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Understanding the magnitude and causes of isotopic fractionation between organisms 
and their dietary resources is crucial for gaining knowledge on stable isotope ecology. 
However, little is known regarding the diet-tissue fractionation values of marine ciliates, 
which play a critical role in the reconstruction of microbial food webs. In the present 
study, we conducted experiments on two benthic (Pseudokeronopsis pararubra and 
Protocruzia labiata) and two pelagic (Strombidium sulcatum and Uronemella filificum) 
marine ciliates, where they were fed with isotopically constant foods (Chaetoceros 
calcitrans and Isochrysis galbana) under laboratory culture conditions to determine their 
carbon and nitrogen isotopic fractionation values (Δ13C and Δ15N). The stable isotope 
values (δ13C and δ15N) of ciliates for all experiments rapidly increased after the initial 
feeding, with half-lives ranging from 6.1 to 23.0 h for δ13C and from 3.1 to 24.9 h for 
δ15N. The Δ13C and Δ15N for all ciliates represented significantly positive enrichments, 
with overall mean fractionations of 0.6 ± 0.2 and 1.2 ± 0.4, respectively. Irrespective of 
the dietary type, both Δ13C and Δ15N were very similar for the same ciliate species. 
These results suggest that Δ13C and Δ15N for marine ciliates are similar to those found 
in common marine organisms with very little food-dependent variation. Overall, quantifying 
the specific isotopic fractionation of marine ciliates is expected to provide fundamental 
information on the trophic transfer of carbon, nitrogen, and energy flow through the 
microbial pathway in marine ecosystems.
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INTRODUCTION

Stable isotope ratios of carbon and nitrogen have been used to identify trophic pathways of 
organic matter and trophic relationships within animal communities, and the isotopic ratios 
of an organism’s tissues reflect those of its dietary sources (Fry and Sherr, 1984; Peterson and 
Fry, 1987; Michener and Schell, 1994; Layman et  al., 2012). Typical enrichment of heavier 
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isotopes in animal tissues occurs during the course of 
physiological metabolism, in the range of ≤1‰ for carbon 
(DeNiro and Epstein, 1978; Fry and Sherr, 1984) and 2–4‰ 
for nitrogen (Vander Zanden and Rasmussen, 2001; Post, 2002). 
The smaller fractionation of δ13C makes it useful for identifying 
the origins of dietary sources for organisms with distinctly 
different δ13C signatures among different organic matter sources, 
whereas δ15N is better suited for estimating their trophic levels 
(Peterson and Fry, 1987). However, estimating the contribution 
of dietary sources to the consumers’ production using stable 
isotopes can cause uncertainties owing to a variety of biotic 
and abiotic factors, there being too many sources of organic 
matter, isotopic discrimination between consumers and resources, 
and physiological conditions (Boecklen et  al., 2011). Above 
all, estimates of trophic discrimination between consumers and 
resources (expressed by Δ13C for carbon and Δ15N for nitrogen) 
are considerably variable, which may result in various errors 
in the determination of resource contribution and trophic level 
(McCutchan et  al., 2003). The application of actual trophic 
discrimination from stable isotope ratios will improve 
the accuracy of estimates of the contribution of dietary sources 
to the trophic level of consumers within diverse natural 
ecosystems (Post, 2002; McCutchan et  al., 2003). Thus, 
understanding the magnitude and causes of isotopic 
discrimination between consumers and resources is crucial for 
understanding trophic ecology using stable isotope tracers.

Ciliates are one of the major functional groups in marine 
ecosystems (Pierce and Turner, 1992; Löder et  al., 2011; Xu 
et  al., 2018). They play important roles as intermediators in 
the pathways of material and energy flows from pico- and 
nanoplanktonic producers to higher trophic levels in marine 
ecosystems through the microbial food web (Montagnes et  al., 
2010; Zingel et al., 2019). Microzooplankton, including ciliates, 
is known to consume 60–75% of primary production and most 
of the bacterial secondary production in the oceans (Sherr 
and Sherr, 1994; Calbet and Landry, 2004). Several studies 
have focused on the importance of ciliates as a food source 
for mesozooplankton to establish the relevance of the trophic 
link in oceanic biogeochemical cycles on a global scale (Fessenden 
and Cowles, 1994; Calbet and Saiz, 2005). Given the magnitude 
of carbon flux from ciliates in marine food webs for carbon 
budget estimates, a comprehensive understanding of the 
phytoplankton-ciliate-mesozooplankton trophic pathways is 
required. However, the strength and variability of trophic 
linkages are difficult to quantify in complex natural systems, 
thus rendering the comparison of ecosystems unviable (Gutiérrez-
Rodríguez et  al., 2014). To determine the trophic pathways of 
ciliates within complex microbial food chains, tracking the 
dietary utilization of ciliates in food webs and demonstrating 
their nutritional contribution to higher trophic levels should 
be  considered in a rigorous trophic analysis. Recently, stable 
isotope analysis has been applied to resolve trophic connections 
between phytoplankton, heterotrophic protists, and 
mesozooplankton, quantifying the energy flows of carbon and 
nitrogen through complex microbial food webs (Gutiérrez-
Rodríguez et  al., 2014; Décima et  al., 2017). The isotopic 
discrimination values of specific organisms are necessary to 

determine the dietary sources that contribute to their nutrition 
and trophic levels in the food web (Post, 2002). Although 
isotopic values can provide quantitative and qualitative 
information regarding the transfer of material and energy in 
marine food webs, little is known about the diet-tissue 
fractionation values of marine ciliates that can be  used as a 
critical value to reconstruct dietary sources and food 
web structures.

In the present study, we  conducted feeding experiments on 
benthic and pelagic marine ciliates in laboratory cultures to 
determine the carbon and nitrogen isotopic fractionation values 
between diet and consumers. Such feeding experiments are 
indispensable for isolating and collecting sufficient amounts 
of ciliate samples for isotope analyses. During the experiments, 
the ciliates were fed with an isotopically constant food source 
over a period of time to precisely estimate isotopic fractionation. 
Furthermore, we  also investigated whether the different types 
of diets for ciliates would influence their carbon and nitrogen 
isotopic fractionation through the isotope analysis of the ciliate 
populations raised on each type of diet.

MATERIALS AND METHODS

Cultures and Feeding Experiments
Two benthic (Pseudokeronopsis pararubra and Protocruzia labiata) 
and two pelagic (Strombidium sulcatum and Uronemella filificum) 
ciliates were obtained from the marine ciliate resource bank 
of Korea, Gangneung-Wonju National University, Gangneung, 
Korea (Figure  1). All ciliate organisms were cultured in f/2 
seawater media at 20°C under a 14:10 light:dark (L:D) cycle 
with cool-white fluorescent lamps (irradiance 60 μmol photons 
m2 s−1). The stock cultures were acclimated in cell culture 
flasks containing 300 ml fresh f/2-Si seawater media and wheat 
grains (Triticum aestivum L.) as food to achieve initial 
cell concentrations.

Feeding experiments lasted 8 days in 500 ml transparent 
polycarbonate Nalgene bottles, which were considered sufficient 
for reaching isotope equilibrium. The experimental conditions 
were maintained in all the bottles and checked every 12 h 
(temperature, average 15.3 ± 0.6°C; salinity, average 25.0 ± 0.3; 
dissolved oxygen, average 5.3 ± 0.4 mg L−1). Living microalgae 
for feeding experiments were supplied every day (average 
concentration 10 × 103 ± 480 cells mL−1) to the ciliate bottles. 
The diatom and haptophyte species, Chaetoceros calcitrans and 
Isochrysis galbana, respectively, which are dietary items of 
ciliates, were pure-cultured in rotating cell culture flasks in a 
low-temperature incubator until a uniform exponential growth 
phase. Controls of the four ciliates cultured with wheat grains 
were also maintained under the same experimental conditions. 
All treatment and control cultures were performed in duplicates 
and incubated for the experiments. The 3–5 ciliate samples 
from each bottle were collected at 0, 1, 4, 8, 12, 24, 48, 96, 
and 192 h for analyses of cell abundance and carbon and 
nitrogen stable isotopes. The settled detrital materials were 
removed every day by careful pipetting to prevent the proliferation 
of bacterial populations and particle sedimentation.
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At each collection, for the carbon and nitrogen stable isotope 
analyses, 20–40 ml subsamples (presented from a preliminary 
experiment) from the treatment and control culture bottles 
were pre-filtered through 40 μm Nitex sieves to remove any 
microalgae-derived particles, and then, the remaining ciliates 
were filtered onto pre-combusted (450°C, 4 h) Whatman GF/F 
filters. Two diatom samples were obtained by filtering the 
culture water (approximately 10 ml) through pre-combusted 
Whatman GF/F filters. All filter samples were oven-dried at 
50°C for 48 h, wrapped in aluminum foil, and stored at −40°C 
until isotope analysis.

Carbon and Nitrogen Stable Isotope 
Analyses
To measure the stable isotope ratios, the filter samples were 
sealed in a tin disk. The sealed samples were analyzed using 
an elemental analyzer (Vario MICRO Cube, Elementar, Hanau, 
Germany) coupled to a continuous-flow isotope-ratio mass 
spectrometer (CF-IRMS; Isoprime 100; Isoprime Ltd., Cheadle 
Hulme, United  Kingdom). The samples were oxidized at a 
high temperature (1,150°C) in the elemental analyzer, and the 
resultant CO2 and N2 gases were transferred into the CF-IRMS 
using helium as a carrier gas. The stable isotope ratios are 
expressed as δ notation relative to Pee Dee Belemnite for 

carbon and atmospheric air for nitrogen, using the equation: 
δ (‰) = [(Rsample/Rstandard) − 1] × 103, where R is the 13C/12C or 
15N/14N ratio. The international standard reference materials, 
sucrose (ANU C12H22O11, δ13C = −10.47 ± 0.13‰, NIST, 
Gaithersburg, MD, United  States), and ammonium sulfate 
[(NH4)2SO4, δ15N = −1.8 ± 0.1‰, NIST] were used for calibrating 
carbon and nitrogen, respectively, after analyzing every 10 
unknown samples. The analytical precisions, based on repeated 
analyses of acetanilide (Thermo Scientific) as an internal standard, 
were within 0.07‰ for δ13C and 0.11‰ for δ15N.

Carbon and Nitrogen Isotope 
Fractionations and Turnover Times
The trophic enrichment factors (TEFs, Δ) were calculated using 
the equation (Fry, 2006): Δ = δc − δf, where δc and δf refer to 
the carbon and nitrogen isotope ratios of the consumer species 
and food source at isotopic equilibrium, respectively. The 
equilibrated times were estimated for each feeding experiment 
by fitting the exponential decay model to the time of the 
asymptotic isotope values of consumers on the food source. 
To compare the variability in isotope fractionation between 
consumers and diets and among consumers, the standard 
deviations from the isotope mean values after equilibration 
were calculated.

To estimate the turnover time of carbon and nitrogen in 
the algal species, C. calcitrans and I. galbana, we  fitted the 
isotope data to an exponential rise to a maximum equation, 
y = a + bect, using SigmaPlot for Windows (version 14.0; Bosley 
et  al., 2002). Here, y represents the δ13C or δ15N values of 
the two diets at the time, a and b are the regression coefficients 
(parameters) that provide the best fit between the equation 
and the data, c is the turnover rate of carbon or nitrogen in 
the two diets, and t is the time (h) of the diet switch. 
We calculated the half-life of carbon and nitrogen in the tissue 
using the equation half-life = ln(0.5)/c (Hobson and Clark, 1992).

Statistical Analysis
All data were examined for normality using the Shapiro–Wilk 
test and homogeneity of variance with the Levene’s test prior 
to statistical analysis. Significant differences in the δ13C and 
δ15N values of microalgal diets and ciliates among culturing 
times during the feeding experiments, and the Δ13C and Δ15N 
values among culturing ciliates were analyzed using a one-way 
ANOVA. Subsequently, a Tukey’s multiple comparison post-hoc 
test was used to evaluate differences among variables. The 
significance level among treatments was α = 0.05. All statistical 
analyses were performed using IBM SPSS Statistics software 
(version 23.0, IBM, Armonk, NJ, United  States).

RESULTS

Carbon and Nitrogen Stable Isotope Ratios 
and Turnover Times
The isotopic ratios of the two dietary microalgae (C. calcitrans 
and I. galbana) remained constant throughout the culture 

A B

C D

FIGURE 1 | Specimens of four ciliates: (A) Pseudokeronopsis pararubra, 
(B) Protocruzia labiata, (C) Strombidium sulcatum, and (D) Uronemella filificum.
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period  (Table  1). There were no significant differences in the 
δ13C and δ15N values of both C. calcitrans and I. galbana at 
various sampling times, showing overall mean values of 
−14.5 ± 0.3‰ and 9.9 ± 0.2‰ (ANOVA, F8,30 = 1.04, p = 0.435 
for δ13C and F8,30 = 0.89, p = 0.539 for δ15N) and − 15.7 ± 0.2‰ 
and 4.7 ± 0.2‰ (ANOVA, F8,28 = 0.33, p = 0.947 for δ13C and 
F8,28 = 1.39, p = 0.260 for δ15N), respectively.

The changes in the ciliate δ13C and δ15N values obtained 
from the feeding experiments are summarized in Table  2. 
The initial mean δ13C and δ15N values of the four ciliates 
were significantly different (ANOVA, F3,31 = 41.95, p < 0.001 
and F3,31 = 33.07, p < 0.001, respectively), especially as shown 
by the differences between benthic (−26.2 ± 0.2‰ and 
6.2 ± 0.2‰) and pelagic (−25.5 ± 0.2‰ and 6.7 ± 0.1‰) species. 
For all experiments, the δ13C and δ15N values of ciliates rapidly 
increased after the first feeding (Tukey post-hoc test, p < 0.01 
for all cases), which remained constant and in equilibrium 
with their dietary items over the next 96 h (Tukey post-hoc 
test, p > 0.05 for all cases; Figures  2, 3). Half-lives of ciliates 
estimated by turnover rates varied considerably, ranging from 
6.1 h (S. sulcatum fed with I. galbana) to 23.0 h (S. sulcatum 
fed with C. calcitrans) for δ13C and from 3.1 h (S. sulcatum 
fed with I. galbana) to 24.9 h (U. filificum fed with C. calcitrans) 
for δ15N (Table  3). At equilibrium times of 96 h and 192 h, 
the differences in δ13C and δ15N values for both C. calcitrans 
(ANOVA, F3,23 = 11.41, p < 0.001 and F3,31 = 51.84, p < 0.001, 
respectively) and I. galbana (ANOVA, F3,23 = 14.50, p < 0.001 
and F3,31 = 33.07, p < 0.001, respectively) were significant among 
the ciliates. For both the C. calcitrans and I. galbana experiments, 
the asymptotic δ13C and δ15N values were the highest for P. 
labiata (−13.5 ± 0.2‰ and − 14.7 ± 0.2‰) and S. sulcatum 
(11.7 ± 0.2‰ and 6.4 ± 0.1‰) and the lowest for U. filificum 
(−14.0 ± 0.2‰ and − 15.3 ± 0.1‰) and P. pararubra (10.6 ± 0.2‰ 
and 5.5 ± 0.1‰), respectively.

Carbon and Nitrogen Stable Isotope 
Fractionations
The δ13C and δ15N fractionations (Δ13C and Δ15N) for all 
experiments were significantly positive enrichments, with overall 
mean fractionations of all ciliates being 0.6 ± 0.2 and 1.2 ± 0.4, 
respectively (Table  4). There were significant differences in 
the Δ13C and Δ15N calculated at the initial and equilibrium 
(96–192 h) isotope values among the ciliates (ANOVA, 
F3,47 = 26.28, p < 0.001 and F3,47 = 78.67, p < 0.001, respectively), 
which were relatively small. The Δ13C of benthic ciliates (0.64, 
P. pararubra fed with I. galbana to 1.00, P. labiata fed with 
C. calcitrans) was higher than that of pelagic ciliates (0.40, S. 
sulcatum fed with I. galbana to 0.57, S. sulcatum fed C. calcitrans), 
whereas the Δ15N of benthic ciliates (0.68, P. pararubra fed 
with C. calcitrans to 1.18, P. labiata fed with I. galbana) was 
relatively lower than that of pelagic ciliates (1.38, U. filificum 
fed C. calcitrans to 1.73, S. sulcatum fed C. calcitrans). Regardless 
of the dietary type, both the carbon and nitrogen isotopic 
fractionations of all ciliates were very similar for the same species.

DISCUSSION

In general, the stable isotope approach is a well-known key 
tool for understanding the trophic relationship between an 
organism and its diet. In addition, it is used to trace the 
pathways of organic matter within the food web, based on 
the common assumption of a stepwise trophic enrichment 
of δ13C by ≤1‰ (DeNiro and Epstein, 1978; Fry and Sherr, 
1984) and δ15N by 2–4‰ (Vander Zanden and Rasmussen, 
2001; Post, 2002). However, these common enrichment 
factors may not always apply to all individual species, because 
of differences in physiological status, major biochemical 
components (i.e., lipids, proteins, and carbohydrates), and 

TABLE 1 | Mean δ13C and δ15N values of food sources (Chaetoceros calcitrans and Isochrysis galbana) for marine ciliates during the entire experiment.

Time(h)   Chaetoceros calcitrans   Isochrysis galbana

δ13C δ15N δ13C δ15N

n Mean SD Mean SD n Mean SD Mean SD

0 5 −14.3 0.3 9.9 0.2 5 −15.6 0.2 4.6 0.2
1 3 −14.6 0.1 9.8 0.1 3 −15.7 0.1 4.6 0.1
4 3 −14.6 0.2 9.9 0.1 3 −15.7 0.3 4.7 0.3
8 3 −14.6 0.2 9.9 0.2 3 −15.8 0.1 4.6 0.2
12 4 −14.7 0.2 10.1 0.2 3 −15.6 0.1 4.6 0.3
24 4 −14.4 0.3 10.0 0.2 3 −15.6 0.3 4.8 0.2
48 3 −14.4 0.2 10.0 0.2 3 −15.7 0.1 4.9 0.1
96 3 −14.4 0.3 9.9 0.1 3 −15.6 0.2 4.9 0.2
192 3 −14.4 0.2 9.9 0.2 3 −15.7 0.4 4.9 0.2

Overall −14.5 0.3 9.9 0.2 −15.7 0.2 4.7 0.2
F-value 1.04 0.89 0.33 1.39
Significance 
(p)

0.435 0.539 0.947 0.260

One-way ANOVA of δ13C and δ15N values among time factors for each food source. Data represent means ± 1 SD. Significance at p < 0.05.
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TABLE 2 | Mean δ13C and δ15N values (‰) of marine ciliates (Pseudokeronopsis pararubra, Protocruzia labiata, Strombidium sulcatum, and Uronemella filificum) fed with Chaetoceros calcitrans and Isochrysis galbana 
during the duration of the entire experiment.

Time (h)   Pseudokeronopsis pararubra   Protocruzia labiata   Strombidium sulcatum   Uronemella filificum

δ13C δ15N δ13C δ15N δ13C δ15N δ13C δ15N

Chaetoceros calcitrans

n Mean SD Mean SD n Mean SD Mean SD n Mean SD Mean SD n Mean SD Mean SD

0 4 −26.3a 0.2 6.3a 0.2 4 −26.2a 0.2 6.1a 0.2 4 25.6a 0.2 6.7a 0.1 4 −25.5a 0.2 6.5a 0.2

1 5 −22.5b 0.3 7.0b 0.3 5 −23.7b 0.3 6.8b 0.3 5 −23.7b 0.2 7.2b 0.2 5 −24.0b 0.2 7.1b 0.2
4 5 −22.7b 0.2 7.6b 0.4 5 −23.6b 0.2 7.6c 0.3 5 −24.0b 0.2 8.0c 0.3 5 −23.3c 0.3 7.8c 0.3
8 5 −18.6c 0.6 8.7c 0.4 5 −19.4c 0.2 10.6d 0.2 5 −19.3c 0.2 7.9c 0.4 5 −22.9d 0.2 8.7d 0.3
12 5 −16.4d 0.4 11.2e 0.1 5 −15.6d 0.2 11.7f 0.2 5 −15.0d 0.2 8.5d 0.2 5 −16.6e 0.2 8.6d 0.2
24 5 −14.7e 0.2 11.0e 0.2 5 −14.9e 0.2 11.4ef 0.8 5 −14.6d 0.4 9.7e 0.2 5 −15.1f 0.3 8.9e 0.3
48 3 −14.0f 0.2 10.7d 0.1 3 −14.0f 0.3 11.2e 0.2 3 −14.0e 0.2 11.7f 0.2 3 −13.9g 0.1 10.3f 0.3
96 3 −13.8f 0.1 10.6d 0.2 3 −13.5g 0.2 11.0e 0.2 3 −13.9e 0.3 11.7f 0.2 3 −13.9g 0.1 11.3g 0.1
192 3 −13.8f 0.1 10.6d 0.2 3 −13.5g 0.2 11.0e 0.1 3 −14.0e 0.1 11.7f 0.2 3 −13.9g 0.1 11.3g 0.2

Isochrysis galbana

0 4 −26.2a 0.2 6.4d 0.2 4 −26.2a 0.2 6.0c 0.1 4 −25.5a 0.1 6.8e 0.1 4 −25.4a 0.2 6.6e 0.2
1 5 −25.8b 0.2 4.8a 0.2 5 −23.2b 0.2 5.1a 0.2 5 −23.0b 0.3 5.0a 0.2 5 −23.5b 0.2 5.4a 0.2
4 5 −25.7b 0.2 4.8a 0.3 5 −23.2b 0.2 5.3ab 0.2 5 −23.1b 0.3 5.7b 0.2 5 −23.4b 0.2 5.6a 0.2
8 5 −23.8c 0.2 5.0ab 0.2 5 −22.9b 0.3 5.5 b 0.2 5 −22.8b 0.3 6.0bc 0.2 5 −22.6c 0.2 5.6ab 0.5
12 5 −20.7d 0.4 5.0ab 0.1 5 −22.3c 0.2 5.4b 0.3 5 −20.7c 0.2 6.0bc 0.2 5 −22.3c 0.2 5.9b 0.2
24 5 −16.7e 0.4 5.3bc 0.2 5 −19.8d 0.6 5.8c 0.2 5 −20.8c 0.2 6.1bc 0.2 5 −16.5d 0.3 6.0b 0.3
48 3 −15.5f 0.3 5.5c 0.2 3 −14.8e 0.2 5.9c 0.2 3 −15.1d 0.3 6.2c 0.2 3 −15.4e 0.1 6.2c 0.2
96 3 −15.0g 0.1 5.5c 0.2 3 −14.7e 0.2 5.9c 0.2 3 −15.2d 0.2 6.3c 0.2 3 −15.3e 0.1 6.3c 0.2
192 3 −15.0g 0.2 5.5c 0.2 3 −14.7e 0.2 6.0c 0.2 3 −15.1d 0.2 6.4cd 0.1 3 −15.3e 0.2 6.3cd 0.1

Data represent means ± 1 SD. Means followed by the same superscript letter in each row are not significantly different (p < 0.01, Tukey’s post-hoc test).
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assimilated diet during metabolic processes (DeNiro and 
Epstein, 1978; Focken and Becker, 1998). Furthermore, food 
type and quality can influence the trophic enrichment factor 
and isotopic turnover rates of consumer species (Remy et  al., 
2017). Our results showed that despite the significant differences 
in Δ13C and Δ15N, benthic and pelagic ciliates feeding on 
different microalgae had similar patterns of isotopic 
fractionation (i.e., TEF and isotopic turnover rate) under 
controlled laboratory conditions to those previously reported 
for other aquatic organisms (McCutchan et  al., 2003; Dubois 
et al., 2007). Overall, the present study provides experimental 

quantitative data on species-specific TEFs and dietary source 
variations in the trophic fractionation process.

Ecological information on the influence of resource 
parameters on TEFs and fractionation processes of carbon 
and nitrogen stable isotopes in marine ciliates appears to 
be  very uncommon compared to other aquatic organisms. 
In the present study, the Δ13C (0.4 to 1.0) and Δ15N (0.7 
to 1.7) ciliates were found to be  slightly enriched relative 
to their diets (both C. calcitrans and I. galbana), which was 
consistent with previously reported trophic fractionation ranges 
of aquatic consumers (Vander Zanden and Rasmussen, 2001; 
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FIGURE 2 | Carbon stable isotope variation and exponential model for P. pararubra, Protocruzia labiate, Strombidium sulcatum, and Uronemella filificum fed with 
Chaetoceros calcitrans (Chaeto) and Isochrysis galbana (Isochrysis). Black and gray circles are the mean of carbon stable isotope values (δ13C) for ciliates and 
foods, respectively. Vertical lines are ± SD. Black and blue dashed lines indicate the fitting curve and 95% confidence, respectively.
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McCutchan et al., 2003). Similarly, previous laboratory studies 
on consumer TEFs have reported a general pattern showing 
little change in δ13C and relatively high enrichment in δ15N 
between prey and predators (Fry and Sherr, 1984; Minagawa 
and Wada, 1984). For both carbon and nitrogen, Δ13C and 
Δ15N were generally positive in most studies (McCutchan 
et  al., 2003; Caut et  al., 2009). However, several studies have 
shown that there are considerable variations in carbon and 
nitrogen TEFs among species due to species-specific 
mechanisms, the respective feeding ecology, and the associated 
environmental conditions (Lesage et  al., 2002; Yokoyama 

et  al.,  2005; Heethoff and Scheu, 2016; Jenkins et  al., 2018). 
Our study showed significant differences in the TEFs between 
benthic and pelagic ciliates, as reported by some studies on 
natural ecosystems, which reported that there was a clear 
discrimination in δ13C signatures between these two groups 
because of the difference in carbon fixation by benthic and 
pelagic primary producers (Fry and Sherr, 1984; France, 1995; 
Kang et al., 2015). Similarly, the TEFs of the marine amphipods 
Ampithoe valida and Parhyale hawaiensis, fed on fresh and 
detrital algae in laboratory experiments, showed considerable 
variation per species, ranging from −1.5 to −0.4 and − 1.3 
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FIGURE 3 | Nitrogen stable isotope variation and exponential model for P. pararubra, Protocruzia labiate, Strombidium sulcatum, and Uronemella filificum fed with 
Chaetoceros calcitrans (Chaeto) and Isochrysis galbana (Isochrysis). Black and gray circles are the mean of nitrogen stable isotope values (δ15N) for ciliates and 
foods, respectively. Vertical lines are ± SD. Black and blue dashed lines indicate fitting curve and 95% confidence, respectively.
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TABLE 4 | Trophic enrichment factors (TEFs, Δ13C, and Δ15N) of marine ciliates (Pseudokeronopsis pararubra, Protocruzia labiata, Strombidium sulcatum, and 
Uronemella filificum) fed with Chaetoceros calcitrans and Isochrysis galbana calculated from the equilibrium equation (Fry, 2006).

Species name
Final value at equilibrium

TEFs
n Mean SD

δ13C Chaetoceros calcitrans (food) 31 −14.5 0.3
Pseudokeronopsis pararubra 6 −13.8 0.1 0.69
Protocruzia labiata 6 −13.5 0.2 1.00
Strombidium sulcatum 6 −13.9 0.1 0.57
Uronemella filificum 6 −14.0 0.2 0.51
Isochrysis galbana (food) 29 −15.7 0.2
Pseudokeronopsis pararubra 6 −15.0 0.2 0.64
Protocruzia labiata 6 −14.7 0.2 0.95
Strombidium sulcatum 6 −15.2 0.2 0.51
Uronemella filificum 6 −15.3 0.1 0.40

δ15N Chaetoceros calcitrans (food) 31 9.9 0.2
Pseudokeronopsis pararubra 6 10.6 0.2 0.68
Protocruzia labiata 6 11.0 0.1 1.06
Strombidium sulcatum 6 11.3 0.1 1.38
Uronemella filificum 6 11.7 0.2 1.73
Isochrysis galbana (food) 29 4.7 0.2
Pseudokeronopsis pararubra 6 5.5 0.1 0.76
Protocruzia labiata 6 5.9 0.1 1.18
Strombidium sulcatum 6 6.3 0.1 1.59
Uronemella filificum 6 6.3 0.1 1.55

to −0.3 for Δ13C, and from −0.7 to −0.1 and 2.2 to 2.7 for 
Δ15N, respectively (Macko et al., 1982). Significant differences 
in Δ13C and Δ15N between herbivores (−0.4 ± 1.1‰ and 
2.5 ± 2.5‰, respectively) and carnivores (0.9 ± 1.0‰ and 
3.2 ± 0.4‰, respectively) were observed in laboratory and field 
experiments, owing to the effect of assimilate and metabolic 
factors by feeding type (Vander Zanden and Rasmussen, 
2001). Water temperature may affect turnover rates and TEFs 
of carbon and nitrogen in juvenile winter flounder, which 
is related to differences in physiological processes (Bosley 
et al., 2002). Overall, despite the species-specific fractionation 
factors between the ciliates, their Δ13C and Δ15N did not 

vary with differences in species and diets under identical 
experimental conditions and were within the previously 
reported ranges.

The Δ13C and Δ15N values of animals are generally known 
to be  influenced by different diets (McCutchan et  al., 2003). 
Above all, herbivorous species showed highly variable Δ15N 
compared to carnivorous species based on laboratory and field 
estimations (Vander Zanden and Rasmussen, 2001). This tendency 
may be  related to different food qualities, in which the protein 
content of different diets can affect the TEFs for consumers 
(McCutchan et  al., 2003). Specifically, Δ15N may differ with 
the C/N ratios of diets, resulting from the degree of palatability, 

TABLE 3 | Turnover rate and half-life (h) of carbon and nitrogen elements in marine ciliates (Pseudokeronopsis pararubra, Protocruzia labiata, Strombidium sulcatum, 
and Uronemella filificum) fed with Chaetoceros calcitrans and Isochrysis galbana calculated using the exponential equation (y = a + bect) and regressions of carbon and 
nitrogen stable isotope data vs. time since diet switch.

Isotope Diet Species name Turnover rate Half-life (h)

δ13C Chaetoceros calcitrans Pseudokeronopsis pararubra −0.09 7.4
Protocruzia labiata −0.10 6.9
Strombidium sulcatum −0.11 6.1
Uronemella filificum −0.08 9.2

Isochrysis galbana Pseudokeronopsis pararubra −0.06 11.3
Protocruzia labiata −0.03 22.7
Strombidium sulcatum −0.03 23.0
Uronemella filificum −0.05 14.6

δ15N Chaetoceros calcitrans Pseudokeronopsis pararubra −0.15 4.6
Protocruzia labiata −0.21 3.4
Strombidium sulcatum −0.04 18.2
Uronemella filificum −0.03 24.9

Isochrysis galbana Pseudokeronopsis pararubra −0.05 14.7
Protocruzia labiata −0.06 11.4
Strombidium sulcatum −0.23 3.1
Uronemella filificum −0.05 13.3
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the consequent assimilation efficiency, and the physiological 
process of internal element recycling (Adams and Sterner, 2000; 
Remy et  al., 2017). However, several studies have reported 
that Δ13C may not vary with the type and quality of diets, 
in contrast to the food-dependent variation in TEFs (Vanderklift 
and Ponsard, 2003; Mancinelli, 2012). Our study also showed 
no significant differences in either Δ13C or Δ15N between the 
two groups of ciliates fed with two different microalgal species. 
However, a significant difference was observed in the C/N 
ratios between the two diets in a laboratory experiment 
(unpublished data; Student’s t-test, p < 0.05; 6.2 ± 0.4 for C. 
calcitrans and 5.6 ± 0.3 for I. galbana). Collectively, these results 
suggest that the differences in taxonomic class and quality of 
the two food sources for ciliates as herbivores may not result 
in highly variable TEFs.

Knowledge of the isotopic turnover rates of consumer 
tissues over time is fundamental to understanding dietary 
changes and quantifying the relative importance of dietary 
items in aquatic ecosystems (Tieszen et al., 1983; Bosley et al., 
2002). As the dietary items of organisms in natural ecosystems 
change over time, it is necessary to retain information on 
the amount of time required for the organism’s isotopic ratio 
to equilibrate with the isotopic ratio of the last ingested food. 
Such information obtained through controlled laboratory 
experiments will improve the ecological applications of stable 
isotope tracers to infer the feeding strategy or history of 
animals (Gannes et  al., 1997; Herzka et  al., 2001). In the 
present study, the turnover time for both benthic and pelagic 
ciliates to equilibrate with the isotopic ratios of the two 
microalgae as their dietary items was 96 h. Despite the 
substantial variability in half-lives among ciliates (6.1–23.0 h 
for δ13C and 3.1–24.9 h for δ15N), the turnover periods were 
relatively very fast in comparison with other animals, showing 
a wide range from several days to 1 year (Bosley, 1998). Given 
that the turnover rate of the amphipod Gammarus for δ13C 
(half-life 12.5 d and 51.6 d fed with animal and litter, 
respectively) was fast because of the rapid assimilation of 
food sources (Remy et  al., 2017), our results may be  unique 
to the physiological responses of ciliates. Several studies have 
demonstrated that the turnover rates of organisms are very 
specific to the taxon or species level (Fry and Arnold, 1982; 
Tieszen et  al., 1983; Yokoyama et  al., 2005). Hobson and 
Clark (1992) found that the turnover rates of Japanese quail 
may vary according to the life stage and the particular tissue 
and body compartment, owing to differences in the level of 
metabolic activity.

The turnover rate of an organism can be  significantly 
influenced by the speed of growth, likely reflecting the rapid 
shift of the isotopic ratios of consumer tissues to the existing 
diet (Bosley et  al., 2002). By comparing rapidly and slowly 
growing individuals, Fry and Arnold (1982) demonstrated that 
turnover rates of post-larval brown shrimp can be  directly 
related to growth. In fact, the rapid change in the carbon and 
nitrogen isotopic ratios of the four ciliates may be  closely 
associated with their fast growth and metabolism; similarly, 
high growth rates are observed in microalgal species (Banse, 
1982). Therefore, our results suggest that the rapid assimilation 

of microalgae, together with the exponential growth of ciliates, 
may contribute to their fast turnover rates.

CONCLUSION

The results of this study, involving controlled feeding experiments 
with microalgal diets, indicate that the TEFs of carbon and 
nitrogen for marine ciliates are similar to those found for 
common marine organisms with very little food-dependent 
variation. Although stable isotope analysis is a useful tool for 
assessing the trophic role of an organism in food webs, isotopic 
fractionation is generally species-specific in animals, and 
information on the TEFs of carbon and nitrogen for marine 
ciliates is still lacking. In this respect, the knowledge of species-
specific TEFs needs to be  based on precise estimation of the 
trophic level of an organism and the contribution of potential 
food sources to nutrition, by mixing models. Furthermore, 
considering the trophic importance of marine ciliates with 
respect to carbon flow, our study, which quantified their specific 
isotopic fractionation, validates the importance of stable isotope 
ecology in marine microbial food webs. Overall, these results 
are expected to provide fundamental information on the trophic 
transfer of carbon, nitrogen, and energy flow through microbial 
pathways in marine ecosystems.
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