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Recent research has revealed the importance of the appendix in regulating the intestinal
microbiota and mucosal immunity. However, the changes that occur in human gut
microbial communities after appendectomy have never been analyzed. We assessed
the alterations in gut bacterial and fungal populations associated with a history of
appendectomy. In this cross-sectional study, we investigated the association between
appendectomy and the gut microbiome using 16S and ITS2 sequencing on fecal
samples from 30 healthy individuals with prior appendectomy (HwA) and 30 healthy
individuals without appendectomy (HwoA). Analysis showed that the gut bacterial
composition of samples from HwA was less diverse than that of samples from HwoA
and had a lower abundance of Roseburia, Barnesiella, Butyricicoccus, Odoribacter, and
Butyricimonas species, most of which were short-chain fatty acids-producing microbes.
The HwA subgroup analysis indicated a trend toward restoration of the HwoA bacterial
microbiome over time after appendectomy. HwA had higher gut fungi composition
and diversity than HwoA, even 5 years after appendectomy. Compared with those
in samples from HwoA, the abundance correlation networks in samples from HwA
displayed more complex fungal–fungal and fungal–bacterial community interactions.
This study revealed a marked impact of appendectomy on gut bacteria and fungi, which
was particularly durable for fungi.

Keywords: gut bacteria, gut fungi, appendectomy, short-chain fatty acids, community interactions

INTRODUCTION

The human appendix was traditionally considered an evolutionary remnant with limited biological
function. It is typically removed upon the development of appendicitis or even removed
preventatively (D’Souza and Nugent, 2016). However, increasing evidence has revealed that the
human appendix plays important biological roles in regulating the intestinal immune system
and microbiome (Randal Bollinger et al., 2007; Laurin et al., 2011; Masahata et al., 2014; Kooij
et al., 2016; Girard-Madoux et al., 2018; Vitetta et al., 2019). Moreover, studies suggest that
prior appendectomy may be associated with increased risk of many diseases, such as sarcoidosis,
antibiotic-resistant bacteria-mediated bacteremia caused by biliary tract infection, gallstones,
pyogenic liver abscesses, gastrointestinal cancers, Parkinson’s disease (PD), and rheumatoid
arthritis (Tzeng et al., 2015; Chung et al., 2016; Liao et al., 2016; Song et al., 2016; Kawanishi et al.,
2017; Sawahata et al., 2017; Rubin, 2019). However, other studies have indicated no overall increase
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in cancer incidence several years after appendectomy
(Mellemkjaer et al., 1998; Cope et al., 2003). The role of
the appendix must continue to be reevaluated and further
investigated to reveal its roles in human health and disease.

Similar to the colon, the healthy appendix is inhabited
by diverse microorganisms, predominantly composed of
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria
species (Guinane et al., 2013; Vitetta et al., 2019). Appendicitis is
associated with altered microbiota in the appendix. Interestingly,
some microbial taxa that are infrequently found in the distal
gut, including the oral pathogens Gemella, Parvimonas, and
Fusobacterium, have been identified in surgically removed
appendices from patients with acute appendicitis (Guinane et al.,
2013). Studies have demonstrated differences in the intestinal
microbiota of patients with appendicitis and healthy controls,
such as a greater abundance of Fusobacteria species in the
setting of appendicitis (Swidsinski et al., 2011; Zhong et al.,
2014; Rogers et al., 2016). However, data about differences in the
microbiome based on disease severity are inconsistent (Peeters
et al., 2019; The et al., 2019). Using culture methods, the diversity
of anaerobes in the appendix differs between individuals with
and without appendicitis (Hattori et al., 2019).

Recent studies have demonstrated crucial roles of the
appendix in regulating intestinal microecology, possibly acting
as a reserve or sanctuary for the gut microbiota that promotes
the recovery of gut microecological homeostasis after intestinal
perturbation (Randal Bollinger et al., 2007; Vitetta et al., 2019).
Appendectomized mice show delayed accumulation of IgA+ cells
in the large intestine with altered fecal microbiota composition
compared with sham-operated mice (Masahata et al., 2014).
However, few studies have focused on intestinal bacterial changes
after appendectomy, with inconsistent results (Goedert et al.,
2014; Masahata et al., 2014). To our knowledge, there is
no research on the relationship between appendectomy and
intestinal fungi (Underhill and Iliev, 2014). Although the gut
microbiota is populated mainly by bacteria, it also contains
less than 1% of fungi. Intestinal fungal dysbiosis occurs in or
contributes to many diseases, including colitis, alcoholic liver
disease, primary sclerosing cholangitis, pancreatic cancer, and
colon cancer (Iliev et al., 2012; Sokol et al., 2017; Yang et al., 2017;
Aykut et al., 2019; Coker et al., 2019; Lemoinne et al., 2020).

To explore the alterations of gut bacterial and fungal
communities associated with appendectomy, we firstly recruited
and collected fecal samples from 30 healthy individuals
with prior appendectomy and 30 healthy individuals without
appendectomy. We examined the diversity and community
structure of gut bacteria and fungi and evaluated their
inter-kingdom interactions using 16S and ITS2 amplicon
metagenomics in this study.

STUDY POPULATION AND METHODS

Participants
Healthy individuals with appendectomy (HwA; n = 30, 15 men
and 15 women) were recruited from April 2016 to June 2017
from the local population of Xiamen, China. All participants

were healthy, not on medication, had no clinically significant
disease at the inception of the study, and had undergone
appendectomy > 6 months ago. We also enrolled 30 healthy
individuals without appendectomy (HwoA, 17 men and 13
women) as controls between February 2018 and May 2018 from
the physical examination center in the outpatient department of
Zhongshan Hospital Affiliated to Xiamen University (Xiamen,
China). Written informed consent was obtained from all
participants before stool donation. The study was approved by
the local Ethical Review Board of Zhongshan Hospital Affiliated
to Xiamen University(IRB2015014).

The exclusion criteria for both groups were as
follows: < 18 years of age, antibiotic or proton pump inhibitor
(PPI) treatment within 30 days, gastrointestinal surgery (except
appendectomy for HwA), or diseases known to affect the gut
microbiota. The following clinical data were recorded: age, body
mass index (BMI), sex, and years since appendectomy.

Sample Collection, DNA Extraction, and
Amplicon Sequencing
Fecal samples from each participant were collected and
immediately frozen at−80◦C until DNA extraction. The samples
were thawed and homogenized, and total DNA was extracted
from each sample (0.25 g) using the QIAamp Fast DNA
Stool Mini Kit (QIAGEN, Hilden, Germany), according to
the manufacturer’s protocol. The resulting DNA yield and
quality were assessed with a MultiskanTM GO spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, United States).

Bacterial and fungal communities were determined by
amplicon metagenomics targeting the 16S rRNA gene and
ITS2 fragments, respectively. Briefly, the forward primer
targeting the 16S rRNA gene V3 and V4 regions was 5′-
CCTACGGGNBGCASCAG-3′, and the reverse primer was
5′-GGACTACNVGGGTWTCTAAT-3′. The forward primer
targeting ITS2 was 5′-GCATCGATGAAGAACGCAGC-3′, and
the reverse primer was 5′-TCCTCCGCTTATTGATATGC-3′.
The polymerase chain reaction (PCR) products were purified
and assessed with Qubit 3.0 (Thermo Fisher Scientific, Waltham,
MA, United States). Sequencing was performed by the Xiamen
Treatgut Biotechnology Co., using a 250-bp paired-end
sequencing protocol on a HiSeq 2500 platform (Illumina, San
Diego, CA, United States). Raw sequences were deposited in the
National Center for Biotechnology Information Sequence Read
Archive under accession number PRJNA655569.

Bioinformatic Analyses
The raw paired-end reads were assembled and filtered using
FLASH with default parameters except parameters of –M = 200
and –x = 0.15 (Magoc and Salzberg, 2011). The resulting high
quality reads were checked for chimeras and clustered to generate
operational taxonomic units (OTUs) based on 97% similarity
cutoff with USEARCH (Edgar, 2013). The representative OTU
sequences were classified against the SILVA database for 16S
data and against the UNITE database for ITS2 data using RDP
Classifier with a confidence threshold of 50% (Wang et al.,
2007; Henderson et al., 2019; Nilsson et al., 2019). Bacterial and
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fungal data were re-sampled to 31,509 and 30,924 reads/sample,
respectively, for downstream analyses.

Statistical Analyses and Visualization
Alpha diversity indices, including richness (observed), Shannon
diversity (Shannon), and Pielou’s evenness (evenness) were
computed based on the OTU table using the vegan package. The
significances of differences in the diversity indices and individual
taxa were tested using a non-parametric Wilcoxon rank-sum test
for two groups or Kruskal–Wallis rank-sum test with Benjamini–
Hochberg corrections for multiple groups using the agricolae
package. Beta diversity was measured using Bray–Curtis distance,
and significance was determined with PERMANOVA with 9,999
permutations using adonis in the R package vegan. Correlations
between bacterial and fungal genera were computed and tested
using the Hmisc package. Finally, the results were visualized
using the custom R script based on ggplot2 or VennDiagram,
and the network figures were generated with Gephi v0.9.2. The
analyses were performed in R v3.3.2.

RESULTS

Characteristics of the Study Population
The study population included two groups: HwA (n = 30) and
HwoA (n = 30). There were no significant differences in the age
and sex between the HwA and HwoA groups. The BMI of HwA
was less than that of HwoA (20.8 ± 3.0 vs. 22.3 ± 2.5, p = 0.017),
but both were within normal limits (18.5≤ BMI < 25). The HwA
group was further divided into subgroups based on number of
years post-appendectomy: cutoff at 2 years (2Y; < 2Y vs. ≥ 2Y),
at 2 and 5 years [< 2Y, < 5 years (5Y) to ≥ 2Y, and ≥ 5Y], and at
5 years (< 5Y vs. ≥ 5Y) (Table 1).

Gut Bacterial Alterations After
Appendectomy
Gut bacterial communities were analyzed by 16S V3–V4
sequencing. Alpha diversity, assessed with the observed,
Shannon, and evenness indices, did not significantly differ
between the HwA and HwoA groups (Supplementary
Figure 1A). However, individuals with post-appendectomy

TABLE 1 | Study population characteristics.

Group HwA HwoA p-value

n = 30 n = 30

Age (years, mean ± SD) 33.1 ± 6.7 35.1 ± 7.7 0.276

Gender (male/female) 15/15 17/13 0.604

BMI (kg/m2, mean ± SD) 20.8 ± 3.0 22.3 ± 2.5 0.017

Time after appendectomy (months)a 24 (8–180) – –

<2 years (n) 12

2–5 years (n) 12

≥5 years (n) 6

aMedian (minimum–maximum).
SD, standard deviation; BMI, body mass index.

periods shorter than 2 years (HwA_ < 2Y) had significantly
lower gut bacterial evenness values than HwoA and HwA
with a post-appendectomy period longer of at least 2 years
(HwA_ ≥ 2Y) (Figure 1A; p < 0.05). HwA_ < 2Y also showed
marginally lower Shannon diversity (Figure 1A; p = 0.08).
There were no significant differences in the diversity indices
between the other subgroups (Supplementary Figures 1B,C).
The Venn diagram displays the 314 “universal” OTUs (of 486
total OTUs) shared among the three groups; a larger proportion
(15.4%) of OTUs in HwA_ ≥ 2Y than HwA_ < 2Y (5.7%) was
shared with the HwoA group (Figure 1B). Beta diversity analysis
revealed that the gut bacterial communities in the samples
from HwoA significantly differed from those in samples from
HwA (PERMANOVA, F = 3.1526, p < 0.001) and from the
subgroups with a cutoff of 2 years (PERMANOVA, F = 2.1526,
p < 0.001). Interestingly, the HwA subgroups (HwA_ < 2Y
and HwA_ ≥ 2Y) tended to have greater microbial ecological
similarity with HwoA over time (Figure 1C), even with no
significant differences detected between these two subgroups
(PERMANOVA, F = 1.1646, p = 0.184). These results suggest
appendectomy disrupted the gut bacteria composition, which
was restored over time.

Gut bacteria were dominated by Bacteroidetes, Firmicutes,
Proteobacteria, and Fusobacteria at the phylum level (Figure 2A
and Supplementary Figure 2A) and by Bacteroidaceae,
Ruminococcaceae, Prevotellaceae, Acidaminococcaceae,
Lachnospiraceae, Enterobacteriaceae, and Veillonellaceae at
the family level (Figure 2B and Supplementary Figure 2B).
Further analyses at the genus level revealed significantly higher
abundances of Escherichia-Shigella, Veillonella, Klebsiella,
Megasphaera, Flavonifractor, the Ruminococcus gnavus
group, and Streptococcus in HwA subgroups than in HwoA
(Supplementary Figure 3), with a trend toward restoration of
the HwoA level with time after appendectomy (Figure 2C).
On the other hand, Roseburia, Barnesiella, Butyricicoccus,
Odoribacter, and Butyricimonas were significantly more
abundant in the HwoA group than in the HwA subgroup
(Supplementary Figure 3). Roseburia, Butyricicoccus,
Odoribacter, and Butyricimonas became more abundant
over time after appendectomy (Figure 2C).

Gut Fungal Alterations After
Appendectomy
Gut fungal communities were analyzed by ITS2 sequencing.
The alpha diversity indices of the gut fungal communities,
including the observed, Shannon, and evenness indices, were
significantly higher in samples from HwA than those from
HwoA (Supplementary Figure 4A). This difference was also
observed for all HwA subgroups (Supplementary Figures 4B,C),
even for individuals who had undergone appendectomy at
least 5 years prior to the study (HwA_ ≥ 5Y) (Figure 3A).
The Venn diagram shows a larger proportion of OTUs in
HwA_ ≥ 5Y (25.7%) than in HwA_ < 5Y (17.6%) were shared
with HwoA. Conversely, HwA_ < 5Y contained a higher
proportion (63.7%) of exclusive OTUs than HwA_ ≥ 5Y
(31.5%) (Figure 3B). Beta diversity analysis showed that the
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FIGURE 1 | Alterations of gut bacterial diversity and communities, based on 16S V3–V4 sequencing data from HwoA, HwA_ < 2Y, and HwA_ ≥ 2Y. (A) Alpha
diversity estimated by richness (observed OTUs), Shannon diversity, and Pielou’s evenness. Letters indicate the grouping (p < 0.05) by Kruskal–Wallis rank-sum test
with Benjamini–Hochberg corrections. (B) Venn diagram of OTUs shared by and exclusive to the three groups. Corresponding percentages are noted for relevant
overlaps. (C) Differences in gut bacterial community structures among the groups, assessed by principal coordinate (PCo) analysis of Bray–Curtis distance
(p < 0.001). OTUs, operational taxonomic units. *Average.

samples from HwoA were clearly separated from those from
HwA (PERMANOVA, F = 4.030, p < 0.001) and from the
subgroups divided at 5 years (PERMANOVA, F = 2.532,
p < 0.001). Moreover, the HwA subgroups did not display
increasing similarity to HwoA over time (Figure 3C). These
results suggest that the effects of appendectomy on the gut
fungal community persisted for at least 5 years, without
obvious restoration over time. The fungal communities were
dominated by Ascomycota and Basidiomycota at the phylum
level (Figure 4A) and by Saccharomycetaceae, Aspergillaceae,
and unclassified Ascomycota and Basidiomycetes at the family
level (Figure 4B and Supplementary Figure 5). Further analyses

at the genus level revealed that the abundances of many genera
were significantly different in HwA and HwoA fecal samples
(Supplementary Figure 6). Interestingly, the abundances of
Hanseniaspora, Alternaria, Chaetomium, Fusarium, Paraphoma,
Mycosphaerella, and Penicillium decreased with time post-
appendectomy (Figure 4C), whereas the abundances of
Aspergillus and unclassified Microascaceae increased over time
after appendectomy (Figure 4C).

Fungal abundance correlation networks were constructed
to evaluate the ecosystem structure. A richer, more complex
network of correlations between fungal communities was
observed in HwA than in HwoA samples (Figure 5A). As
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FIGURE 2 | Gut bacteria compositions and differences in the HwoA and HwA subgroups. The overall bacterial structures of the three groups at (A) phylum and (B)
family levels, expressed as the relative abundance of OTUs in each group. (C) The relative abundances of major (> 0.01%) bacterial genera significantly differed
among HwA subgroups (< 2Y and ≥ 2Y) and HwoA (p < 0.05). The “un_f” in bacterial nomenclature means unclassified family at genus level. OTUs, operational
taxonomic units.

expected, the density of the fungal correlation network decreased
over time in the HwA subgroups, as attested by decreased
relative connectedness and fewer neighbors. However, there was a
significantly higher density in HwA_≥ 5Y samples than in HwoA
samples for these two parameters, as well as more nodes (OTUs)
and edges (connections) in the networks (Figures 5A,B).

Interactions Between the Gut Fungal and
Bacterial Communities
To gain an overview of the gut microbial shifts after
appendectomy, we first addressed the equilibrium between fungal

and bacterial diversity by determining the fungi-to-bacteria
diversity ratio. The ratios of the observed, Shannon, and
evenness indices were all significantly increased in the HwA
group (Figure 6A; p < 0.05), suggesting a more prominent
influence of appendectomy on the fungal community than
the bacterial community. Furthermore, abundance correlation
networks of bacterial and fungal interactions at the genus
level were constructed to explore the interkingdom interactions.
Compared with the HwoA group, the HwA group had
a denser, obviously disrupted fungi–bacteria network, as
illustrated by the increased relative connectedness and more
neighbors (Figure 6B). Indeed, significantly more neighbors
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FIGURE 3 | Alterations of gut fungal diversity and communities, based on ITS2 sequencing data of HwoA, HwA_ < 5Y, and HwA_ ≥ 5Y. (A) Alpha diversity estimated
by the observed, Shannon, and evenness indices. Letters indicate the grouping by Kruskal–Wallis rank-sum test with Benjamini–Hochberg corrections (p < 0.05).
(B) Venn diagram of the OTUs shared by and exclusive to the three groups. Corresponding percentages are noted for relevant overlaps. (C) Differences in gut fungal
community structures among the groups, assessed by principal coordinate (PCo) analysis of Bray–Curtis distance (p < 0.001). OTUs, operational taxonomic units.

were observed for each node in the HwA samples than
for those of the HwoA samples (Figure 6C). These results
indicate that appendectomy is associated with alterations of
bacterial–fungal interactions in terms of diversity and taxa
relative abundances.

DISCUSSION

In this study, fecal 16S and ITS2 sequences were used to
investigate the gut microbiota of individuals with and without
a history of appendectomy. We demonstrated that both gut
bacterial and fungal communities in healthy subjects with a
history of appendectomy are apparently distinct from those
in healthy controls. Studies indicated that, 4 weeks after
conventionalization, appendectomized germ-free mice have a

distinct, less diverse bacterial composition than sham-operated
germ-free mice (Masahata et al., 2014). On the contrary, a
previous study reported that a history of appendectomy was not
associated with beta diversity and that 22 taxa that were more
abundant after appendectomy were not statistically different after
adjustment (Goedert et al., 2014). In our study, alpha diversity
indices did not significantly differ between HwA and HwoA,
but beta diversity revealed that the gut bacterial composition of
HwA was significantly separated from that of HwoA. Since the
literature on this topic is limited, a more complete understanding
remains to be gained through additional studies. Notably, in
accordance with a previous report, our results suggested that
the HwA subgroups tended to gain bacterial ecological similarity
to HwoA over time after appendectomy. Similarly, at 8 weeks
after conventionalization, the alteration of fecal microbiota
composition in appendectomized mice was no longer apparent,
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FIGURE 4 | Gut fungal community compositions and differences in the HwoA and HwA subgroups. The overall fungal structures of the three groups at (A) phylum
and (B) family levels, expressed as the relative abundance of OTUs in each group. (C) Relative abundances of major (> 0.05%) fungal genera significantly differed
among HwA subgroups (< 2Y and ≥ 2Y) and HwoA (p < 0.05). OTUs, operational taxonomic units.

and the numbers of colonic IgA-secreting cells normalized
(Masahata et al., 2014). Interestingly, our HwA subgroup analysis
revealed that gut fungal composition did not shift toward that
observed in HwoA over time. Thus, the effect of appendectomy
on gut fungi may be more persistent than that on bacteria. Our
research indicated that appendectomy had different impact on
fecal fungi and bacteria over time.

In our study, gut bacteria were dominated by Bacteroidetes,
Firmicutes, Proteobacteria, and Fusobacteria at the phylum level
in both HwA and HwoA. Further analyses at the genus level
revealed that Roseburia, Barnesiella, Butyricicoccus, Odoribacter,
and Butyricimonas were significantly more abundant in HwoA
samples than HwA subgroup samples. Importantly, these more
abundant bacteria were identified as short-chain fatty acid
(SCFA)-producing microbes (Louis and Flint, 2017). In the

gut, SCFAs such as butyric acid, propionic acid, and acetic
acid are speculated to play key roles in immune regulation,
intestinal mucosal protection, protection against inflammation,
and epithelial cell energy provision (Rios-Covian et al., 2016).
Some epidemiological studies have shown that removal of
the appendix may increase the risk of type 2 diabetes (T2D)
and PD (Killinger et al., 2018; Rubin, 2019). Though these
associations are controversial and the mechanisms are unclear,
alterations in microorganism communities may contribute to
post-appendectomy disease occurrence (Killinger et al., 2018;
Killinger and Labrie, 2019; Rubin, 2019). Disorders of propionate,
an SCFA, in the gut are associated with an increased risk
of T2D (Sanna et al., 2019). Studies of fecal microbiota in
patients with PD have revealed lower levels of fiber-degrading
bacterial strains and less SCFA production than observed in
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FIGURE 5 | Gut fungal microbiota correlation networks. (A) Abundance correlation networks of HwA, HwA subgroups (< 5Y and ≥ 5Y), and HwoA analyzed by
Spearman’s test with Benjamini–Hochberg corrections. Each node represents an OTU, and its size is scaled to the number of indirect edges within each network.
Edges indicate correlations (positive in red and negative in green). Only OTUs present in > 50% of samples in the group were considered, and only significant
correlations (p < 0.05) are shown. The table in the inset shows the network parameters. The relative connectedness is the ratio between the number of edges and
the number of nodes in the network. (B) Neighbors of each node within the network. Black stars indicate mean values. Letters indicate the grouping by
Kruskal–Wallis rank-sum test with Benjamini–Hochberg corrections (p < 0.05). OTUs, operational taxonomic units. *Average.

matched healthy controls (Unger et al., 2016; Li et al., 2017).
Moreover, the long-term side effects of antibiotics can decrease
the concentration of SCFAs (Holota et al., 2019). However,
the roles of SCFA production are contradictory, as they can
both benefit the host and lead to metabolic diseases (Schwiertz
et al., 2010; Zhao et al., 2018; Pingitore et al., 2019). These
results suggest that increasing SCFA-producing microbes due
to appendectomy could contribute to the development of
specific diseases.

Our study also found that, compared with HwoA, HwA
had increased fungal biodiversity and relative changes in the
abundance of many fungal groups, which lasted for at least
5 years. Ascomycota and Basidiomycota predominated among
the intestinal fungi in both the HwA and control groups. The
Basidiomycota-to-Ascomycota ratio in HwA was lower than that
in HwoA, and the ratio dropped with time after appendectomy.
The gut microbiota plays an important role in the pathogenesis
of ulcerative colitis (UC) and colorectal cancer (CRC) (Gao
et al., 2017; Ni et al., 2017; Raskov et al., 2017; Khan et al.,
2019). It has also been reported that undergoing appendectomy
in early life, before the onset of UC, may reduce the risk of
colectomy and UC-related hospital admissions (Myrelid et al.,
2017). However, it is still unclear if patients with UC can
benefit from appendectomy (Park et al., 2014; Parian et al., 2017;
Sahami et al., 2019). The relationship between appendectomy

and CRC is inconclusive (Grobost et al., 1991; Mellemkjaer
et al., 1998; Cope et al., 2003; Wu et al., 2015). The roles
of immunoregulation and the microbiota in these associations
require clarification. The fecal fungal microbiota of UC and CRC
patients are also dominated by Ascomycota and Basidiomycota.
In contrast to our findings, the Basidiomycota-to-Ascomycota
ratio is higher in individuals with active UC and CRC than
in healthy individuals, indicating intestinal fungal imbalance.
We demonstrated that the correlation networks of fungal–fungal
and fungal–bacterial interactions were denser and obviously
disrupted in HwA. Alterations of intrafungal and interkingdom
bacteria–fungi interactions are also observed in the settings of
CRC and UC (Sokol et al., 2017; Coker et al., 2019). Taken
together, these clinical observations and our results provide
microbial insights in future research on the mechanism of
appendectomy and related diseases.

However, there are some limitations to our study. This
was a single-center observational study with a relatively small
sample size. In addition, changes in gut immunity and microbial
metabolism were not investigated. However, we enrolled
individuals who were at various stages post-appendectomy,
which allowed us to preliminarily analyze the duration of
microecological changes after surgery. We also provided a first
analysis of the fecal fungal profiles of individuals with a history
of appendectomy.
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FIGURE 6 | Interactions between gut fungal and bacterial communities. (A) Fungi-to-bacteria diversity ratios of the observed, Shannon, and evenness indices.
(B) Abundance correlation networks of gut fungal and bacterial communities analyzed by Spearman’s test. Each node represents a genus, with bacteria in brown
and fungi in blue/violet. Node size is scaled to the number of indirect edges within each network. Edges indicate correlations (positive in red and negative in green).
Only genera present in ≥ 20% of samples in the group were considered, and only significant correlations (p < 0.05) are shown. The table in the inset shows the
network parameters. The relative connectedness is the ratio between the number of edges and the number of nodes in the network. (C) Neighbors of each node
within the network. Black stars are mean values. *Average.

CONCLUSION

We conclude that bacterial and fungal gut microbiota
are altered after appendectomy. Moreover, our study
elucidates that removal of the appendix alters intrafungal
and bacteria–fungi interactions. It appears that the effects
of appendectomy on the fecal fungal community are more
marked and durable than on bacteria. However, the underlying
mechanisms through which appendectomy alters the gut
microbiota and the biological consequences of these changes
remain to be explored.
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