E166, 
and S70 was not significantly sampled in the current trajectories. 
However, what appears to be  clear from the current set of 
results is that the side chains (E166 and N170) are more stable 
when the entire Ω-loop is stable. The most catalytically permissive 
Ω-loop is observed in state 4, where the Ω-loop adopts a 
stable conformation, which is analogous to the crystal structure. 
This is also correlated to the apparent crystallographic 
conformation adopted by the α7-α8 loop (residues 155–159), 
which is a unique structural feature of state 4. Furthermore, 
state 4 also represented crystallographic conformations in the 
α4 helix, the adjoining α4-α5 region (residues 110–120), while 
the distal flap (in contrast) appeared the least stable in this 
state. Based on these MSM observations in addition to the 
presence of shared IC2 and/or IC3 RMSF peaks 
(Supplementary Figure S5), it appears that the four structural 
elements (Ω-loop, α7-α8 loop, the distal flap, and α4) are 
collectively coupled in a globally metastable manner.

The conformational drift plot in KPC-2 (Figure  2J) shows 
that seven hydrophobic nodes (located on the α3-α4 loop, and 
on helices α5, α6, α9, α11, and α12) represent statistically 
significant structural differences between the five sets of 
metastable MSM samples (values of p < 0.05). In four of these 
nodes, which are all located in the α-network sub-domain 
between residues 100–140, the conformations appear to be mostly 
influenced by the global double-well dynamics, i.e., where states 
1, 2, and 3 have different metastable conformations compared 
to states 4 and 5. The hydrophobic nodes located on helices 
α5 and α6 are important because the loop between them 
contains S130, which is involved during acylation, and N132, 
which is a hydrogen bond acceptor from K73. In states 1–3, 
the α5-α6 loop is gently shifted away from the centre of the 
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active site (Figure  2). This shift is consistent with the global 
“double-well” dynamics described by PC1, and is caused by 
N-terminally directed metastable displacement of the entire 
α6 helix. The end of α6 helix, along with the adjoining α7 
helix appear to involve more than one axis of variation, with 
the most noticeable shift in α7 helix observed in state 2. This 
unique conformation highlighted the appearance of a cryptic 
pocket between α2 and α7 helices in state 2 
(Supplementary Figure S11; dark green pocket). This pocket 
is also the binding site of a phosphonic acid ligand in the 
crystal structure of KPC-2 (PDB id 6D18). Collectively, from 
these observations, it is therefore likely that α6-α7 loop is 
coupled primarily to the α7-α8 loop (residues 155–159), as 
well weakly to the distal flap. The latter connection may 
be largely significant at faster timescales (Galdadas et al., 2021), 
and is mediated by the hydrophobic contact between the α2 
hydrophobic node residues (F75, L76, A79, and V80) and the 
α7 hydrophobic residues (L142, L148, F151, and M152).

Other pockets with volume>500 Å3 are also identified 
(Supplementary Figure S11; orange and light green). The 
orange pocket appears adjacent to the Ω-loop, only in the 
low FE states 4 and 5, which is consistent with this loop 
dynamics in these states. The light green pocket has been 
reported previously by Galdadas et al. (2018) and is identifiable 
in the crystal structure (PDB id: 2OV5), and on average 
presented a relatively consistent volume in all metastable states. 
Occupancy and volume of this pocket may be  slightly greater 
in transition states 2 and 3.

The Dynamics of SME-1
Unlike in KPC-2, the distal flap in SME-1 presents no significant 
metastable dynamics (Figure 3). The dynamics of the α-helical 
subdomain is centred on the start of α3 and the end of α4 
helices. The slowest dynamics within these regions clearly 
appears upon transition out of the higher energy states 1 and 2, 
towards the lower energy states. The transition states 3 and  4 
being energetically similar are structurally very different in 
terms of conformation of the α11 helix and the hinge region 
(Figure  3).

The longest mean first passage time during the net flux 
pathways is from states 1 to 3 (Figure  3). This means that 
the FE barrier between these states is high. This is also seen 
from the reweighted FE surface. The flux pathway that visits 
state 3 has only ~11% prevalence at equilibrium. On the other 
hand, the decrease in FE starting from the source (state 1) 
to the sink (state 5), predominantly visits state 2 (~89% of 
the time). Collectively, this indicates that prominent 
conformational changes of the hinge region may have a functional 
significance in SME-1. When the hinge region is retracted 
away from the active site, as in states 2 and 4, the hydrogen 
bond from R220 to S237(Oγ) is lost. This allows the S237 
side chain to rotate towards H274, forming a new hydrogen 
bond, which stabilizes S237. Similar to KPC-2, this highly 
stable orientation of the S237 side-chain appears to be strongly 
coupled to the C238 backbone carbonyl group, which is rotated 
away from the active site in a metastable manner (in states 
2, 4, and 5). Inspite of this similarity, the end of the β7 strand 

may span significantly shorter kinetic distances than in KPC-2. 
This is seen from the filtered Cα-RMSF plots 
(Supplementary Figure S5A), where both regions involved 
with the C69-C238 disulphide bond are better described by 
multiple faster eigenvectors compared to KPC-2. The blue line 
(SME-1) of the standard RMSF plot (Supplementary Figure S5B) 
shows shorter deviations away from crystal structure 
conformation, compared to KPC-2 (black line). The role of 
the disulphide bone in the FE landscape of SME-1 is significant, 
as indicated by mutual information peaks 
(Supplementary Figure S8B) in both residues (C69 an C238). 
This is supported by the experimental observation that the 
stability of the disulphide bond has been known to be essential 
for catalytic function in SME-1 (Majiduddin and Palzkill, 2003).

In state 5, the conformation of the Ω-loop remains close 
to the stable crystallographic conformation where the N170 
side chain is not perturbed. The α7-α8 loop (residue 156–159) 
displays similar dynamics in SME-1, as in KPC-2, where the 
crystallographic conformation is linked to greater stability in 
the Ω-loop. In SME-1, only state 3 presents the metastable 
downwards position in this loop (i.e., opposite to the 
crystallographic pose), which is linked to unfavourable instability 
of the Ω-loop.

In contrast to KPC-2, the hydrophobic α-network in SME-1 
is less metastable, as seen from the lack of statistically significant 
differences between the Cα-RMSF values in regions highlighted 
by green boxes (Figure  3J). The absence of slow dynamics in 
these regions is further supported by the results of the filtered 
RMSF (Supplementary Figure S5A). However, there is significant 
state separation captured by the PCCA samples involving the 
α5-α6 loop, which is displaced away from the centre of the 
active site in states 1 and 3. This deviation is associated with 
a metastable shift in the α5 helix, and is only sampled in 
states 1 and 3. This is likely the cause for increased instability 
of S130 side chain in these two states (Figure  3).

Within the α/β-subdomain, the two hydrophobic nodes 
surrounding the α11-β7 loop (residues 224–233) are significantly 
coupled to the slow dynamics in this region. In state 2, as a 
result of significant change in K234 backbone (β7 strand) 
conformation, the hydrogen bond between K234 and S130 
side chains is broken. Moreover, as noted previously, the 
conformation of the α5-α6 loop in state 2 is comparable to 
that observed in the crystal structure. Collectively, these two 
spatially separate backbone features allow S130 side chain to 
experience a relatively stable conformation towards the active 
site where it can be  available during acylation. It can be  seen 
from the filtered RMSF plot (Supplementary Figure S5A), 
that IC3 simultaneously describes both of these backbone 
regions. Moreover, IC3 most significantly describes the α11 
helix and is also largely involved in metastability of the α3 
helix. In state 2, H105 side chain is most readily found at 
the “flipped-in” position, which can promote ligand access. 
Cooperative dynamic changes in the backbone of S130, as 
well as changes in side chain conformation at position 105 
and K73, have been previously observed experimentally when 
the active site is occupied by a ligand (cefotaxime) in Toho-1, 
involving S130(γO) movement closer to K73, while K73(Nζ) 
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can move closer to S70 (Shimamura et  al., 2002; Langan et  al., 
2018). Similar movements in W105 and S130 have been observed 
in apo vs. holo crystalline forms of KPC-2 (Ke et  al., 2007; 
Papp-Wallace et  al., 2010).

The metastable coupling of the polar H105 side chain to the 
overall FE landscape in SME-1 is not well resolved by the MSM. 
LDA results show that the dynamics of this side chain is 
significantly different from the other three  
enzymes (Supplementary Figures S9A,D,E). For example,  
there is relatively minimal bias between “flipped-out” vs. 
“flipped-in” conformation visited by the side chain at  
equilibrium, as shown by 51.2 and 48.8% prevalence values 
(Supplementary Figure S9A). In fact, the 3D distribution of 
H105(Cα) atom cannot be  distinguished as metastable, and 
likewise the H105(Cγ) atom when taken alone also follows a 
continuous unimodal (ellipsoidal) distribution. This comes in 
complete contrast to the three other enzymes when sampled at 
equilibrium; perhaps due to chemistry of this side chain being polar.

Pockets were also identified in SME-1, at positions similar 
to that in KPC-2 (Supplementary Figure S11). The appearance 
of the pocket located between α2 and α7 helices (dark green) 
was significantly higher in all five SME-1 metastable states 
compared to KPC-2, yet on average, the volume of these pockets 
is smaller than that observed in KPC-2. The persistence rate 
for the pocket located adjacent to the Ω-loop (orange) was 
also consistently higher in SME-1 compared to KPC-2. On 
average, this pocket remains >600Å3 in volume and is observed 
in all five metastable states.

The Dynamics of Non-Carbapenemases: 
TEM-1 and SHV-1
The stability of the hinge region in non-carbapenemases (TEM-1 
and SHV-1) has known importance for stabilising substrate’s 
C3-carboxylate-group via hydrogen bond from a conserved 
non-catalytic water molecule, which is often found anchored 
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FIGURE 3 | SME-1 Dynamics. (A) The five metastable conformations sampled from the MSM. The ensemble of backbone geometries contained in each state is 
illustrated by displaying overlays of the most probable structure of the state (cartoon) on top the samples of the entire state (transparent lines) to highlight both the 
intrastate conformational variability and the interstate conformational differences. The highly dynamic loop regions have been labelled; (B) Implied timescale plot; 
(C) Free energy landscape; and (D) Net Flux plot highlighting the probabilities of each transition in the relevant direction per unit time (5 ns), between the highest 
energy state 1, and all other states. (E) Different pathways taken by trajectories when reaching state 5, having started in state 1, and the flux plot shows the 
probabilities of each transition in the relevant direction per unit time; (F) Mean first passage times between metastable states per ns; (G) Macrostate distributions of 
conformations projected onto the first two PC; (H) The population of each state (π) and its free energy estimates; (I) Chapman-Kolmogorov (CK) test plots and 
(J) Each RMSF line is based on Cα distances from the crystal structure conformation, as an average over 20 frames. The plot shows the positions of the α and β 
hydrophobic node residues within green and pink vertical bands, respectively. The small dots, where present, represent Kruskal Wallis ANOVA values of p < 0.05.
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between backbone carbonyl of V216 and the side chain 
guanidinium group of R244 (Wang et  al., 2002). For example, 
SHV-1-meropenem (pdb ID: 2ZD8) and TEM-1-iminpenem 
(pdb ID: 1BT5) acyl-enzymes show this interaction, where the 
non-catalytic water molecule contributed towards desirable, but 
in the case of these ligands, catalytically unfavourable pose 
away from the catalytic water molecule.

R244 is located at the start of the β8 strand. Unlike V216 
(hinge region), this residue displays a stable conformation in 
all of the sampled states in TEM-1. Based on the current 
model of TEM-1, the α11 helix does not converge back towards 
the topology conformation even in the lowest FE state 5. 
Nevertheless, the hinge region was resolved relatively well. In 
state 5, the hinge region is stable, which is accompanied by 
catalytically favourable conformations of various other residues 
of the active site. For example, the S130 side chain is stable 
because the backbone of the α5-α6 loop experiences the shortest 
displacement away from the crystallographic conformation 

(Figure  4). The K73 side chain stabilizes near the hydroxyl 
group of S70, and Y105 presents more conformations where 
the flipped-out conformation (catalytically active) is seen. In 
state 4, the side chain of Y105 visits the bulk. This is associated 
with increased instability of the α3-α4 loop and is coupled 
to the displacement of the α4 helix along with the displacement 
observed in the α5-α6 loop and the α5, α6 hydrophobic nodes, 
which surround it. The hinge region in state 4 is directed 
way from the active site and is unstable. The K73 side chain 
is displaced laterally relative to the centre of the enzyme, with 
accompanied instability. The S130 side chain moves away from 
the active site and is also highly unstable. Clearly state 4 cannot 
be  catalytically efficient, although less than 14% of flux may 
visit state 4 at equilibrium (Figure  4).

In TEM-1, the α-helical subdomain is relatively stable, with 
no kinetic changes observed in the C77-C123 bond, which 
connects helices α2-α5. However within α5 and α6 helices, as 
in the case of carbapenemase enzymes (KPC-2 and SME-1), 
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FIGURE 4 | TEM-1 Dynamics. (A) The five metastable conformations sampled from the MSM. The ensemble of backbone geometries contained in each state is 
illustrated by displaying overlays of the most probable structure of the state (cartoon) on top the samples of the entire state (transparent lines) to highlight both the 
intrastate conformational variability and the interstate conformational differences. The highly dynamic loop regions have been labelled; (B) Implied timescale plot; 
(C) Free energy landscape; and (D) Net Flux plot highlighting the probabilities of each transition in the relevant direction per unit time (5 ns), between the highest 
energy state 1, and all other states. (E) Different pathways taken by trajectories when reaching state 5, having started in state 1, and the flux plot shows the 
probabilities of each transition in the relevant direction per unit time; (F) Mean first passage times between metastable states per ns; (G) Macrostate distributions of 
conformations projected onto the first two PC; (H) The population of each state (π) and its free energy estimates; (I) Chapman-Kolmogorov (CK) test plots and  
(J) Each RMSF line is based on Cα distances from the crystal structure conformation, as an average over 20 frames. The plot shows the positions of the α and β 
hydrophobic node residues within green and pink vertical bands, respectively. The small dots, where present, represent Kruskal Wallis ANOVA values of p < 0.05.
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there are significant and conserved metastable traits, involving 
the two hydrophobic nodes that surround the α5-α6 loop. As 
in SME-1, TEM-1 displays significant metastability among the 
nodes of the α/β-subdomain including α11 and β8 nodes. The 
residues in α11 and β8 nodes are in direct hydrophobic contact 
with each other. Furthermore, like in KPC-2 and SME-1, the 
metastability of the hydrophobic nodes in α5 and α6 helices 
is directly coupled to the instability of the S130 side chain 
and is also indirectly coupled to other significant perturbations 
at the active site (e.g., the destabilization of the hydrophobic 
interactions with α3-α4 loop).

The most prominent allosteric pocket identified on TEM-1 
is between α11 and α12 helices (Supplementary Figure S11; 
violet pocket). The α11-α12 region is a well-documented allosteric 
site in TEM-1 (Horn and Shoichet, 2004). Ligand binding in 
this site abolishes the necessary packing interactions from L220 
(α11 helix) to N276 (α12 helix), which otherwise function to 
stabilize R244. This was also dynamically observed in simulations, 
which confirmed that ligand binding at the cryptic pockets 
between α11 and α12 helices caused significant changes in 
rotameric states of N276 and R244 side chains. Furthermore, 
the allosteric site formed between α11 and α12 helices is at least 
partially open 53% of the simulation time. However, this prevalence 
can be significantly increased by the presence of a small molecule 
(Bowman and Geissler, 2012). Moreover all of the major pockets 
described collectively (Bowman and Geissler, 2012; Bowman et al., 
2015) were also sampled in the current TEM-1 simulation.

The flexibility of the Ω-loop in TEM-1 at μs timescales may 
be  necessary for substrate gating, but at ps timescales, the basal 
stability of this loop is certainly advantageous to reduce solvent 
exposure of the bound ligand (Fisette et  al., 2012; Meneksedag 
et  al., 2013; Hart et  al., 2016). For example, the slow dynamics 
was identified in inhibitor resistant mutation of TEM-1 (M69L), 
where a change in long timescale motions of the Ω-loop was 
associated with significant change in electrostatic and van der 
Waals components of free energy. This resulted in elevated 
binding FE for inhibitors (clavulanate, sulfabactam, and 
tazobactam), causing significant decrease in binding affinity for 
these compounds, but not for five different β-lactam substrates 
tested (Meroueh et al., 2002). Furthermore, an increased stability 
of the Ω-loop as well as the α3-α4 loop in TEM-1 (via naturally 
occurring E104K and G238S mutations) has been experimentally 
linked with 1,400-fold increase in cefotaxime hydrolysis efficiency, 
and 500-fold increase in minimum inhibitory concentration of 
E. Coli, i.e., ESBL phenotype in TEM (Hart et  al., 2016). G238S 
mutation is located on the C-terminus of the β7 strand and 
stabilizes the Ω-loop by hydrogen bonds towards N170 side 
chain and backbone, while E104K can interact with P167 from 
the other side of the loop. It is likely that any mutation, which 
stabilizes the proximal end of the Ω-loop from the α3-α4 direction, 
can favourably stabilize both loops at the same time. Unlike in 
MSMs of wild type and mutant (E104K/G238S) TEM-1 presented 
by Hart et al. (2016), in the current dataset, there was no major 
deviation away from the reference crystal structure, which would 
significantly involve the entire α8 helix. Only at the highest 
energy state 1, the N-terminus of α8 helix can be  seen directed 
towards the active site.

The FE landscape of SHV-1 is very wide and relatively 
non-specific. For example, the first PCA eigenvalue in SHV-1 
is almost double than of the other three enzymes. The fraction 
% of Cα atoms with RMSD >1 Å in SHV-1 is more than 
triple that of TEM-1 (Supplementary Figure S4). All FE minima 
are relatively uniform in prevalence, compared to the other 
enzymes, yet the mean first passage times along the major 
net flux pathways largely reside in triple digits, in contrast to 
the other enzymes (Figure  5).

Analogous to TEM-1, there exists one metastable state in 
SHV-1, which is characterised by α3-α4 displacement away 
from the core, among other unique conformations at the active 
site (e.g., S70 being displaced to the top of the active site as 
a result of β3-α2 loop rotation). This is observed in state 4 
(Figure  5). Since no significant net flux is directed towards 
state 4, it remains relatively redundant at equilibrium conditions, 
and therefore it was omitted from the Kruskal Wallis ANOVA 
significance test (Figure  5J). State 3 presents analogous 
metastability of S70 backbone, but less than 8% of flux may 
visit state 3. Approximately, 92% of net flux between the highest 
FE (state 1) and the lower FE sink (state 6) do not visit states 
3 or 4 because the local FE barriers to enter those minima 
are steep (Figure  5). Interestingly, among these large scale 
kinetic transitions in SHV-1, the expected α-network hydrophobic 
nodes do not display significant metastability based on the 
conformational drift RMSF plot (Figure  5).

Both non-carbapenemases (SHV-1 and TME-1) presented 
comparable consistency in  locations of cryptic sites 
(Supplementary Figure S12). Due to the greater flexibility of 
the secondary structure in SHV-1, the prevalence of these 
pockets was greater than in TEM-1. In both enzymes, the 
light blue and cyan pockets are located in solvent inaccessible 
core. The most significant observation of this study involves 
the presence of dark green and orange pockets, which were 
consistently identified in all four enzymes.

Convolutional Variational Autoencoder 
Based Deep Learning
The residues of the hydrophobic network in Class A β-lactamases 
comprise of a highly stable core, where dense van der Waals 
(packing) interactions physically prevent long distance 
movements. Backbone dynamics in many of these residues, 
resides under Gaussian stationary distribution, when looking 
at either the cartesian coordinates of Cα atom, or the backbone 
dihedral angles of specific residues. This indicates that the 
thermal vibrations at fast timescales may significantly obscure 
the underlying (potentially important) conformational signals. 
Moreover, multivariate distributions with Gaussian marginals 
are not necessarily Gaussian. Therefore, just because all of 
the raw input features cannot be  collectively resolved by 
standard unsupervised linear methods did not imply that 
any of the features are redundant. In fact, the necessity to 
keep all of hydrophobic node residues for the analysis of 
their dynamics is highlighted by the immediate off-diagonal 
elements in the mutual information matrices, indicating strong 
correlation in backbone dynamics especially between 
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immediately neighbouring residues (relaying signals). This is 
illustrated in Supplementary Figure S8, showing non-zero 
average mutual information present within the hydrophobic 
nodes, even when course-grained (π/5 radian) discretisation 
was used. Certainly many of the nodes do not initiate dynamics, 
however, they are involved in propagating allosteric signals, 
which are initiated between the loops.

The backbone conformations sampled by the Cα atoms of 
the hydrophobic nodes were featurised via 48 by 48 symmetric 
distance matrices, and the dimensionality reduction of the 
hydrophobic node dynamics was approached using unsupervised 
2D image clustering algorithm (CVAE). The use of 64 filters 
in each of the four convolutional layers, and no pooling layers 
maintained a deep representational space of trainable parameters 
in each hidden layer.

As a first step to determine CVAE learning quality of the 
given simulations, the trajectories from all systems were mixed 
together followed by the evaluation of the training and 

validation loss of the combined dataset. The CVAE model 
was implemented and tested from reduced dimension of 3–11 
(Figure 6A). Both, the training and the validation loss decrease 
over the number of epochs trained as expected while validation 
loss is slightly higher than training loss. This conforms the 
normal behaviour. During this step, with decreasing dimension 
size of the reduced latent space, the corresponding input 
data are compressed by utilising the model’s more representation 
capability. Gradually, once this reduced latent dimension size 
becomes too small compared to the model’s architecture, it 
would start over-fit local features while introducing additional 
noise. Here the regularising term (Kullback–Leibler or KL 
divergence) of the loss function becomes much important. 
Gradually, the overall loss value attains an optimal value. 
This optimum value is in between those two extremes. For 
the dataset considered here, the implemented CVAE model 
is remarkably stable and robust. This is confirmed from the 
fact that the validation loss remains close during the various 
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FIGURE 5 | SHV-1 Dynamics. (A) The five metastable conformations sampled from the MSM. The ensemble of backbone geometries contained in each state is 
illustrated by displaying overlays of the most probable structure of the state (cartoon) on top the samples of the entire state (transparent lines) to highlight both the 
intrastate conformational variability and the interstate conformational differences. The highly dynamic loop regions have been labelled; (B) Implied timescale plot; 
(C) Free energy landscape; and (D) Net Flux plot highlighting the probabilities of each transition in the relevant direction per unit time (5 ns), between the highest 
energy state 1, and all other states. (E) Different pathways taken by trajectories when reaching state 5, having started in state 1, and the flux plot shows the 
probabilities of each transition in the relevant direction per unit time; (F) Mean first passage times between metastable states per ns; (G) Macrostate distributions of 
conformations projected onto the first two PC; (H) The population of each state (π) and its free energy estimates; (I) Chapman-Kolmogorov (CK) test plots and  
(J) Each RMSF line is based on Cα distances from the crystal structure conformation, as an average over 20 frames. The plot shows the positions of the α and β 
hydrophobic node residues within green and pink vertical bands, respectively. The small dots, where present, represent Kruskal Wallis ANOVA values of p < 0.05.
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latent dimensions (Figure 6B). Based on this, latent dimension 
7 was selected for the lowest dimension where the loss value 
is small and simultaneously the uncertainty in loss is also 
lower while being compared to other dimensions. This is 
also confirmed from the loss behaviour with epochs.

Next, t-distributed stochastic neighbour embedding  
(t-sne) on the compressed reduced-dimension data was 
implemented. This is performed in order to better visualize 
the compressed data in simplified two dimensions.  
Figure  6C shows the two-dimensional t-sne representation 
of the compressed CVAE low-dimension data. The combined 
CVAE-tsne representation is able to cluster the four different 
systems based on their local and global conformational 
dynamics as they are evolved with the simulation  
trajectories.

The t-sne visualisation of the CVAE latent space plots the 
conformations sampled by the hydrophobic network in the 
four systems (Figure  6C). These conformations are resolved 
based on the dynamics generated by distance matrix of the 
hydrophobic nodes. SME-1 and TEM-1 share similar dynamics, 
dominated by the motions in the hinge region. The 
conformations of the KPC-2 enzyme are resolved separately, 
driven by the motions in the distal flap, α7-α8 loop, Ω-loop, 
β7-β8 loop, and β9-α12 loops. In SHV-1, where motions 
similar to those observed in KPC-2, SME-1 and TEM-1 are 
all observed, the conformations are clustered based on the 
similar dynamics. The deep learning results are consistent 
with the observations from MSMs, auto-correlated flexibility 
profiles, and mutual information. It is worth emphasising 
that the dynamics featurised on the distance matrices of the 

A

C

B

FIGURE 6 | Convolutational Variational Autoencoder (CVAE)-based Deep learning analysis. (A) The validation loss during CVAE implementation is plotted at 
different latent dimension for determining optimum values of the low dimension; (B) the training and validation loss is plotted as\ assessed simultaneously over 
consecutive epochs at various reduced dimensions; and (C) the low dimensional latent space of CVAE model’s learnt features of the original high dimensional input 
data as represented in two dimensions. The original high dimensional data are transformed into distance matrix format during pre-processing that is then fed into the 
CVAE architecture. The CVAE then captures the intrinsic features of the original high dimensional data in order to best describe the original system. This CVAE 
captured information is processed in two-dimensional representation following t-sne implementation. The results show that the dynamics of SME-1 and TEM-1 is 
distinct from KPC-2 and features of SHV-1 dynamics are comparable to all other enzymes.
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hydrophobic nodes alone cannot resolve the systems into 
carbapenemases or non-carbapenemases, suggesting that other 
features might also contribute to the complex dynamics of 
these enzymes.

The importance of residue at position 105 has been described 
previously by Bonomo and co-workers (Papp-Wallace et  al., 
2010, 105). However, no link between the hydrophobic nodes 
and residue 105 has been reported. The presence or absence 
of correlation between the hydrophobic network and residue 
105 was also assessed in each system (Supplementary  
Figures S13 and S14). CV1 represents W105  in “flipped-in” 
conformation (side chain pointing towards L167). This was 
resolved only in KPC-2, TEM-1, and SHV-1, but not in 
SME-1. This unsupervised result agrees with earlier discussion 
about H105  in SME-1, where the side chain is polar. CV2 
represents W105  in “flipped-out” conformation (side chain 
pointing towards T216). This was resolved in all four systems, 
but should be  considered alongside the fact that T216 (hinge 
region) is highly mobile in SME-1 and TEM-1. In SME-1, 
the shape of the CV2 and CV3 distributions are similar, and 
the embedding colourings for CV2 and CV3 also appear 
similar. It can be  concluded that the hydrophobic network 
in SME-1 is strongly coupled to the dynamics of the hinge 
region. The same can be  said about TEM-1, but not KPC-2. 
The hinge region was stable in KPC2. In TEM-1 and SHV-1, 
an additional 3rd region of the embedding is coloured with 
higher distances in CV1 and CV2. This is Y105 conformation 
where the side chain is directed towards the bulk in 
these enzymes.

CONCLUSION

In this study, we  report on the role of hydrophobic nodes in 
the dynamics of four class A β-lactamase enzymes including 
KPC-2, SME-1, SHV-1, and TEM-1. It is clear from the analysis 
that the hydrophobic interactions between α5 and α6 nodes 
and the hydrophobic residues of α3-α4 loop are an important 
mechanism by which metastable signal is relayed from the 
global FE landscape towards the functionally significant side 
chain at position 105. This has been experimentally demonstrated 
by us previously (Galdadas et  al., 2018) and is in accordance 
with the cross coupling interactions between the variables of 
interest and the catalytically important regions like the Ω loop, 
the hinge region, distal flap, and the α3-α4 loop. Our results 
collectively suggest that the class A enzymes described here, 
share dynamic similarities. This explains why some mutations, 

far from the active site that can alter dynamics have the ability 
to change substrate profiles of these enzyme.
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