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New methods for antimicrobial design are critical for combating pathogenic bacteria in 
the post-antibiotic era. Fortunately, competition within complex communities has led to 
the natural evolution of antimicrobial peptide (AMP) sequences that have promising 
bactericidal properties. Unfortunately, the identification, characterization, and production 
of AMPs can prove complex and time consuming. Here, we report a peptide generation 
framework, PepVAE, based around variational autoencoder (VAE) and antimicrobial activity 
prediction models for designing novel AMPs using only sequences and experimental 
minimum inhibitory concentration (MIC) data as input. Sampling from distinct regions of 
the learned latent space allows for controllable generation of new AMP sequences with 
minimal input parameters. Extensive analysis of the PepVAE-generated sequences paired 
with antimicrobial activity prediction models supports this modular design framework as 
a promising system for development of novel AMPs, demonstrating controlled production 
of AMPs with experimental validation of predicted antimicrobial activity.

Keywords: antimicrobial peptides, minimum inhibitory concentration, generative deep learning, activity prediction, 
variational autoencoder

INTRODUCTION

Many pathogenic bacteria are resistant to the majority of, if not all, antibiotics that are currently 
being isolated using traditional methods. Because of this, generation of new antimicrobials is 
critical for survival in the post-antibiotic era (Brown and Wright, 2016). At the current rate, 
annual global death due to antibiotic resistance is projected to exceed 10 million by 2050, 
costing 100 trillion USD (O’Neill, 2014); however, investment has not kept up with the task 
with very few antibiotics currently in clinical development and far fewer likely to be  approved 
for treatment of patients (Trusts, 2019). To lower the burden required for antimicrobial 
development, various schemes for their discovery and refinement have been proposed, including 
improved methods for cultivation of antibiotic-producing organisms (Ling et  al., 2015) and 
repurposing of FDA-approved drugs as antimicrobials (Farha and Brown, 2019). Recent work 
has shown that generative deep learning techniques can be  applied to this problem: using a 
generative model, Stokes et  al. (2020) showed that by training on a starting database of 
compounds from ZINC15 (Sterling and Irwin, 2015) new small molecule antibiotics can 
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be  identified, such as halicin, which displays activity against 
Acinetobacter baumannii in a murine model of infection  
(Stokes et  al., 2020) and is currently in clinical trials.

Unlike many small molecule antibiotics, antimicrobial peptides 
(AMPs), essential components of the innate immune system 
of humans and other organisms, have retained effectiveness 
as antimicrobials despite their ancient origins and widespread 
and continual contact with pathogens (Lazzaro et  al., 2020). 
For this reason, among others, peptide antibiotics have been 
regularly deemed “drugs of last resort” for their ability to kill 
multidrug resistant bacteria, an increasingly important 
classification due to resistance formation toward conventional 
antibiotics (Lewies et  al., 2019). Generally acting through 
mechanisms associated with membrane disruption, as well as 
other routes of incapacitation (Chung et  al., 2015), the relative 
immutability of bacterial membranes and other essential AMP 
targets make the development of resistance to AMPs rare, but 
possible (Kubicek-Sutherland et  al., 2016), thus increasing the 
importance of their reliable, continued discovery, to grow to 
the antimicrobial stockpile (Lazzaro et  al., 2020).

Attempts at both generating new AMPs and improving their 
activity have been carried out with varying degrees of success 
(Mahlapuu et al., 2020). Many of these new or enhanced AMPs 
have been generated using low-throughput design methods, 
including rational design and specific amino acid substitution, 
de novo peptide design of alpha helices such as (LKKL)3, use 
of templates or motifs, or otherwise high throughput techniques 
such as rational library design, each of which requiring expert 
knowledge (Huan et  al., 2020). Certain high throughput 
computational techniques such as genetic algorithms have shown 
promise; however, in many applications starting sequences are 
directed toward canonical amphipathic alpha-helical peptides, 
restricting output to a small subset of possible structures and 
sequences (Porto et  al., 2018).

In order to increase the rate of discovery of AMPs, newer 
high-throughput and low expertise design approaches are needed. 
In a similar vein to Stokes et  al. (2020), several recent preprints 
and publications have demonstrated the application of generative 
deep learning on the design of AMPs, using long short-term 
memory (LSTM) networks (Müller et  al., 2018; Nagarajan et al., 
2018), Generative Adversarial Networks (GANs; Tucs et  al., 
2020), and Variational Autoencoders (VAEs; Das et  al., 2018; 
Dean and Walper, 2020). These works have been facilitated by 
thousands of AMP sequences housed in various databases, 
including Antimicrobial Peptide Database 3 (Wang et  al., 2016) 
and Data Repository of Antimicrobial Peptides (Kang et  al., 
2019), which pair peptide sequences with experimentally 
determined activity against Gram-negative and Gram-positive 
bacteria, fungi, HIV, and cancer cells. To date several of these 
datasets have been formatted, so the sequential amino acid 
residues of AMPs can be  represented in the form of a string 
of characters enabling machine/deep learning training and analysis 
of these datasets to identify novel AMP sequences (Müller et al., 2018;  
Nagarajan et  al., 2019; Witten and Witten, 2019).

Although, recent results using generative deep learning for 
producing new sequences has shown promise, including a 
handful of experimental demonstrations of their activity 

(Nagarajan et  al., 2018; Dean and Walper, 2020; Tucs et  al., 
2020), some improvements are necessary. Of foremost importance, 
as many of these systems readily generate sequences that are 
both predicted and experimentally found to be inactive, machine/
deep learning systems would benefit from integrated activity 
prediction functions. Although, AMP activity prediction 
applications exist, many are classifiers, predicting a binary 
antimicrobial vs. not (Gabere and Noble, 2017), where regression 
models would be  of greater value. Additionally, a general 
reduction in filtering steps would reduce bias in predicted 
AMPs, since amphipathicity and helicity are explicitly selected 
for by certain models (Nagarajan et  al., 2018; Porto et  al., 
2018). Thus, generation of new sequences with desired predicted 
activity via a semi-unsupervised and streamlined AMP-generation 
framework with minimal input parameters and less potential 
for biased output would be  an improvement over previous 
works. In this study, we report the joining of predictive models 
for AMP activity [minimum inhibitory concentration (MIC)] 
with a generative VAE for an automated framework to produce 
new peptides with experimentally testable predicted activity. 
We  demonstrate an improved automated semi-supervised 
approach for generating promising new sequences and 
experimental investigation, resulting in low MIC AMPs against 
Escherichia coli, Staphylococcus aureus, and Pseudomonas 
aeruginosa output from a handful of input parameters.

MATERIALS AND METHODS

Dataset and Analysis of Sequence 
Characteristics
The dataset used in this study was based on Giant Repository 
of AMP Activity (GRAMPA) as described by Witten and Witten 
(2019), with some modifications. Witten and Witten (2019) 
scraped all data from APD (Wang et al., 2016), DADP (Novković 
et  al., 2012), DBAASP (Pirtskhalava et  al., 2016), DRAMP (Fan 
et  al., 2016), and YADAMP (Piotto et  al., 2012), each accessed 
in Spring 2018, resulting in a combined 6,760 unique AMP 
sequences and 51,345 MIC values, and is publicly available on 
GitHub: https://github.com/zswitten/Antimicrobial-Peptides. A 
small percentage of MIC values were independently spot-checked 
and confirmed; however, methods vary widely between 
publications, and therefore, MIC values herein should 
be interpreted as approximations of activity. Since MICs determined 
against E. coli were the most-commonly available 
(Supplementary Figure S1A), these were used for the study. 
To avoid issues with synthesis, the dataset was further modified 
by excluding peptides with cysteine or any recorded modifications 
with the exception of C-terminal amidation. For ease of synthesis 
and to keep costs low, sequences ≥40 amino acids in length 
(representing 3.1% of sequences) were excluded; see 
Supplementary Figures S1B,C for the length distribution before 
and after this step. Since only the sequences and MIC values 
were needed, all other data from the modified GRAMPA dataset 
was removed. All MIC values were log μM transformed as 
done previously (Witten and Witten, 2019). The sequences were 
tokenized, <end> token appended to each, and were represented 
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by a one-hot encoding scheme using binary vectors with length 
equal to the size of the amino acid vocabulary: the stopping 
token <end>, a, d, e, f, g, h, i, k, l, m, n, p, q, r, s, t, v, w, y, 
and a padding character. This resulted in a 3D data matrix of 
dimension 3,280, 21, and 41 for the number of sequences, length 
of the vocabulary, and feature vector length, respectively. This 
process was repeated for S. aureus and P. aeruginosa identically 
to E. coli. The final 3D data matrices for S. aureus and P. 
aeruginosa had 2,974 and 1,968 sequences, respectively, with 21 
and 41 length of the vocabulary and feature vector length. The 
S. aureus and P. aeruginosa datasets were only used for training 
of the MIC prediction regression models. Secondary structure 
of AMPs was predicted using the PredictHEC function from 
the DECIPHER R package within Bioconductor, providing the 
probability of helix, beta sheet, or coil (H, E, or C; Wright, 
2016). PredictHEC makes use of the GOR IV algorithm (Garnier 
et al., 1996). This method is one of the best-performing predictors 
that uses only the primary sequence and does not require input 
of other sequences. Welch’s t-test via NumPy (Walt et  al., 2011) 
was used throughout for sample comparison with a significance 
threshold of 0.01 unless otherwise noted.

Variational Autoencoder
The architecture of the VAE was implemented as described by 
Bowman et  al. (2015), as described by Dean and Walper (2020) 
with minor modifications. The VAE model was trained on sequences 
in the E. coli dataset. The loss function was comprised of 
reconstruction loss and KL loss to penalize poor reconstruction 
of the data by the decoder and encoder output representations 
of z (latent space variables) that are different from a standard 
normal distribution. The preprocessed data was encoded into 
vectors using a LSTM network. The encoder LSTM was paired 
with a decoder LSTM in order to do sequence-to-sequence learning. 
The decoder results were converted from binary one-hot encoded 
vectors back to peptide sequences. Training stoppage criteria was 
met when loss values did not decrease >0.0001 for five consecutive 
epochs. The VAE was trained using the Keras (Chollet, 2015) 
library with a TensorFlow (Abadi et  al., 2016) backend, and used 
the Adam optimizer. The number of neurons for the LSTM layers 
found in both encoder and decoder were both set to 1,024. The 
number of latent dimensions was set to 50. All models were 
trained on an Ubuntu workstation with an Nvidia GeForce 
GTX1070 GPU. The LSTM network used in the decoder-encoder 
is stochastic – decoding from the same point in latent space 
may result in a different peptide being generated and is dependent 
on the random seed set prior to running. Models were saved to 
binary files and are available upon request.

New Sequence Generation
Cosine similarity was used to compare latent space vectors 
generated by the VAE. To carry out cosine similarity calculations 
for each vector encoded, NumPy dot and norm functions were 
used which follow the notation:
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Where a and b are vectors; a  and b  are Euclidean (L2) 
norms of vectors a = (a1, a2, …, an) and b = (b1, b2, …, bn; Han 
et  al., 2012), where each vector (b) was compared to the same 
reference (a): the vector representation of VLNENLLA, caseicin 
B-B1. Selected for its relative inactivity, caseicin B-B1 was 
reported to show a MIC of ≥1.25 mM against E. coli NCIMB 
11843  in a study of caseicin B (Norberg et  al., 2011).

Using the cosine similarity values, the five nearest to the 
caseicin B-B1 vector (Group A) and the five furthest from 
caseicin B-B1 (Group B) were identified. Around each of these 
vectors ( v) , new vectors were sampled by selecting random 
points from a normal distribution. In order to accommodate 
the relative variation of the latent codes, we  denote wij  as a 
new vector with the following equation:

 w , ij= + ∼ = = ( )( )( )= =∑ ∑i j i ij iv std v
1

10

1

10
0X N µ σ

Where vi  ith vector of Group A or Group B.
ij  random 1 × 50 vector sampled from a normal 

distribution  .
  normal distribution function (with mean m  and SD s ).
std vi( )  SD of ith vector of Group A or Group B.
The μ was set to 0 and σ equal to the SD of the vectors 

from Group A and Group B [ std v( ) ]. The resulting random 
1 × 50 vector ( )  was then added to the input vector, resulting 
in a new vector ( w ). Using this method, 10 new vectors were 
sampled for Group A and Group B, and all vectors were 
decoded to new peptide sequences. Following removal of 
duplicate sequences, 38 remained (sequences and other 
information available in Table  1).

Latent Space Visualization
For dimensionality reduction principal component analysis 
(PCA), T-distributed stochastic neighbor embedding (t-SNE), 
Uniform Manifold Approximation and Projection (UMAP) – 
each with two components – were used. PCA and t-SNE used 
were imported from Scikit-learn, while UMAP was from McInnes 
et  al. (2018). For t-SNE, perplexity was set to 30, and learning 
rate was set to 100. UMAP was performed using Bray-Curtis 
Similarity as the metric, with default settings. The MIC thresholds 
for coloring were: <0.2 log μM was set to blue, >2 log μM 
was set to red, and those with values ≥0.2 and ≤2 were set 
to light gray. To visualize the cosine similarity values of each 
encoded vector in latent space, the vector for each peptide 
was colored according to cosine similarity value on a 2D t-SNE 
projection. To highlight the locations of Group A and Group 
B, black and white stars were placed at the points representing 
the peptides caseicin B-B1 and trialysin peptide P4, respectively.

Regression Models
Eight different regression models for predicting AMP MIC 
values: convolution neural network (CNN) as implemented by 
Witten and Witten (2019), Elastic Net (ENet), Gradient Boosting 
(GB), Kernel Ridge (KR), Lasso, and Random Forest (RF) 
models used were from the Python Scikit-learn library (Pedregosa 
et  al., 2011), while Light Gradient Boosting Machine (LGBM) 
and EXtreme Gradient Boosting (XGB) used lightgbm  
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TABLE 1 | PepVAE-generated peptides.

Peptide name Cosine similaritya Group Idb Sequence Parent peptide IDc MIC prediction (log μM)

p1 1.000 A VLNANLLR 3,088 3.6
p2 1.000 A VLIKTRLFIKRK 3,088 1.2
p3 1.000 A LNWKAILKHIIK 3,088 1.2
p4 1.000 A VLPKVMAHMK 3,088 2.0
p5 1.000 A LNWGAVLKHVVK 3,088 1.9
p6 1.000 A LILKRKRKRKRILI 3,088 1.8
p7 0.994 A LNWGAIKKHIIK 3,085 2.0
p8 0.994 A VLNENLLA 3,085 3.8
p9 0.994 A LNWGAFLKHFFK 3,085 1.3
p10 0.994 A VLNENLLH 3,085 3.9
p11 0.993 A VLNENAAR 3,090 3.9
p12 0.993 A VLNENLRR 3,090 3.7
p13 0.993 A VLNENLLR 3,090 3.7
p14 0.993 A VDLKNLLK 3,090 3.1
p15 0.993 A VALNENLLR 3,090 3.9
p16 0.984 A LRRLRLRLLRLLRRLLRLL 3,087 0.9
p17 0.984 A VLNNLLR 3,087 3.4
p18 0.984 A VLNENLAA 3,087 3.9
p19 0.984 A VLNEALLR 3,087 3.5
p20 0.981 A LNWGAWLKHWWK 3,089 1.3
p21 0.981 A LVKRVKKVL 3,089 1.3
p22 0.981 A VNLKNLLR 3,089 3.6
p23 −0.952 B KWKLWKKIEKWGQGIGAVLKWLTTWL 2,220 −0.3
p24 −0.952 B KWKSFLKTFKSPVKTVFYTALKPISS 2,220 0.4
p25 −0.952 B KWKSFIKKLTSVLKKVVTTAKPLISS 2,220 0.2
p26 −0.952 B KWKSFIKKLTSAAKKVVTTAKPLISS 2,220 0.2
p27 −0.952 B KWKSFLKTFKSPARTVLHTALKPISS 2,220 0.5
p28 −0.958 B KWKSFIKKLTSAAKKVLTTGLPALIS 2,227 0.0
p29 −0.958 B KWKSFLKKLTSAAKKVLTTALKPISS 2,227 0.0
p30 −0.963 B KWKSFLKTFKSAVKTVLHTALKAISS 2,228 0.0
p31 −0.963 B FIGGLRRLFATVVGTVVGAINKLGGG 2,228 1.1
p32 −0.965 B KFFKKLKKAVKKGFKKFAKV 1,802 1.1
p33 −0.965 B FFFHIIKGLFHAGRMIHGLV 1,802 1.1
p34 −0.965 B FFFKLLPKAIGALKKI 1,802 1.1
p35 −0.981 B FKIKASKKLLKKVGKGALGAVAKALAQQA 1,809 0.8
p36 −0.981 B KWKKFIKKLTSAAKKVLTTGLPALIS 1,809 0.0
p37 −0.981 B KWKKFLKKLTSAAKKVLTTALKPISS 1809 0.0
p38 −0.981 B FFKKFIGGVAKIAGKAAPHGVGQLIPHVTP 1,809 0.6

aCosine similarity: cosine similarity calculated using VLNENLLA as a reference.
bGroup ID: A and B groupings.
cParent peptide ID: index of the parental peptide sampled nearby.
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(Ke et  al., 2017) and xgboost (Chen and Guestrin, 2016) 
libraries, respectively. The model parameters for each are provided 
in Supplementary Material. The data used for the regression 
models was the same as described in the Dataset and analysis 
of sequence characteristics section above, prior to one-hot 
encoding. The input peptides sequences were encoded numerically 
to vectors, each amino acid or padding characters – which 
were appended to the end vector below the maximum length 
(40) – receiving a unique number. The data was randomly 
shuffled and split into training:test sets at a 90:10 ratio. Initial 
comparison of the eight different regression models for predicting 
AMP MIC values against E. coli was performed by calculating 
Root mean square error (RMSE) and R2 values from actual 
MIC (log μM) vs. predicted on a holdout test dataset. From 
these the top performing four – GB, RF, LGBM, and XGB 
– were examined with shuffled split cross validation in each 
case (n = 25) for predicting the MICs in the E. coli, S. aureus, 
and P. aeruginosa datasets. The top-performing MIC predictor 
for each organism was selected by lowest median RMSE.

Minimum Inhibitory Concentration Assays
Minimum inhibitory concentration measurements values were 
measured using broth dilution method for AMPs (Wiegand 
et  al., 2008). Peptides synthesized for use in this study are 
listed in Table  1. Peptides were synthesized by Genscript, Inc. 
(Piscataway, NJ, United  States) and each confirmed to have 
greater than 80% purity. Lyophilized peptides were solubilized 
in water, aliquoted, and stored at −20°C. Overnight cultures 
of E. coli K-12, S. aureus ATCC 12600, and P. aeruginosa 
27853 were grown in Mueller Hinton II Broth (BD, San Jose, 
CA, United  States) at 37°C. Cultures were diluted to a final 
concentration of approximately 5 × 105 CFU/ml into fresh broth. 
An inoculum volume of 100 μl was added to each well of a 
96-well non-treated polystyrene plate (Celltreat Scientific 
Products, Pepperell, MA, United States) and 10 μl of the peptide, 
which was diluted in series, so that final peptide concentrations 
examined ranged from 128 to 0.5 μM. After incubation at 37°C 
for 24 h, the MIC was determined by OD600 measurement using 
a BioTek Synergy Neo2 plate reader (Winooski, VT, United States) 
to identify the lowest concentration of peptide which inhibited 
growth. Statistical analysis of predicted and experimental MIC 
data was performed using the Fisher’s Exact Test from stats 
package in R (R Core Team, 2013).

Circular Dichroism
Circular dichroism (CD) spectra of the generated AMPs were 
obtained using a Jasco J-815 spectropolarimeter. Samples were 
allowed to equilibrate to 20°C prior to data collection in a 
0.1 cm path length cuvette, with a chamber temperature of 
20°C throughout each scan. Spectra were collected from 195 
to 260 nm in 0.1-nm intervals. Data shown is an average of 
three scans, performed for each sample. All AMPs were analyzed 
at 25 μM concentration in either 10 mM sodium phosphate 
(pH 7) or 60 mM sodium dodecyl sulfate (SDS) in 10 mM 
sodium phosphate, both from Sigma (St. Louis, Missouri, 
United States). Baselines obtained prior to the experiment with 

peptide-free buffers were subtracted from each scan. Mean 
residue molar ellipticity (MRME) was calculated as follows:
 MRME cl R= q /

Where q  is ellipticity (mdeg), c  is peptide concentration 
(mol/L), l  is cell path length (cm), and R  is the length of 
the peptide. MRME is presented multiplied by 1,000 to 
improve clarity.

RESULTS

Dataset Characterization and Framework 
Design
This study makes use of the Witten and Witten (2019) GRAMPA 
dataset as the starting point. Within this dataset, amino acid 
sequence and MIC values for peptides targeting several common 
bacterial species including E. coli, S. aureus, and P. aeruginosa 
are reported with E. coli being the most counted at 9,150 
different entries (Supplementary Figure S1A). After filtering 
the dataset on bacteria species, peptides that were of length ≥ 40 
or contain cysteine were removed in order to avoid costly 
and difficult synthesis of long peptides, as well as the 
complications cysteine-containing peptide create for their 
production, activity testing, and aggregation. The peptide  
length distribution of AMPs (without cysteine) tested against 
E. coli had a median of 17 amino acids prior to filtering on 
length (Supplementary Figure S1B), and median of 16  
amino acids following removal of long sequences 
(Supplementary Figure S1C). Of the remaining peptides 
(N = 3,280), the median log μM MIC value was found to be 1.19 
with a net charge of +4 (Supplementary Figures S1C,D). 
Finally, to obtain a glimpse of possible secondary structures 
of the AMPs in this dataset, we  calculated the hydrophobic 
moments at different angles. The noticeably higher hydrophobic 
moment at 100 degrees in Supplementary Figure S1E suggests 
helical secondary structure likely predominates, with a relatively 
minor proportion of beta sheet and random coil comprising 
the remainder.

For the next two most common species found in the dataset 
following E. coli, S. aureus and P. aeruginosa, we  performed 
the same characterization as described above. Although, the 
overall counts were lower for the S. aureus and P. aeruginosa 
AMP datasets at 2,974 and 1,968, respectively, both the 
distributions and median values for length, MIC, charge, and 
hydrophobic moment were found to be  similar to those found 
for E. coli (see Supplementary Figures S2, S3, respectively).

Using the above defined dataset for E. coli, we  designed a 
VAE AMP generation pipeline (Figure  1). Broadly, the VAE 
AMP generation and design process occurs in two stages: (1) 
algorithm training and (2) AMP evaluation. In the first stage, 
the VAE is trained on a curated AMP dataset followed by 
development of a regression model for activity prediction and 
the subsequent development of the latent space. Stage 2 includes 
the identification of new AMP sequences from the latent space 
(sampling) and the subsequent production and characterization 
of the AMPs including determination of the MIC values.  
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A VAE implemented as previously described (Dean and Walper, 
2020), making use of VAE described by Bowman et  al. (2015), 
was trained on the E.coli dataset as described above. The 
number of intermediate dimensions was set to 1,024 and latent 
dimensions was set to 50. Training was stopped after 500 
epochs or when loss decreased at a sufficiently low rate. The 
final state of the model was saved and used for sampling 
novel sequences. A more detailed description of the framework 
design is provided in the Methods section. As demonstrated 
in previous work, the implicit starting assumption was that 
sequence order and characteristics dependent on that sequence 
were the components “learned” by the VAE (Dean and Walper, 
2020). Output of the VAE was a 50-dimensional latent space, 
where each of the sequences is encoded to a unique location. 
Once generated, coordinates can be  chosen from the latent 
space and translated to AMP sequences using the generated 
decoder (see diagram in Figure  1).

VAE, Latent Space Visualization, and 
Sampling
In order to visualize the organization of the developed 
50-dimension latent space, multiple dimensionality reduction 
techniques were tested: PCA, t-SNE, and UMAP 
(Supplementary Figure S4A). Upon visual inspection, t-SNE 
and UMAP show separation between the distant MIC thresholds 

of <0.2 log μM and >2 log μM, while separation between the 
two groups in the first two components of the PCA is less 
clear; this is supported using Adjusted Rand Index (ARI) 
measurement and Adjusted Mutual Information (AMI) scores 
(Supplementary Figure S4B). Here, 2D projects (via PCA, 
t-SNE, and UMAP) of the latent representation was used as 
input to the K-means algorithm and measure the overlap 
between the resulting clustering annotations and the pre-specified 
subpopulations (the <0.2 log μM and >2 log μM labels) using 
the Rand index and AMI scores. By ARI, t-SNE shows the 
highest separation measure with 0.62, with UMAP at 0.58, 
and PCA at 0.47. Using AMI score, t-SNE is also highest at 
0.59, t-SNE at 0.56, and PCA at 0.47. These results suggests 
that (1) the AMPs encoded to the latent space are not randomly 
distributed in terms of their MIC value classification, and (2) 
t-SNE provides superior 2D clustering visualization in this 
application, relative to PCA and to a lesser extent UMAP. 
t-SNE projections are shown in Figures  2A,B.

To delve into the organization of specific AMPs encoded 
to the latent space, we  used cosine similarity as a measure of 
distance between AMPs using their 50-dimension vectors as 
input. First, the cosine similarity for all vectors was calculated 
relative to each vector, generating a similarity list for every 
AMP. For each similarity list, the associated MICs for the five 
most similar vectors were averaged; this process was repeated 
for the five least similar vectors, and the difference between 

FIGURE 1 | Schematic of variational autoencoder (VAE) antimicrobial peptide (AMP) generation and design process. The VAE AMP generation and design process 
occurs in two stages: (1) training the VAE for the development of the latent space and a regression model for activity prediction, and (2) sampling from the latent 
space, generation of new AMPs, and assignment of predicted MIC values. The first step of Stage 1 was to train the VAE on the E. coli dataset. The general design 
of the VAE was previously described (Dean and Walper, 2020), making use of VAE described by Bowman et al. (2015), which was reported for use in generating 
new sentences. Here, the number of intermediate dimensions was set to 1,024 and latent dimensions was set to 50. Training was stopped after 500 epochs or 
when loss decreased at a sufficiently low rate. The final state of the model was saved; the encoder is used in Stage 1 and the decoder is used in Stage 2. The MIC 
prediction regression model is similarly trained on the same dataset and used in Stage 2 following sequence generation by the VAE decoder to assign MIC values 
for those new AMPs against E. coli. A more detailed description of the framework design is provided in the Methods section.
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the two averages was taken. From this process, the greatest 
difference highlighted a largely inactive AMP, VLNENLLA, 
called caseicin B variant B1, a variant of caseicin B which is 
found in milk. Regardless of mutation, caseicin B exhibited a 
MIC of approximately 1,250 μM against E. coli NCIMB 11843 
(Norberg et  al., 2011). Since this variant of caseicin B and 
other mutants each showed low activity against E. coli 
(≥1.25 mM), we  were confident in sampling from latent space 
near their location would likely produce new AMPs similarly 
inactive and hypothesized that AMPs generated in a region 
most distant from this reference point were likely to be  highly 
active against E. coli. Caseicin B-B1 is identified in Figures 2A,B 
at the black star; a white star is located at the embedding 
most distant in cosine similarity encoding for the peptide 
KFGKIVGKVLKQLKKVSAVAKVAMKKG, trialysin peptide P4. 
Trialysin peptide P4 is a potent pore-forming peptide found 
in the saliva of Triatoma infestans, the insect vector of Chagas’ 
disease, and lytic to E. coli in LB broth at approximately 10 μM 
(Martins et  al., 2006). In Figure  2A, both caseicin B-B1 and 
trialysin peptide P4 locate within regions of low activity and 
high activity AMPs as organized within latent space, respectively, 
and in Figure  2B both encode to regions of similarly high 
and low cosine similarity.

Next, we  took the highest and lowest five AMPs (by cosine 
similarity) and grouped them: parent Group A and parent 
Group B. Here, the parent Group A five AMPs (closest to 
and including caseicin B-B1) were identified as VLNENLLA, 
VLNENLAA, VLNENLLK, VLNENLL, and VLNENLLH, each 
of which are caseicin B variants reported by Norberg et  al. 
(2011). And parent Group B (most dissimilar to caseicin B-B1) 

was: KWKLWKKIEKWGQGIGAVLKWLTTWL, KWKSFIKK 
LTSAAKKVVTTAKPLISS, KWKSFIKKLTSVLKKVVTTAKP 
LISS, KFFKKLKKAVKKGFKKFAKV, and KFGKIVGKVLKQ 
LKKVSAVAKVAMKKG. The average MIC against E. coli for 
parent Group A group was 2,500 μM, and for parent Group 
B: 1 μM. Nearby these 10 AMPs (two groups of five) a total 
of 100 peptides were generated by the decoder. Following 
removal of duplicates, 38 remained and were synthesized (see 
sequences in Table  1), with 22 peptides in the Group A and 
the remaining 16 peptides were in the Group B. The 38 
sequences were designated names p1-38 and were associated 
with Parent peptide IDs corresponding to those Peptide IDs 
found in Supplementary Table S1 – the dataset used for 
training the model. Cosine similarity listed in Table 1 is relative 
to caseicin B variant B1. For purposes of comparison, in 
addition to the 38 peptides from Group A and Group B, 100 
control sequences were decoded from random 
50-dimension vectors.

AMP Generation, Characterization, and 
MIC Results
A secondary structure prediction algorithm (GOR IV) was 
used to predict helix, sheet, and coil percentages of the Group 
A and Group B sampling groups. Group A peptides were 
predicted to have similar proportions sheet and coil with 
medians 30% sheet and 37% coil, with a median of 0% helix 
(Figure 3A). Conversely, Group B peptides were predominately 
helical at 62%, with the remainder composed of approximately 
equal proportion sheet and coil. Group A and Group B peptides 
are significantly different for both predicted proportion of helix 

A B

FIGURE 2 | Latent space characterization. Dimensionality reduction for visualization of the 50-dimension latent space. (A) 2D contour plot of t-distributed 
stochastic neighbor embedding (t-SNE) with two components performed on the encoded peptides. The MIC thresholds for coloring were: <0.2 log μM is shown in 
blue, >2 log μM shown in red, and those with values ≥0.2 and ≤2 were set to light gray. Regions of higher density are darker. The black star is located at the peptide 
caseicin B-B1, and a white star is located at the embedding most distant in cosine similarity (encoding for the peptide trialysin peptide P4). Group A and Group B 
sampling locations are schematically shown at the dashed circle around caseicin B-B1 and trialysin peptide P4, respectively. (B) Scatterplot of t-SNE projection 
showing encoded peptides colored by cosine similarity calculated using the vector encoding for peptide caseicin B-B1 (black star) as reference. Higher similarity 
values indicate more similarity between vectors; lower values indicate more difference.
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and coil (p < 0.01, Welch’s two-sided t-test). For comparison, 
the group of 100 random sequences were not found to 
be  statistically different from Group A, while Group B had 
significantly higher in percent helix and significantly lower in 
percent coil (p < 0.01, Welch’s two-sided t-test; 
Supplementary Figure S5A). Given the relatively high proportion 
of peptides predicted to be helical in Group B, the amphipathic 
nature of both groups was examined via calculated hydrophobic 
moments at 100 degrees. Predictably, differences between Group 
A and Group B are significant (p < 0.01, Welch’s two-sided 
t-test; Figure 3B). As expected, the distribution of hydrophobic 
moment of the randomly generated group was similar to that 
of the sequences found in the training set when the hydrophobic 
moment at 100 degrees is calculated, suggesting the VAE 
generations aligned well with real data (see 
Supplementary Figures S1F, S5B). Altogether, these results 
suggest the 22 Group A peptides are predicted to be significantly 
less helical than the 16 Group B peptides, while randomly 
sampling captures a wider range of predicted structures and 
non-amphipathic/amphipathic AMPs. Importantly, the 
predictions suggest controlled sampling from distinct 

subpopulations of latent space generates sequences with 
significantly different characteristics.

Experimental investigation of secondary structure was 
performed using CD in phosphate buffer with SDS micelles as 
a membrane-mimicking agent (Tulumello and Deber, 2009). To 
account for concentration and difference in peptide length, 
MRME was plotted to visualize the relative proportion of secondary 
structure for each group A and B (Figure  3C). Results in the 
presence of SDS show that the average Group A peptide presents 
a mixture of random coil and helical character with minima 
predominant at ~205 nm suggests a largely random structure, 
with a smaller but noticeable dip at 222 nm suggesting a minor 
percentage of helix. Individual scans separated out 
(Supplementary Figure S6A) shows a mixture of structures. 
Group B peptides were predominantly helical, with paired minima 
at ~208 and ~222 nm and, unlike Group A, were more uniform 
in the scans of individual peptides. Using the circular dichroism 
analysis program Beta Structure Selection,1 secondary structure 
was estimated from the CD data (converted to ee ).  

1 http://bestsel.elte.hu/

A

C

B

FIGURE 3 | Generated peptide characterization. (A) Boxplot of the predicted helix, sheet, and coil percentages calculated from Group A and Group B sampling 
groups into the GOR IV algorithm. Group A and Group B are significantly different (p < 0.01, Welch’s two-sided t-test) for helix, sheet, and coil. (B) Boxplot of the 
calculated hydrophobic moments obtained by applying the modlAMP function calculate_moment on the sequences from Group A and Group B sampling groups. 
The differences between Group A and Group B groups are significant (p < 0.01, Welch’s two-sided t-test). (C) Mean residue molar ellipticity (MRME) plots of peptides 
from group A (left) and group B (right) in the presence of membrane mimic 60 mM sodium dodecyl sulfate (SDS). Each scan was averaged from three scans for each 
peptide with peptide-free buffer baseline scan subtracted. Lighter colored lines are individual peptide scans; darker colored lines are average scan for the group. 
Vertical lines highlight approximate minima of average scans: 205 nm for Group A; 208 and 222 nm for Group B.
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Following summation of antiparallel, parallel, and turn into 
“sheet,” the results were plotted for both Groups A and B 
(Supplementary Figure S6B). Analysis showed that Group A 
and B with median percent helicity of 4 and 63%, respectively. 
The results are comparable to those estimated from sequence 
via GOR IV.

Although, secondary structure and particular measurements 
such as hydrophobic moment are closely related to the antimicrobial 
activity of AMPs, particularly those with alpha helical character, 
more predictive measures are available in the form of regression 
models. Witten and Witten (2019) and others have reported 
use of regression models, including a CNN. In our study, 
we  implemented the reported CNN as well as several machine 
learning regression models for MIC prediction against E. coli. 
Preliminary tests utilized model frameworks within the Statistics 
and Machine Learning Toolbox and Regression Learner app in 
MATLAB (Supplementary Figure S6). However, the long training 
time of the best performing model identified (Rational Quadratic 
Gaussian Process Regression) led us to migrate to other models 
implemented in Python. The CNN from Keras, elastic net, GB, 
kernel ridge, lasso, and RF, each from Scikit-learn, as well as 
LGBM and an XGB model were initially tested. Our results 
showed that three of the examined models significantly 
underperformed the others: lasso, kernel ridge, and elastic net, 
each with R2 < 0.4 and relatively high RMSEs 
(Supplementary Figure S8A). This underperformance was also 
visible in the actual-predicted difference histograms 
(Supplementary Figure S8B), where each of their distributions 
were flatter than the others. For this reason, these three models 
were excluded from further study. In addition, the relatively 
complex CNN implemented as described by Witten and Witten 
(2019) in Keras was underperforming in relationship to the 
length of time required to train the model and was therefore 
also excluded. The remaining four models – GB, RF, LGBM, 
and XGB – were further interrogated. Representative scatterplots 
are shown in Figure  4A, with each showing R2 higher than 
0.67. Following successive train-test split-shuffling cross validation, 
GB was found to have both the highest median R2 (0.73) and 
lowest RMSE (0.50; Figures  4B,C) and was used going forward 
for MIC prediction of AMPs against E. coli. Likewise, using 
the S. aureus and P. aeruginosa datasets, we  identified the best-
performing models for predicting MIC against both S. aureus 
(Supplementary Figure S9) and P. aeruginosa 
(Supplementary Figure S10). For S. aureus XGB was found to 
be  the best predictor after cross validation 
(Supplementary Figure S9), while for P. aeruginosa, although, 
the RSME and R2 measures disagreed, the RF model was selected 
(Supplementary Figure S10). Although, several regression models 
for MIC prediction of AMPs on E. coli have been reported 
with varying degrees of accuracy (Wu et  al., 2014; Xiao and 
You, 2015; Nagarajan et al., 2018; Gull, 2020), none have publicly 
accessible models in order to directly compare with our results. 
Nevertheless, given the modular nature of the described PepVAE 
framework, any superior MIC prediction system could be  used 
in place of the described models.

Minimum inhibitory concentrations predicted for Group A 
and Group B peptides are provided in Figure  5 and Table  2. 

For E. coli, the median predicted MIC of the Group A group 
was 1,809 and 2 μM for Group B, and the sets were found 
to be significantly different (p = 1 × 10−8, Welch’s two-sided t-test). 
As expected, the median of predicted MICs for the peptides 
decoded from randomly selected points in latent space was 
in between groups A and B: 12 μM (Supplementary Figure S5C). 
These predicted results are similar to the MICs of the parent 
AMPs used for generation of Group A and B. To investigate 
the predicted MICs of an intermediate location, we  filtered 
regions of the latent space by cosine similarity relative the 
caseicin B variant B1 reference, randomly sampled 10 sequences, 
then generated new sequences (n = 10) around these using the 
same method as described above and predicted the MICs for 
each group (Supplementary Figure S11). Each group was 
found to be  significantly different from the other (p < 0.01). 
These results suggest intermediates locations between the polar 
ends of cosine similarity (and between Group A and Group 
B) would likely on average have corresponding intermediate MICs.

While the VAE was trained on the E. coli dataset, and 
sampling was performed with activity against E. coli in mind, 
we  additionally examined the effectiveness of the generated 
AMPs on S. aureus and P. aeruginosa, the two most common 
bacteria in the modified GRAMPA dataset after E. coli 
(Supplementary Figure S1A). For S. aureus, the median predicted 
of Group A was 181 and 11 μM for Group B (Figure  5). A 
Welch’s two-sided t-test on Group A and B found p = 1 × 10−1. 
Meanwhile, against P. aeruginosa the median predicted of Group 
A was 78 and 5 μM for Group B (Figure 5). A Welch’s two-sided 
t-test indicated a significant difference with p = 3 × 10−7. For 
both S. aureus and P. aeruginosa, random sampling yield median 
predicted MICs of 13 and 14 μM, respectively 
(Supplementary Figure S5C).

To experimentally investigate the MIC of each of the 38 
synthesized peptides against E. coli, the peptides were diluted 
in Mueller Hinton broth with a constant number of bacteria. 
Following incubation, we  found that consistent with above 
predictions, the recorded MICs between the two sampling 
groups were significantly different. Among Group A AMPs, 
63% of the MICs were found to be  greater than 128 μM, while 
none of the 16 Group B AMPs were found to have MICs 
above 16 μM, other than peptide p34 (Table  2). After sorting 
for activity, the median value for Group A and Group B, was 
found to be  >128 and 4 μM, respectively, which may be  in 
line with the median predicted values of 1,809 and 2 μM, 
although, determining the accuracy of the values for Group 
A that are over 128 μM was not possible due to solubility 
issues. Importantly, the MIC predictions were not found to 
be different or independent from the experimental MICs, when 
categorized into >128 and ≤128 μM (p < 0.01, Fisher’s exact test).

The MIC results paired with secondary structure estimates 
from circular dichroism experiments, highlight a number of 
active AMPs within Group B were composed of a low (<50%) 
proportion of helix, including peptides p23, p24, p27, and notably 
the unique p38, which displayed high activity against each 
bacteria. In addition, we  found that both generated AMPs p31 
and p33 have net charge ≤3, which in similar generative studies 
including Nagarajan et  al. (2018) and others would have been 

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Dean et al. Variational Autoencoder for AMP Generation

Frontiers in Microbiology | www.frontiersin.org 10 September 2021 | Volume 12 | Article 725727

placed below their threshold for proceeding to experimental 
testing of activity. Similarly, within Group A, there was a 
low-activity peptide with high helicity (>50%) for p16, and 
relatively low-activity peptides with high net charge. The novel 
p16 peptide was also particularly interesting due to its incorrect 
predicted MIC (≤11 μM for each bacteria), but experimental 
MICs that were in-line with the rest of Group A.

The experimentally determined MICs against S. aureus and P. 
aeruginosa were – unlike E. coli – further from their respective 
MIC predictions. For S. aureus, while 12 AMPs in Group A were 
predicted to have MICs >128 μM, 18 of the 22 peptides were 
found to have MICs at that level experimentally. The median 
MICs for Group A and Group B was found to be  >128 and 
32 μM, respectively, while the median predicted values were 181 
and 11 μM. Similar to E. coli, the MIC predictions for S. aureus 
were similar, consistent with experimentally determined MICs 
when categorized into >128 and ≤128 μM (p < 0.01, Fisher’s exact 
test). Although, more of the predictions and experimental results 
were not in agreement, an insignificant difference was found using 
receiver operating characteristic analysis. Receiver operating 
characteristic analysis was performed to evaluate for classification 
predictions for both species, which resulted in area under the 
curve values for E. coli and S. aureus at 0.93 and 0.9, respectively 
(Supplementary Figure S12). For P. aeruginosa, the median MICs 
for Group A and Group B were experimentally determined to 
be 32 and 4 μM, respectively, compared to median predicted values 
of 78 and 5 μM. Consistent with the predicted MICs, the 
experimentally determined MICs for E. coli displayed a larger 

separation between Groups A and B for than for the corresponding 
comparison for S. aureus and P. aeruginosa (Figure  5A; Table  2). 
When predicted and experimental MIC determinations found in 
Table  2 are plotted relative to one another (Figure  5B), after 
accounting for the >128 μM inequalities the predictions and 
experimental results closely align for E. coli and P. aeruginosa, 
with the exception of a few peptides deviating beyond a 5-fold 
difference in experiment vs. prediction, notably p34 tested against 
E. coli highlighted above. Peptide 16 for both E. coli and P. 
aeruginosa was also found be inactive, while having a low predicted 
MIC. In contrast, for S. aureus, experiments notably deviate from 
predicted MICs for many of the peptides, where most of Group 
B predicted MICs significantly overestimated activity.

DISCUSSION

This study reports the use of a peptide generation framework, 
PepVAE, for discovery and design of new AMP sequences. 
Using the learned latent space, we  demonstrate the 
identification of new active AMPs using reference peptides 
as input. Paired with antimicrobial activity prediction models, 
this modular framework shows the ability to produce AMPs 
with both predicted and experimentally validated activity 
against the targeted bacteria. Previous work on generative 
deep learning models for the design of AMPs has demonstrated 
the ability of VAEs to form a well-organized, usable latent 
space representation from which novel peptide sequences 

A B

C

FIGURE 4 | Comparison of MIC prediction models. Four regression models for predicting AMP MIC values against E. coli. (A) Representative scatterplots of 
Predicted vs. Actual MIC (log μM) of EXtreme Gradient Boosting (XGB), Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), and Random Forest (RF) 
predictions on holdout test dataset with RMSE and R2 values displayed. Lines represent standard diagonals, in addition to the diagonal +/− 1 and 2 SDs of the 
points. (B) Results of cross validation using shuffled split (n = 25) shown as a violin plot for each model, sorted from highest to lowest mean R2 value, with GB at the 
top with a median of 0.73. (C) Cross validation results for RMSE sorted from lowest to highest mean RMSE value, with GB at the top with a median of 0.54.
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can be  generated (Das et  al., 2018; Dean and Walper, 2020). 
These reports when paired with similar promising work on 
the discovery of small molecules using VAEs and other 
generative deep learning models broadly establishes these 
techniques as valuable new methods for molecular and 
material design (Sanchez-Lengeling and Aspuru-Guzik, 2018). 
Although, generative deep learning models for AMP generation 
have previously shown their ability to produce distributions 
of characteristics that closely match the databases of sequences 
on which they were trained, unconditional generation alone 
does not readily solve the problem of discovering new AMPs 
that are potent against target bacteria. In particular, previously 
described systems would benefit from certain functions to 
improve automated discovery of new potent AMPs: testable 
activity prediction, a mechanism for AMP generation via 
a reference peptide for controlled sequence generation, and 
an expanded sequence space from which to sample.

Many previously described systems readily generate sequences 
that are both predicted and experimentally determined to 
be  inactive, by nature of the models used when training sets 
include inactive or low-activity sequences. In the literature, 
while classifiers for AMP activity are widely available and 
meta-analyses of their performance has been reported  

(Gabere and Noble, 2017), regression models for activity 
prediction – MIC, half maximal effective concentration, or 
other metrics – are less common. Several studies make use 
of the CAMPR3 predictor (Waghu et al., 2016) or other similar 
models that output abstract activity predictions as a probability 
[probability(active AMP)], not readily relatable to MIC or another 
antimicrobial activity metrics (Müller et  al., 2018; Nagarajan 
et  al., 2018; Dean and Walper, 2020). Beyond the lack of 
testability of these predictions, it likely that the increasing 
hydrophobic moment yielded higher probabilities in the CAMPR3 
predictor and other models suggesting that simply alternating 
groups of positively ionizable and hydrophobic amino acids 
will score highly, highlighting the importance of experimentally 
verifying the antimicrobial activity of generated AMPs. To 
address these issues, our study implemented ML models trained 
on sequence data and adjoining experimental MIC values to 
predict MICs of new peptide sequences. Critically, we  found 
that the MIC predictions for E. coli were not statistically different 
from the experimental MICs and can, therefore, be  used for 
assessing whether a potential AMP is likely to be active against 
E. coli prior to peptide synthesis. While the MIC predictions 
and for S. aureus and P. aeruginosa were similarly found to 
be  statistically similar to the experimental outcomes, the 

A

B

FIGURE 5 | Predicted and experimental MICs against E. coli, S. aureus, and P. aeruginosa. (A) Predicted MICs using the top-performing models for the Group A and 
Group B sampling groups are show in a boxplot, for E. coli, S. aureus, and P. aeruginosa, respectively. Group A and Group B are significantly different for each of the 
species (p < 0.01). (B) Experimental MICs of Group A and Group B peptides against E. coli, S. aureus, and P. aeruginosa, with predicted MICs shown (with lighter 
coloring) for reference. Experimental MICs resulting in >128 μM determinations are shown with arrows extending up from 128 μM. All values are provided in Table 2.
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TABLE 2 | Minimum inhibitory concentration (MIC) assay results.

Peptide 
name

Group Id Sequence Escherichia coli 
predicted MIC (μM)

Escherichia coli 
experimental MIC 
(μM)

Staphylococcus 
aureus predicted 
MIC (μM)

Staphylococcus 
aureus experimental 
MIC (μM)

Pseudomonas 
aeruginosa 
predicted MIC (μM)

Pseudomonas 
aeruginosa 
experimental MIC (μM)

p1 A VLNANLLR 4,406 >128 620 >128 79 32
p2 A VLIKTRLFIKRK 15 64 13 >128 9 8
p3 A LNWKAILKHIIK 18 16 29 128 20 16
p4 A VLPKVMAHMK 102 64 110 >128 23 32
p5 A LNWGAVLKHVVK 84 64 53 >128 86 32
p6 A LILKRKRKRKRILI 69 64 13 >128 12 128
p7 A LNWGAIKKHIIK 94 128 34 >128 84 16
p8 A VLNENLLA 6,281 >128 1,031 >128 117 32
p9 A LNWGAFLKHFFK 18 16 46 64 79 32
p10 A VLNENLLH 8,761 >128 1,353 >128 122 32
p11 A VLNENAAR 8,333 >128 1,450 >128 70 32
p12 A VLNENLRR 4,691 >128 1,693 >128 80 32
p13 A VLNENLLR 5,307 >128 1,147 >128 78 64
p14 A VDLKNLLK 1,221 >128 200 >128 117 32
p15 A VALNENLLR 7,546 >128 203 >128 22 32
p16 A LRRLRLRLLRLLRRLLRLL 8 >128 6 128 11 >128
p17 A VLNNLLR 2,398 >128 612 >128 123 64
p18 A VLNENLAA 8,661 >128 981 >128 94 64
p19 A VLNEALLR 3,233 >128 793 >128 81 32
p20 A LNWGAWLKHWWK 18 64 29 64 68 32
p21 A LVKRVKKVL 19 >128 28 >128 24 64
p22 A VNLKNLLR 3,894 >128 162 >128 70 32
p23 B KWKLWKKIEKWGQGIGAVLKWLTTWL 1 2 1 32 0 32
p24 B KWKSFLKTFKSPVKTVFYTALKPISS 3 2 18 >128 7 8
p25 B KWKSFIKKLTSVLKKVVTTAKPLISS 2 4 18 32 2 4
p26 B KWKSFIKKLTSAAKKVVTTAKPLISS 2 4 13 >128 1 4
p27 B KWKSFLKTFKSPARTVLHTALKPISS 3 16 16 >128 8 4
p28 B KWKSFIKKLTSAAKKVLTTGLPALIS 1 2 3 16 2 4
p29 B KWKSFLKKLTSAAKKVLTTALKPISS 1 4 11 64 2 4
p30 B KWKSFLKTFKSAVKTVLHTALKAISS 1 4 5 16 1 4
p31 B FIGGLRRLFATVVGTVVGAINKLGGG 12 4 4 64 14 8
p32 B KFFKKLKKAVKKGFKKFAKV 13 8 14 128 7 16
p33 B FFFHIIKGLFHAGRMIHGLV 13 8 3 8 18 32
p34 B FFFKLLPKAIGALKKI 13 >128 18 64 22 64
p35 B FKIKASKKLLKKVGKGALGAVAKALAQQA 6 4 18 >128 15 0.5
p36 B KWKKFIKKLTSAAKKVLTTGLPALIS 1 2 3 32 1 4
p37 B KWKKFLKKLTSAAKKVLTTALKPISS 1 2 11 8 2 2
p38 B FFKKFIGGVAKIAGKAAPHGVGQLIPHVTP 4 2 10 16 13 16
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inaccuracy of the predictions for MICs against these bacteria 
relative to E. coli was not unexpected due to the smaller training 
sets and lower accuracy of the MIC predictions on the test 
set. Increases in both data quantity and quality, with respect 
to the specific strain used, may significantly improve MIC 
predictions, especially for non-E. coli bacteria. Pairing with 
PepVAE, further compilation of data for would likely allow 
for improved generation of AMPs targeting species of interest.

Generative models for AMP design can be  bifurcated into 
those that use a starting sequence and those that do not (i.e., 
de novo design). To address the development of a mechanism 
for selecting a reference AMP for controlled sequence output, 
as opposed to unconditional generation, which would improve 
existing AMP generation frameworks, we implemented a simple 
AMP generation by reference method that uses limited input 
parameters: reference peptide selection and the number of new 
sequences to generate. We  show that this method can produce 
peptides with similar MICs as the input reference peptides, 
but with novel sequences not found in the training set. One 
possible limitation of this system is the likely requirement of 
colocalization with nearby similar AMPs with similar activity 
to raise confidence in sampling in the region. In our testing, 
we  generated AMPs in reference to caseicin B-B, encoded 
nearby a series of single and double mutants with similar 
activity. It is possible that an isolated, single reference peptide 
is not sufficient, and that a small panel of AMPs may be required 
for assurance – sampling from a sparsely populated region 
will likely produce results similar to that of the random sample 
group in this study, who is predicted MICs span a wide range.

Another issue our study improved upon is the expanded 
sequence space from which to sample. Other groups have 
shown the benefits of tying a continuous activity prediction 
to output from an AMP-generating models rather than simple 
classification, following up with experimental validation. These 
methods, however, used predicted amphipathicity, MIC, and 
charge filtering steps in order to obtain target active sequences 
(Nagarajan et al., 2018; Porto et al., 2018), restricting sequence 
output to a specific set of positively charged, alpha helical 
peptides. Our results showing that our list of newly generated 
active peptides includes non-canonical AMPs of low helicity 
and low net charge supports using the described VAE method, 
without imposing thresholds on peptide characteristics or 
otherwise biasing output post-sequence generation. However, 
we  did perform pre-training biasing due to cost and synthesis 
limitations on both length and cysteine presence, and we expect 
the structural diversity of generated AMPs to have been greater 
had these limitations not been a factor, and we  plan to avoid 
more of these biasing factors in future studies.

In addition to investigating AMPs generated using models 
trained on data without length or cysteine constraints, given 
sufficient funds for synthesis costs, future studies will examine 
our results that suggest sampling from nearer regions (i.e., not 
highest or lowest code similarity but interpolations in between) 
would on average result in generated AMPs with middling activity 
in a range between the polar Groups A and B. This interpolation 
may look similar in outcome to our proof-of-concept report on 
de novo generation of short ≤12-mer peptides using a VAE  

(Dean and Walper, 2020) but would further validate that the 
VAE is producing a smooth, well-organized latent space. Another 
interesting feature to investigate in the future, relating to the 
ability to sample nearby a particular selected AMP, are the 
characteristics best retained by the newly generated AMPs. The 
results here suggest the average MIC of the generated AMPs 
from both Group A and Group B is similar to that of those 
AMP encoded near the location they were sampled from, but it 
is unclear whether other measurable features will be  retained. 
For example, if an AMP with highly specific activity particular 
species or Gram classification is used as the reference, will the 
generated AMPs also selectively kill? The above-mentioned possibility 
of pairing with PepVAE with further compiled non-E. coli data 
for likely allowing for improved generation of AMPs targeting 
species of interest leads us to speculate whether this framework 
can result in a species-level granularity in terms of activity or 
whether other techniques would be  better suited for this goal. 
In addition, we  highlight that this study utilized a vanilla LSTM 
VAE that was used previously, not a more sophisticated variant, 
such as a conditional VAE (CVAE) for AMP generation (Das 
et  al., 2018). It is unclear whether the results would be  improved 
by conditioning the latent space on MIC information without an 
explicit comparison paired with experimental validation; in future 
studies, we plan to investigate this, comparing the output of CVAE 
to PepVAE, as well as other generative models to determine which 
performs the best for controlled AMP sequence generation.
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