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Pathogen-induced decay is one of the most common causes of fruit loss, resulting
in substantial economic loss and posing a health risk to humans. As an ethylene
action inhibitor, 1-methylcyclopropene (1-MCP) can significantly reduce fruit decay,
but its effect on fruit pathogens remains unclear. Herein, the change in microbial
community structure was analyzed using the high-throughput sequencing technology,
and characteristics related to fruit quality were determined after 1-MCP (1.0 Ml L−1)
treatment in “Doyenne du Comiceis” pear fruit during storage at ambient temperature.
Overall, 1-MCP was highly effective in reducing disease incidence and induced multiple
changes of the fungal and bacterial microbiota. At day 15, the microbial diversity of
fungi or bacteria was reduced significantly in the control fruit (non-treated with 1-
MCP), which had the most severe decay incidence. For fungi, in addition to Alternaria
being the most abundant in both 1-MCP treatment (59.89%) and control (40.18%), the
abundances of Botryosphaeria (16.75%), Penicillium (8.81%), and Fusarium (6.47%)
increased significantly with the extension of storage time. They became the primary
pathogens to cause fruit decay in control, but they were markedly decreased in 1-
MCP treatment, resulting in reduced disease incidence. For bacteria, the abundance of
Gluconobacter (50.89%) increased dramatically at day 15 in the control fruit, showing
that it also played a crucial role in fruit decay. In addition, Botryosphaeria, Fusarium
fungi, and Massilia, Kineococcus bacteria were identified as biomarkers to distinguish
1-MCP treatment and control using Random Forest analysis. The redundancy analysis
(RDA) result showed that the amount of Botryosphaeria, Penicillium, and Fusarium were
positively correlated with disease incidence and respiration rate of pear fruits while
negatively correlated with fruit firmness. This investigation is the first comprehensive
analysis of the microbiome response to 1-MCP treatment in post-harvest pear fruit, and
reveals the relationship between fruit decay and microbial composition in pear fruit.
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INTRODUCTION

As one of the three deciduous fruit trees, pear is an important
fruit crop grown throughout the temperate zone. Pyrus communis
L. cv. “Doyenne du Comice” is very popular among consumers
because of its gorgeous appearance, rich fragrance, soft and juicy
flesh, high commodity value, and health care value (López et al.,
2001). However, the fruit decay caused by pathogenic agents has
seriously limited the post-harvest shelf life.

Pathogen-induced decay is the most crucial reason for
post-harvest fruit loss among many other factors such
as environmental conditions, sprouting, quality loss, and
overripening (Sommer, 1985; Buchholz et al., 2018). Disease
losses in pears are mainly caused by fungi, including blue mold
caused by Penicillium expansum, gray mold caused by Botrytis
cinerea, bitter rot caused by Glomerella cingulate, and Mucor
rot caused by Mucor piriformis (Mari et al., 2003; Sardella et al.,
2016; Luciano-Rosario et al., 2020). In recent years, there has
been an increasing number of reports of fungal infections in
pears on different cultivars worldwide. The interactions between
pathogens, including fungi and bacteria, and plants have been
extensively studied, but much remains to be explored about
the diversity of fruit microbiome during post-harvest storage,
especially the pathogens causing fruit decay (Willersinn et al.,
2015; Buchholz et al., 2018).

To date, various chemical and physical methods have
been used to maintain the quality of fruits and to reduce the
damage of pathogens (Wassermann et al., 2019; Aslam et al.,
2020). By competing with ethylene for binding receptors,
1-methylcyclopropene (1-MCP), as an ethylene action inhibitor,
delays ethylene-mediated physiological and biochemical
responses related to fruit ripening. Thus, 1-MCP has been
widely used to store and preserve fruits and vegetables as a
new fresh-keeping agent (Jiang et al., 2004; Khan and Singh,
2007; Zhang et al., 2012; Li et al., 2013). Several reports have
shown that 1-MCP reduces fruit decay in various fruits under
proper concentration (Dou et al., 2005; Xu et al., 2017; Min et al.,
2018). However, these studies mainly focused on the inhibition
effect of 1-MCP on some particular pathogens or diseases; the
impact of 1-MCP on the microbial diversity of post-harvest
fruits remains unclear. Therefore, we anticipate that this study
will contribute to a deeper understanding of 1-MCP using
post-harvest fruit storage.

Initially, the effect of fresh-keeping agents on fruit
microorganisms was studied using traditional approaches,
such as pathogen isolation, colony counts of bacteria and molds,
and denaturing gradient gel electrophoresis (DGGE) technology
(Sheffield et al., 1989; Feroz et al., 2016; Lin et al., 2018).
However, these methods required re-culturing microorganisms
in a nutrient medium, which led to the loss of many slow-growing
but important microorganisms. The microbiome can greatly
delineate the composition, structure, and diversity of microbial
populations in various environments. The development of
DNA sequencing technology has made the microbiome an
efficient and direct means to explore biological diversity in
post-harvest fruit (Droby and Wisniewski, 2018; Zhang et al.,
2020; Taîbi et al., 2021).

In the present study, we have performed a DNA
metabarcoding approach to investigate the fruit microbiome
changes induced by 1-MCP treatment in post-harvest pear
storage. Furthermore, the relationship among the disease
incidence, fruit quality, physiological characteristics, and
microbial composition was also demonstrated after the 1-MCP
treatment in the pear fruit.

MATERIALS AND METHODS

Material Collection and Treatments
The “Doyenne du Comice” pear (P. communis L.) fruits were
harvested at maturity stage (July 2020) from an orchard of
Shenzhou City (115.490266◦E, 38.05122◦N), Hebei Province,
China, and transported to the Lab directly. Fruits with similar
weight (about 120 g per fruit) were randomly divided into two
groups: one was treated with 1.0 µl L−1 1-MCP (SmartFresh,
AgroFresh, United States) at 25◦C for 14 h and another was set
as control (CK) without 1-MCP. Then, the fruits were stored
at 25 ± 0.5◦C and relative humidity of 90 ± 5% for 0, 5,
10, and 15 days. The treatments were marked as CK0d, CK5d,
CK10d, and CK15d, representing fruits stored for 0, 5, 10, and
15 days in the control group, while MCP0d, MCP5d, MCP10d,
and MCP15d represent fruits stored for 0, 5, 10, and 15 days in
1-MCP treated group, respectively.

Analysis of Microbial Diversity
DNA Extraction and Illumina Sequencing
For sampling, four pieces of fruit tissue, including pulp and peel
(about 40 g, 1 cm thick) were symmetrically taken from each
fruit, and the samples were homogenized with a blender. Total
microbial DNA was extracted from the fruit homogenate. Each
treatment contained five replicates, and each replicate had five
fruits. The 16S rRNA genes V4–V5 region was amplified with
the primers 799F (5′-AAC MGG ATT AGA TAC CCK G-3′) and
1193R (5′-ACG TCA TCC CCA CCT TCC-3′). The ITS1 region
of the fungal community was amplified with the primer ITS1F
(5′-CTT GGT CAT TTA GAG GAA GTA A-3′) and ITS2 (5′-
GCT GCG TTC TTC ATC GAT GC-3′). The PCR products were
sequenced on an Illumina MiSeq/NovaSeq platform at Personal
Biotechnology, Shanghai, China.

Sequence Analysis
After the barcode sequence was removed, sequence denoising
was carried out according to the QIIME 2 DADA2 analysis
process (Bolyen et al., 2019). The number of amplicon sequence
variants (ASVs) at each of the seven taxonomic levels including
domain, phylum, class, order, family, genus, and species was
counted according to the results of taxonomic annotations, and
the flower plot was performed by the genes cloud tools, a free
online platform for data analysis1. Taxonomic composition was
analyzed after all samples were adjusted to the same sequencing
depth, and microbial dynamics at each taxonomic level were
shown. Biomarker identification was analyzed by using Random

1https://www.genescloud.cn
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Forest with the function of “classify-samples-ncv” in Q2-sample-
classifier. Correlations of fungi and bacteria were performed
by the gene cloud tools. Relationship among fruit quality,
physiological characteristics, and microbial community diversity
was analyzed using redundancy analysis (RDA) and plotted by
the gene cloud tools.

Fungi Isolation and Identification
A small piece of fruit tissue was cut off from the diseased spot,
soaked in 70% alcohol for 30 s, washed with sterile water three
times, and then placed on the PDA medium. After 3–5 days of
incubation at 25◦C, mycelium was picked from the edge of the
colony and transferred to a fresh PDA medium for purification.
After two or three times of purification, a single pure colony was
obtained as no contamination of other fungi was detected under a
microscope (OLYMPUS BX51, Japan). The purified colonies were
inoculated in PDA inclined medium for 2 days and then stored at
4◦C for further use.

Based on the isolation of four strains of pathogenic fungi,
0.1 g of activated fungal hyphae was taken and ground into
powder with liquid nitrogen. Total fungal DNA was extracted
using the fungal genomic DNA rapid extraction kit (Sangon
Biotech, Shanghai) according to the instructions. DNA samples
were amplified with primers of ITS1/ITS4 and sequenced by
Sangon Biotech (Shanghai). The obtained sequences were BLAST
at NCBI to complete fungal identification.

Fungal Membrane Integrity Determined
by Fluorescence Microscope
Fungal membrane integrity was performed according to the
method described by Li and Tian (2006). Fungal spores were
treated with 1.0 µl L−1 1-MCP for 14 h, and stained with 10 µg
ml−1 of propidium iodide (PI) (Sangon Biotech, Shanghai) for
10 min at 30◦C in the dark. The spores were observed and
photographed using a microscope (OLYMPUS BX51, Japan),
equipped with a luciferin rhodonine filter set (OLYMPUS U-RFL-
T, Japan). The fungal membrane integrity rate (MIR) was
calculated by the following formula: MIR = [1 − (the number
of red spores/the number of total spores)]× 100%.

Disease Incidence
Disease incidence was calculated as the ratio of the number
of fruits with visible disease spots to the total number of fruit
(n = 30). Each treatment had five replicates.

Assessment of Fruit Quality and
Physiological Characteristics
Fruit Quality
Fruit quality including firmness, soluble solid content (SSC),
and titratable acidity (TA) were measured as our previous study
(Cheng et al., 2019). For firmness, pear fruit was peeled about 1-
mm thick at the equator and was determined with a handheld
firmness meter (GY-4, Tuopu, China). SSC was measured using
a PAL-1 handheld digital saccharimeter (ATGAO, Japan). TA
was measured using the method of acid–base titration. Each

treatment was conducted in triplication, and each replication
consists of five fruits.

Respiration Rate and Ethylene Production Rate
The respiration rate was analyzed using an infrared CO2 analyzer
(HWF-1A, Kexi Instruments, China), and the ethylene content
was analyzed using a gas chromatograph (GC-9790II, Fuli
Instruments, China) and calculated to ethylene production rate.
Each treatment had three replicates and 10 fruits per replication.

Weight Loss Ratio
The weight loss ratio of pear fruit was calculated by comparing
the fruit weight at each time point after treatment with that at day
0. Each treatment had three replicates with 10 fruits per replicate.

Statistical Analysis
The graphs were generated by using the GraphPad Prism 8
software (GraphPad Inc., CA, United States). The significant
differences between treatments were tested by two-way analysis
of variance (ANOVA), and differences were considered to be
significant at p < 0.05 (∗), p < 0.01 (∗∗), and p < 0.001 (∗∗∗). In
addition, sequence data analyses were performed using QIIME 2
and R packages (v4.0.3).

RESULTS

1-Methylcyclopropene Reduced Decay
of Pear Fruit
To determine the effect of 1-MCP in resistance to fruit disease,
the disease incidence of fruit decay was compared between 1-
MCP treatment and CK after 0, 5, 10, and 15 days of storage.
As shown in Figure 1A, many hyphae were observed on the
surface of the fruits in the CK group, but few in the 1-MCP
treatment group after 10 and 15 days of storage, indicating that
fruits treated differently showed different resistance to pathogens.
Further results showed that there was no significant difference
in disease incidence at day 5 between the 1-MCP group and the
control group, while there was a significant difference (p < 0.01)
at day 10 and a very significant difference (p < 0.001) at day
15 (Figure 1B).

1-Methylcyclopropene Affected
Microbial Diversity in Pear Fruit
Number of Amplicon Sequence Variants
In order to show the effect of 1-MCP on the microbial diversity in
fruit, we compared the number of ASVs with different treatments
(Supplementary Table 1). As shown in Supplementary Figure 1,
the number of ASVs of both fungi and bacteria in CK at day
15 (CK15d) was much smaller than that in other treatments,
indicating that some dominant species of fungi or bacteria
affected the microbial diversity in CK at day 15.

Taxonomic Composition of Fruit Microorganisms
The dominant microorganisms are much more likely to be
the pathogens causing fruit decay. Therefore, the 10 most
abundant fungal or bacterial taxa were analyzed at the levels of
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FIGURE 1 | Pear (Pyrus communis L.cv. “Doyenne du Comice”) fruit decay was reduced by 1.0 µl L−1 1-methylcyclopropene (MCP) during storage. (A) Symptoms
of pear decay during storage. (B) Disease incidence of pear fruit during storage. The disease incidence rate was calculated using the formula as the number of fruits
with visible disease spots/the total number of fruits × 100. Each treatment had five replicates. The asterisk represents the significance between the different
treatments (**p < 0.01; ***p < 0.001).

phylum, class, order, family, and genus (Figures 2, 3). The same
sequencing scale was used for subsequent analysis to compare the
dynamic changes of fungi or bacteria in different treatments.

For fungi, Ascomycota and Basidiomycota were superior in
all samples at the phylum level. Interestingly, in contrast to
the 1-MCP treatment group, the abundance of Ascomycetes in
the control group increased over time, while the abundance of
Basidiomycetes decreased, indicating that Ascomycetes became
the dominant pathogen causing the fruit decay and that 1-MCP
had a significant effect on the fungal microbiota in pear fruit.
At the class level, Dothideomycetes (63.66%), Sordariomycetes
(19.73%), and Eurotiomycetes (8.82%) increased significantly in
CK15d, while Tremellomycetes decreased over time. Pleosporales
(41.70%), Dothideales (5.07%), Hypocreales (19.71%), Eurotiales
(8.81%), and Botryosphaeriales (16.75%) were the most common
order in CK15d, while Pleosporales (63.63%), Capnodiales
(4.39%), Dothideales (2.69%), and Filobasidiales (3.24%) were
abundant in MCP15d. At the family level, Pleosporaceae
(40.18%), Aureobasidiaceae (5.07%), Nectriaceae (19.68%),
Botryosphaeriaceae (16.75%), and Aspergillaceae (8.81%) were
the most abundant fungal group in CK15d, while Pleosporaceae
(59.89%), Aureobasidiaceae (2.68%), Filobasidiaceae (3.24%),
and Didymellaceae (3.58%) were in MCP15d. At the genus level,
Alternaria (40.18%), Aureobasidium (5.05%), Botryosphaeria
(16.75%), Penicillium (8.81%), and Fusarium (6.47%) accounted
for the largest proportion in CK15d, while Alternaria (59.89%),
Aureobasidium (2.68%), Filobasidium (3.07%), and Didymella
(2.69%) accounted for MCP15d. In particular, Alternaria,
Botryosphaeria, Penicillium, and Fusarium increased significantly
in CK15d compared with CK0d, indicating that these fungi were
likely to be the major pathogens that caused fruit decay.

For bacteria, Proteobacteria was the overwhelming
majority at phylum level across all samples, while Firmicutes

and Bacteroidetes were squeezed out after 15 days of
storage. At class level, Gammaproteobacteria (25.72%)
and Alphaproteobacteria (70.92%) occupied the prominent
positions in CK15d, while Gammaproteobacteria (42.02%),
Alphaproteobacteria (39.33%), Clostridia (6.25%), and
Actinobacteria (6.38%) remained abundant in MCP15d. At order
level, Acetobacterales (70.33%) and Enterobacteriales (24.84%)
squeezed Betaproteobacteriales (0.76%) out of competition in
CK15d, while Betaproteobacteriales (30.32%) remained abundant
in MCP15d even though Acetobacterales (27.88%) increased
considerably. Similarly, the family Acetobacteraceae (70.33%) and
Enterobacteriaceae (24.84%) increased significantly in CK15d,
while Burkholderiaceae (30.09%), Acetobacteraceae (27.87%),
and Enterobacteriaceae (7.77%) were the most prevalent bacterial
groups in MCP15d. In CK15d, Gluconobacter (50.89%) was
the dominant bacterial taxonomic community at the genus
level, whereas in MCP15d, Gluconobacter (26.99%) and Massilia
(18.71%) were the most common, indicating that 1-MCP induced
multiple changes in bacterial microbiota in pear fruit.

Biomarker Identification Associated With
1-Methylcyclopropene-Treated Pear Fruit
Random Forest algorithm is a well-known and powerful
machine learning algorithm based on the decision tree, and
it is particularly well suited to microbial community data,
which often presents discrete and discontinuous distributions
(Breiman, 2001). In this study, Random Forest was used to
analyze the biomarkers of intergroup differences between 1-
MCP treatment and control at the genus level. As shown in
Figure 4, the top 20 most important genera are listed, and
their abundance distribution is plotted as a heat map, which
could be considered as the biomarkers of each corresponding
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FIGURE 2 | Taxonomic composition of fungi at phylum (A), class (B), order (C), family (D), and genus (E) levels. Pear (Pyrus communis L. cv. “Doyenne du Comice”)
fruits were treated with or without 1.0 µl L−1 of 1-MCP during storage. Fruits were stored at 25 ± 0.5◦C and relative humidity of 90 ± 5% for 0, 5, 10, and 15 days.
The treatments were marked as CK0d, CK5d, CK10d, and CK15d, representing fruit stored for 0, 5, 10, and 15 days in the control group, while MCP0d, MCP5d,
MCP10d, and MCP15d represent fruits stored for 0, 5, 10, and 15 days in the 1-MCP-treated group, respectively.

treatment. Botryosphaeria and Fusarium were presumably the
biomarkers of CK15d, implying that these two fungi were critical
in distinguishing between applications with or without 1-MCP
treatment after 15 days of storage. The bacterial genera Massilia
and Kineococcus were the crucial biomarkers to distinguish
between CK15d and MCP15d.

Correlations of Fungi and Bacteria
To explore functional relationships between microorganisms, we
analyzed the correlations of the 10 most abundant bacteria and
fungi at the genus level (Supplementary Figure 2). The results

revealed a positive or negative relationship between specific
bacteria and fungi, suggesting that they were functionally
synergetic or antagonistic. The bacteria Aquabacterium
and Asticcacaulis, in particular, were strongly positively
correlated with a correlation coefficient of 0.86 (p < 0.05),
while Lactobacillus and Muribaculaceae came in second with
a correlation coefficient of 0.83. There were also positive
correlation coefficients between bacteria and fungi such as
Gluconobacter and Botryosphaeria (0.62), Asticcacaulis and
Malassezia (0.50), and Pseudomonas and Didymella (0.50). On
the other hand, we found that Alternaria and Gluconobacter
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FIGURE 3 | Taxonomic composition of bacteria at phylum (A), class (B), order (C), family (D), and genus (E) levels. Pear (Pyrus communis L. cv. “Doyenne du
Comice”) fruits were treated with or without 1.0 µl L−1 of 1-MCP during storage. Fruits were stored at 25 ± 0.5◦C and relative humidity of 90 ± 5% for 0, 5, 10, and
15 days. The treatments were marked as CK0d, CK5d, CK10d, and CK15d, representing fruit stored for 0, 5, 10, and 15 days in the control group, while MCP0d,
MCP5d, MCP10d, and MCP15d represent fruits stored for 0, 5, 10, and 15 days in the 1-MCP-treated group, respectively.

were found to negatively correlate with other fungi or bacteria,
indicating that they were closely related to fruit decay. Indeed,
Alternaria showed negative correlations with Malassezia (−0.52)
and Asticcacaulis (−0.4), and Gluconobacter was negatively
correlated with Aquabacterium (−0.49), Asticcacaulis (−0.47),
and Sphingomonas (−0.4).

Effect of 1-Methylcyclopropene on
Fungal Membrane Integrity Rate
To determine the effect of 1.0 µl L−1 1-MCP on fungal
membrane integrity, the spores with damaged cell membranes

were stained with PI and observed using the fluorescence
microscope. Sterile water was used as a negative control and
carbendazim, a broad spectrum of fungicide, was served as a
positive control. The antifungal effect of 1-MCP was confirmed
by comparing 1-MCP treatment and the negative control,
and the efficiency of the assay was verified by comparing
1-MCP treatment or the negative control to the positive
control. After 14 h of incubation under various treatments, the
MIR of Penicillium spores was 96.3% in the negative control,
90.7% in 1-MCP treatment, and 66.7% in the positive control
(Supplementary Figure 3). There was no significant difference
of MIR between the negative control and 1-MCP treatment, while
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FIGURE 4 | Random forest analysis of fungi (A) and bacteria (B) in pear (Pyrus communis L.cv. “Doyenne du Comice”) fruit after treatment with or without 1-MCP
during storage. The horizontal axis of the histogram shows the importance of species to the classifier model, and the vertical axis is the taxon name of fungi or
bacteria at the genus level. The heat map shows the abundance distribution of these genera in each group. Five-fold cross-validation was used. Results from the
Random Forest analysis showed that Botryosphaeria and Fusarium were presumably the fungal biomarkers, and Massilia and Kineococcus were the bacterial
biomarkers of CK15d, indicating that these organisms were critical in distinguishing between applications with or without 1-MCP treatment after 15 days of storage.

there was a significant difference between 1-MCP treatment and
the positive control. For Fusarium, the MIR was determined as
98.7% in the negative control, 97.3% in 1-MCP treatment, and
83% in the positive control. Similarly, there was no significant
difference of MIR between the negative control and 1-MCP
treatment, while there was significant difference between 1-MCP
treatment and the positive control. For Alternaria, the MIR
was determined as 70.7% in the negative control, 66.7% in 1-
MCP treatment, and 68% in the positive control. No significant
difference in MIR was observed among them. These results
suggest that 1.0 µl L−1 of 1-MCP had little effect on the fungal
membrane integrity.

Relationship Among Fruit Quality,
Physiological Characteristics, and
Microbial Community Diversity
Fruit firmness, SSC, TA, respiration rate, ethylene production
rate, and weight loss ratio were investigated to reveal the
relationship among fruit quality, physiological characteristics,
and microbial community diversity. The results showed that the
firmness was higher in 1-MCP treated pear than in CK storage
(Figure 5A), while SSC had no significant difference (Figure 5B).
Similarly, 1-MCP-treated fruit showed significantly higher TA
than CK during storage (Figure 5C). The respiration rate of post-
harvest pear fruits was inhibited considerably by 1-MCP on days
5, 10, and 15, suggesting that 1-MCP could reduce the nutrient
loss of pear fruit (Figure 5D). Simultaneously, 1-MCP greatly
reduced ethylene production on days 5 and 10 but bursts on day
15, resulting in a slower fruit ripening (Figure 5E). The ethylene
production rate decreased significantly in CK on day 15 due to the
excessive decay of the fruit. After 15 days of storage, the weight of

the fruit had lost 13.3% in the control group, but just 3.9% in the
1-MCP-treated group (Figure 5F).

Redundancy analysis was performed to explore the
relationship among disease incidence, fruit quality, physiological
characteristics, and microbial community following 1-MCP
treatment. As shown in Figure 6, the abundance of three
pathogens that cause fruit rot, including Botryosphaeria,
Penicillium, and Fusarium, were positively correlated with
disease incidence and respiration rate but negatively correlated
with firmness.

DISCUSSION

As a specific inhibitor of ethylene receptor, 1-MCP can bind
to ethylene receptor in plant cells, thereby preventing ethylene-
dependent responses such as fruit ripening and senescence and,
thus, extending shelf-life and maintaining fruit quality (Hassan
and Mahfouz, 2010). Several studies have shown that 1-MCP
can effectively reduce post-harvest fruit decay. For instance, 1-
MCP may help preserve tomato fruit by reducing fruit decay
caused by Alternaria alternata, B. cinerea, and Fusarium spp.
(Su and Gubler, 2012). In jujubes, 1-MCP effectively suppressed
the growth of blue mold-induced fruit rot and significantly
reduced the incidence of natural decay (Zhang et al., 2012). To
examine the effect of 1-MCP on the decay of d’Anjou pear fruit,
the application of 1-MCP was found to reduce bull’s-eye rot,
Phacidiopycnis rot, stem end gray mold at 300 nl L−1, and snow-
mold rot at 30 nl L−1 (Spotts et al., 2007). Another study found
that 1-MCP treatment significantly reduced post-harvest decay
of peach fruit and that disease development was reduced when
inoculated with P. expansum (Liu et al., 2005). In apples, the effect
of 1-MCP treatment on post-harvest gray mold and its possible
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FIGURE 5 | Changes in pear (Pyrus communis L.cv. “Doyenne du Comice”) fruit in firmness (A), soluble solids content (B), titratable acidity (TA) (C), respiration rate
(D), ethylene production rate (E), and weight loss ratio (F) with/without 1-MCP treatment. The asterisk denotes the significance of difference among treatments
(***p < 0.001).

mechanisms were investigated (Zhou et al., 2016). In the current
research, 1-MCP substantially reduced the disease incidence of
pear (P. communis L.cv. “Doyenne du Comice”) by increasing
disease resistance, demonstrating that it had a remarkable
capacity to mitigate post-harvest diseases of pear fruit.

The next-generation Illumina-based sequencing was used in
this study to explore the microbial community of pear fruit
treated with or without 1-MCP for 0–15 days of storage.
Many fungi and bacteria associated with fruit decay were
detected, and their abundance varied among different treatments
(Figures 2, 3). In our research, we found the two most common
phyla, Ascomycota and Basidiomycota, in fungi associated with

pear fruit samples, both of which are known to cause post-
harvest fruit diseases (Ren et al., 2019b; Wassermann et al.,
2019; Zambounis et al., 2020). The class Dothideomycetes was
the most abundant class in both treatments and its abundance
increased with the storage time in the present research, which
is in line with the studies of endophytic mycobiota in “Jingbai”
pear and microbial communities associated with apple and
blackcurrant fruits (Vepštaitë-Monstavičë et al., 2018; Ren et al.,
2019a). Several families in the Pleosporales order of fungi have
infected living plants and caused serious plant diseases (Zhang
et al., 2009; Wang et al., 2020). Pleosporaceae is the largest
family in Pleosporales, which was characterized as the most
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FIGURE 6 | Redundancy analysis (RDA) ordination graph for pear (Pyrus communis L.cv. “Doyenne du Comice”) fruit quality, physiological characteristics, and fungal
community diversity. Ten most abundant fungal genera (red arrows) and four fruit quality factors (blue arrows) including disease incidence, firmness, soluble solid
content (SSC), TA, and respiration rate were plotted. Angles between species and fruit quality factors represent the positive and negative correlation between them
(acute angle: positive correlation; obtuse angle: negative correlation; right angles: no correlation). This result indicates the important effect of Botryosphaeria,
Penicillium and Fusarium on disease incidence, respiration rate, and firmness during the ripening of fruit.

abundant family in this study. Members of this family have
been reported as plant parasites or saprobes occurring on plant
leaves, stems, or fruits (Ariyawansa et al., 2015). At genus
level, fungi such as Alternaria, Botryosphaeria, Penicillium, and
Fusarium were found to grow significantly during storage in this
study, which have been detected in a variety of diseased fruits
in previous studies (Campenhout et al., 2017; Parveen et al.,
2018; Zhao X. et al., 2019; Chen et al., 2020). In comparison
with 1-MCP-treated group, Botryosphaeria and Penicillium were
found highly abundant in the control group after 15 days
of storage, indicating that 1-MCP may alleviate the disease
caused by Botryosphaeria and Penicillium. The growth patterns of
most dominant microorganisms indicated that their abundance
increased with the extension of storage time. The main reason
for this growth pattern is that the decay-causing pathogens
constantly proliferated in the fruit.

Moreover, a high number of Proteobacteria were found
in many orchard samples including fruits, bark, leaves, and
rootstocks by metagenomics (Martins et al., 2013; Liu et al.,
2018; Wassermann et al., 2019; Jo et al., 2020). Proteobacteria

are usually classified into five groups based on rRNA sequences,
which are denoted by the Greek letters α, β, γ, δ, and ε.
In the present study, two classes of proteobacteria such as
Alphaproteobacteria and Gammaproteobacteria were found to
be more prevalent across all the samples (Figure 4), which is
consistent with recent studies indicating that bacteria in this
taxon are closely related to plant disease (Zhang et al., 2018;
Wang et al., 2019). In the current study, the abundance of family
Acetobacteraceae increased significantly both in control and 1-
MCP treatment, indicating that the members in this family played
an important role in fruit decay. Further results showed that
the Gluconobacter genus, an important member of the family
Acetobacteraceae, increased significantly after 15 days of storage.
In accordance with the present results, previous studies have
demonstrated that genus Gluconobacter were closely related to
the fruit decay in apple, pear, and apricot (Van Keer et al., 1981;
Liu et al., 2020). However, Bevardi, Frece (Bevardi et al., 2013)
reported the biocontrol abilities of Gluconobacter oxydans strain
isolated from the apple surface against post-harvest infecting
fungus P. expansum. Current research indicates that members of
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this genus may grow on the surface of pears as an antagonistic
or saprophytic bacterium, but more isolation and identification
studies are required to validate this hypothesis.

Biomarker discovery is one of the most important means
being used for reflecting the lifestyle and disease of various hosts
(Di Paola et al., 2011; Segata et al., 2011; Zhimo et al., 2021). It
has been proven that Random Forest can effectively, stably, and
accurately classify microbial community samples (Yatsunenko
et al., 2012; Chen et al., 2021). Botryosphaeria and Fusarium
were identified as biomarkers in this study to distinguish between
1-MCP treatment and untreated control pear fruits. Notably,
members of these two fungal genera have been reported as the
pathogens that cause fruit decay in a variety of fruits (Rittenburg,
1983; Garibaldi et al., 2012; Sever et al., 2012; Tang et al., 2012;
Zhao X. et al., 2019; Zhao Z.Y. et al., 2019).

Furthermore, correlation matrix revealed a few positive
and negative correlation patterns among the dominant fungal
and bacterial genera. Lactobacillus and Muribaculaceae were
found highly correlated in the microbial community of pear,
which seemed to be consistent with other research that
found Lactobacillus plantarum restored the gut microbiota
imbalance by manipulating relative abundances of certain
bacteria in Muribaculaceae (Gao et al., 2021). Gluconobacter
and Botryosphaeria were also found to be correlated during
the process of fruit decay, indicating that these pathogens
could coexist and may be functionally related (Tournas and
Katsoudas, 2012). In addition, there were several negative
correlation patterns among the microbes, for instance, Alternaria
and Malassezia, Alternaria and Asticcacaulis, Gluconobacter
and Aquabacterium, Gluconobacter and Asticcacaulis, and
Gluconobacter and Sphingomonas, which may be due to the high
abundance of Alternaria and Gluconobacter inhibiting the growth
of other microorganisms.

In order to show the effect of 1-MCP on fungi, fluorescence
staining experiment was conducted to determine the membrane
damage of spores caused by 1-MCP. The results showed that
1.0 µl L−1 of 1-MCP had little effect on the integrity of fungal
cell membrane, suggesting that 1-MCP does not inhibit the
development of fungi by damaging cell integrity of spores. Several
studies have shown that 1-MCP decreased fruit firmness during
storage but was delayed (Villarreal et al., 2010; Moises et al., 2017;
Cheng et al., 2019), which has also been confirmed by the present
findings (Figure 5). Fruit softening is closely related to the
activities of cell wall hydrolases, such as polygalacturonase (PG),
pectin methyl esterase (PME), and β-galactosidase (β-Gal). It has
been reported that 1-MCP significantly lessened the fruit decay by
reducing the activities of PG, PME, and β-Gal (Zhang et al., 2019).
Therefore, 1-MCP is likely to minimize fruit decay by inactivating
the pectinase activity in fruit, maintaining high fruit hardness,
and preventing pathogen infection, rather than inhibiting
pathogens directly. The RDA findings in this study obviously

revealed the relationship between fruit quality and microbial
community after 1-MCP treatment. Botryosphaeria, Penicillium,
and Fusarium were shown to be positively correlated with disease
incidence and respiration rate, and negatively correlated with
fruit firmness (Figure 6), suggesting that these fungal genera are
involved in fruit decay and quality change during storage.

CONCLUSION

Findings in this study suggest that 1-MCP treatment effectively
reduced the disease incidence and induced multiple changes in
fungal and bacterial microbiota in “Doyenne du Comice” pear
fruit. In contrast to the control, decay-causing fungi such as
Botryosphaeria, Penicillium, and Fusarium were suppressed by
1-MCP treatment and their quantity was positively correlated
with TA and respiration rate but negatively correlated with
fruit firmness. Thus, this study investigated the microbiome
responses to 1-MCP during storage and revealed a relationship
between fruit decay and microbial composition in “Doyenne du
Comice” pear fruit.
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