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Microorganisms are ubiquitous in the environment, and the atmosphere is no
exception. However, airborne bacterial communities are some of the least studied.
Increasing our knowledge about these communities and how environmental factors
shape them is key to understanding disease outbreaks and transmission routes.
We describe airborne bacterial communities at two different sites in Tenerife, La
Laguna (urban, 600 m.a.s.l.) and Izaña (high mountain, 2,400 m.a.s.l.), and how they
change throughout the year. Illumina MiSeq sequencing was used to target 16S
rRNA genes in 293 samples. Results indicated a predominance of Proteobacteria
at both sites (>65%), followed by Bacteroidetes, Actinobacteria, and Firmicutes.
Gammaproteobacteria were the most frequent within the Proteobacteria phylum during
spring and winter, while Alphaproteobacteria dominated in the fall and summer. Within
the 519 genera identified, Cellvibrio was the most frequent during spring (35.75%)
and winter (30.73%); Limnobacter (24.49%) and Blastomonas (19.88%) dominated
in the summer; and Sediminibacterium represented 10.26 and 12.41% of fall and
winter samples, respectively. Sphingomonas was also identified in 17.15% of the fall
samples. These five genera were more abundant at the high mountain site, while
other common airborne bacteria were more frequent at the urban site (Kocuria, Delftia,
Mesorhizobium, and Methylobacterium). Diversity values showed different patterns
for both sites, with higher values during the cooler seasons in Izaña, whereas the
opposite was observed in La Laguna. Regarding wind back trajectories, Tropical air
masses were significantly different from African ones at both sites, showing the highest
diversity and characterized by genera regularly associated with humans (Pseudomonas,
Sphingomonas, and Cloacibacterium), as well as others related to extreme conditions
(Alicyclobacillus) or typically associated with animals (Lachnospiraceae). Marine and
African air masses were consistent and very similar in their microbial composition.
By contrast, European trajectories were dominated by Cellvibrio, Pseudomonas,
Pseudoxanthomonas, and Sediminibacterium. These data contribute to our current
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state of knowledge in the field of atmospheric microbiology. However, future studies
are needed to increase our understanding of the influence of different environmental
factors on atmospheric microbial dispersion and the potential impact of airborne
microorganisms on ecosystems and public health.

Keywords: airborne, bacteria, 16S rRNA, Tenerife (Canary Islands), wind back trajectories, seasons, next-
generation sequencing – NGS

INTRODUCTION

The atmosphere is a dynamic and diverse environment
that contains abiotic (chemical elements, compounds of
anthropogenic origin, and sand, etc.) and biological components
(microorganisms, pollens, seeds, microscopic animals, and
algae, etc.) (Westrich et al., 2016). This environment is dynamic,
because its composition can change rapidly due to many different
factors: wind, storms, rain, geographic features, and location,
etc. Air masses move all over the planet transporting all these
components with some depositions occurring only a couple
meters away and others thousands of kilometers from their
sources (Wang et al., 2017). Desert dust that originates in the
arid and desert environments of our planet are one of the main
sources of aerosolized particles. The Sahara–Sahel region itself
accounts for about 50% of that dust, contributing 11–15 Tg of
dust per year (Kok et al., 2021).

Up to approximately 25% of aerosolized matter in the
atmosphere is biological elements (Jaenicke, 2005). Therefore,
the atmosphere is a variable and diverse microbial community
(Lighthart, 2000). The number of microorganisms that may be
transported over long distances is also diverse and can range
from 104 to 108 cells per m3 (Bowers et al., 2011). Among them,
both animal and plant pathogens may be present, making the
atmosphere a potential source of disease (Griffin, 2007; Gonzalez-
Martin et al., 2014; Schmale and Ross, 2015).

The presence of microorganisms in the atmosphere not only
has consequences for environmental health issues (Karanasiou
et al., 2012; Zhang et al., 2016; Tobías and Stafoggia, 2020) but
may also affect the climate (Bowers et al., 2009). For instance,
their role in the formation of ice nuclei has been considered
important at low latitudes, where tropospheric temperatures can
be too high to allow abiotic particles to efficiently act as ice
nucleators (Spracklen and Heald, 2014), whereas some of the
common genera found in airborne samples, such as Pseudomonas
or Bacillus, are known as capable cloud condensation nuclei
(Ariya and Amyot, 2004).

The Canary Islands are located between 100 and 500 km off
the west coast of Africa. Climate in the archipelago is dominated
by the Azores High, characterized by the predominance of trade
winds blowing north–northeast, and by the Cold Current of the
Canary Islands, which follows a northeast–southwest direction.
They are both responsible for the milder-than-normal weather
expected according to the islands’ latitude. However, the islands
are frequently affected by Saharan dust storms. In 2019, 41%
of days were affected by African dust (Pérez et al., 2020),
which, depending on its intensity and duration, can have major

environmental effects (agronomy, transport, and human health,
etc.) (Dorta et al., 2005).

In this study, we determined the airborne bacterial community
structure at two different locations, one in an urban environment
and the other above high mountain, in Tenerife (Canary Islands),
using a next-generation sequencing approach (Behzad et al.,
2015; Smets et al., 2016). We aim to understand how airborne
bacterial composition may be influenced by different factors
including the origin of air masses.

MATERIALS AND METHODS

Samples and Locations
Sampling was performed in two locations: La Laguna (28◦ 28′
44.028′′ N; 16◦ 19′ 17.015′′ W) and Izaña (28◦ 18′ 0.872′′ N;
16◦ 30′ 43.397′′ W) in Tenerife, Canary Islands (Figure 1). It
was conducted at the same time, at three times a week for a
year (10:00 a.m. Mondays, Wednesdays, and Fridays, from June
2017 to June 2018). A total of 293 samples were collected: 144
in La Laguna and 149 samples in Izaña. La Laguna is an urban
area located at ∼600 m.a.s.l. in a valley between two mountain
ridges. Due to the quasi-permanent presence of the Azores High,
this town (150,000 inhabitants) is frequently under the trade
wind regime. Temperatures range between 13 and 21◦C, and the
relative humidity is about 70–80%1. The Izaña station is a high
mountain site located at ∼2,400 m.a.s.l. on a mountain ridge in
roughly the center of the island. Due to its situation, it is mainly
affected by the dry descent stream of a Hadley cell, with a relative
humidity of approximately 30%–60% and temperatures between
4% and 18◦C. Between these stations is a subsidence thermal
inversion layer of the subtropical atmosphere of the northeast
Atlantic (Font, 1956). This radically separates the atmospheric
conditions of both stations and allows us to study the bacterial
communities separately, one in the boundary layer and the other
in the free troposphere.

Samples were collected at both stations using a Multi-
Stage Liquid Impinger (MSLI, Burkard, Rickmansworth,
United Kingdom) using 8 ml of sterile 1 × phosphate-buffered
saline (PBS) in each chamber (total volume: 24 ml). Sampling
was performed during 1 h at a 12 L/min flow rate (total of 720 L
of air sampled). Sampling time was previously optimized to avoid
excessive evaporation and subsequent sample loss. Remaining
1 × PBS was recuperated in a sterile 50-ml tube and stored in
a −80◦C freezer until further processing. Recovered volumes
ranged from 4 to 24 ml. Control samples were included in the
study from the 1 × PBS bottles used to refill the chambers of the
sampler. Blank samples were also collected. Samplers were filled
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FIGURE 1 | Location of the Izaña and La Laguna stations in Tenerife, Spain (top), and vertical cross section of the island showing the atmospheric vertical layers
(bottom).

with sterile 1 × PBS and incubated for 1 h at the sampling point
without pumping. Both control and blank samples were analyzed
exactly the same. The MSLI was sterilized between samples using
a 10% sodium hypochlorite solution. The solution was sprayed
over the apparatus and left for 20 min. Afterward, it was washed
with a 1 M sodium thiosulfate solution and distilled water.
Subsequently, the compartments were put under ultraviolet light
for at least 20 min inside a Class II biological safety cabinet,
where they were stored until the next sampling.

DNA Extraction
Samples were filtered using 0.2-µm Supor PES membrane disc
filters (PALL Life Sciences, Port Washington, NY, United States)
using an EZ-Fit 3-place manifold (Merck Millipore, Billerica,

MA, United States). After filters were allowed to dry, they
were cut with sterile scissors over a sterile 55-mm Petri dish.
All the pieces were transferred using sterile tweezers to a
PowerBead tube from the DNeasy PowerSoil Kit (Qiagen,
Germantown, MD, United States). All these steps were carried
out inside a Class II biological safety cabinet. DNA extraction was
performed following the manufacturer’s instructions, except for
some previously published modifications (Jiang et al., 2015); and
samples were stored in the -80◦C freezer until being shipped to
the sequencing service.

Next Generation Sequencing
Sequencing was performed in the Plataforma de Genómica
- Fundación Parque Científico de Madrid. Purified DNA
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was quantified by PicoGreen, and concentrations ranged
from 15 to 100 pg. The first PCR used an input of DNA
that ranged from 0.6 to 5 µl, and between 26 and 32
cycles were performed with Q5 R© Hot Start High-Fidelity
DNA Polymerase (New England Biolabs, Ipswich, MA,
United States) in the presence of 100 nM of primers for 16S rRNA
amplification (5′-ACACTGACGACATGGTTCTACACCTAC
GGGNGGCWGCAG-3′ and 5′-TACGGTAGCAGAGACTTGG
TCTGACTACHVGGGTATCTAATCC-3′). These primers
amplify the V3–V4 region of the 16S rRNA. After the first
PCR, a second PCR of 13 cycles was performed with Q5 R© Hot
Start High-Fidelity DNA Polymerase (New England Biolabs)
in the presence of 400 nM of primers (5′-AATGATACGGC
GACCACCGAGATCTACACTGACGACATGGTTCTACA-3′
and 5′-CAAGCAGAAGACGGCATACGAGAT-[10 nucleotides
barcode]-TACGGTAGCAGAGACTTGGTCT-3′) of the Access
Array Barcode Library for Illumina Sequencers (Fluidigm, South
San Francisco, CA, United States).

The amplicons obtained were validated and quantified by
Bioanalyzer, and an equimolecular pool was purified using
AMPure beads (Beckman Coulter, Brea, CA, United States) and
titrated by quantitative PCR using the Kapa-SYBR FAST qPCR
kit for Light Cycler 480 (Merck, Kenilworth, NJ, United States)
and a reference standard for quantification. The pool of
amplicons was denatured prior to being seeded in a flowcell at
a density of 10 pM, where clusters were formed and sequenced
using a MiSeq Reagent Kit v3 (Illumina, San Diego, CA,
United States), in a 2 × 300 paired-end sequencing run on
a MiSeq sequencer. From the initial 293 samples collected,
information was obtained for 220 of them (104 from Izaña and
116 from La Laguna). Samples that initially did not produce any
PCR signal were either left out of the study or mixed with other
samples from previous/next days that matched the same weather
conditions.

Data Processing
The analysis of raw FASTQ sequencing data was performed
in multiple steps using the Mothur pipeline v 1.41.1, adopted
from the Schloss SOP (Schloss and Westcott, 2011). Illumina
MiSeq paired-end sequences were processed to apply quality
trimming and removal of low-quality sequences using
the publicly released 132 of SILVA reference composite
dataset for bacterial, archaeal, and eukaryotic sequences
(Pruesse et al., 2007).

To account for possible contaminants associated with the
experimental design, filtered taxonomic tables were generated
after removing a subset of sequences identified from the
extraction-negative and no-template PCR control samples.
The remaining sequences were clustered and classified into
operational taxonomic units (OTUs) identified at a cutoff of 97%
identity. The classification was performed using the RDP training
set, which consists of a taxonomical data collection of 12,681
bacterial and 531 archaeal 16S rRNA gene sequences (Cole et al.,
2014). In subsequent analyses, a total of 494,759 representative
bacterial sequences were assigned at different taxonomic levels
(from phylum to genus).

Statistical Analysis
All statistical analysis and figures were produced with R
software (v.4.1.0.), primarily using the statistical package
vegan (Oksanen et al., 2020) and the graph package ggplot22
(Wickham, 2016). After the OTUs were obtained, the alpha
diversity of bacterial communities was analyzed using the
phyloseq package (McMurdie and Holmes, 2013). The
numbers of unique OTUs by sampling locations were
visualized in a Venn diagram plot using the package
VennDiagram (Hanbo, 2018). Kruskal–Wallis tests were
applied to analyze differences between bacterial communities.
The comparison of sampling units was performed by applying
the analysis of similarities (ANOSIM) as well as the non-metric
multidimensional scaling (NMDS) and principal coordinates
analysis (PCoA) techniques.

Collection of Climatic Information
Meteorological variables (wind speed, temperature, and rainfall)
were obtained from the Agencia Española de Meteorología
website (AEMET, 2020). The Azores High dominates the
weather in this archipelago bringing air masses from Europe
or the Atlantic Ocean depending on the sampling site. In
addition, African dust outbreaks or westerly lows frequently
occur, with different consequences at both stations, due to
air masses arriving from Africa or from the Tropical Atlantic
Ocean. Natural episodes of African dust outbreaks were
monitored using forecasts provided by the Consejo Superior
de Investigaciones Científicas (CSIC) (Pérez et al., 2017, 2018).
The origins of the air masses were established and verified
by back trajectories (Figure 2) described by the Hysplit-4
model (Stein et al., 2016). This software requires accurate
meteorological data as input; and in this case, the fifth-
generation atmospheric reanalysis of the global climate data
(ERA5), computed by the European Centre for Medium-
Range Weather Forecasts (ECMWF) (ERA5, 2017) was used.
Following criteria previously described (Díaz et al., 2006)
regarding the regions over which the back trajectories of the
air masses flow and are loaded with aerosols, the archipelago
area was divided into four regions: North Atlantic Ocean,
MAR; Europe, EUR; Africa, AFR; and Tropical Atlantic
Ocean, TRO. The air masses were also classified into five
categories: African (AF), Marine (MA), European (EU), Tropical
(TR), and Combined (CB). African corresponded to those
aerosols that originated and/or whose trajectories crossed part
of the North African continent. Marine air masses had a
predominant trajectory over the North Atlantic Ocean, and
European ones were considered as those with European
and Marine aerosols and whose trajectories crossed the
European continent and the Atlantic Ocean before reaching
the Canary Islands. Tropical air masses were those with a
marine trajectory but originated from the Atlantic Ocean,
southwest of the archipelago. The Combined class considered
air masses that crossed two to four different regions during
their trajectory before reaching the sampling locations. In this
work, we have not considered the Combined class, only the
four pure types.
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FIGURE 2 | Example of wind back trajectories for the La Laguna (LLA, solid line) and Izaña (IZO, dashed line) stations showing the different behaviors of the air
masses that reach the sampling points. The colors of the back trajectories indicate the region through which the air masses flow: Marine (MAR, blue), European
(EUR, green), African (AFR, red), and Tropical (TRO, cyan).

RESULTS

Overview
Here, we investigated the airborne bacterial communities at
two differentiated areas of Tenerife over a year. From the 293
original samples, 220 were finally sequenced: 104 from Izaña
and 116 from La Laguna. Samples that did not produce any
signal at the first step of the sequencing process were grouped
with others of similar characteristics (same back trajectories and
meteorological conditions). Control and blank samples did not
yield any detectable DNA, and the sequencing process did not
produce any data. However, sequences were obtained from no-
template PCR control samples, but these were removed from all
samples prior to statistical analysis. Total number of reads for all
samples reached 29,421,993, an average of 130,186 per sample.
After processing, a total of 2,215,797 reads remained, about 9,804
per sample. Clustering at 97% identity yielded 67,185 OTUs (see
Supplementary Table 1 for detailed sequencing information).

Operational Taxonomic Unit Abundance
Sequences were mainly classified as Proteobacteria (88%),
followed by Bacteroidetes (3.5%), Actinobacteria (3.4%), and

Firmicutes (2.7%). Supplementary Tables 2, 3 provide detailed
information about phyla and genera (number of sequences
and relative abundances), separately for La Laguna and Izaña,
respectively, and only for genera present at both locations.

Relative abundance of main bacteria phyla, and classes
(only for Proteobacteria), are shown in Figure 3A by sampling
seasons (see Supplementary Table 4). Between 65 and 75%
of air microbiome in the Izaña samples corresponded to
Proteobacteria, whereas occurrence of more than 75% of
these organisms was observed in the La Laguna samples.
Gammaproteobacteria were the most represented class
during spring and winter at both locations (33.64–48.50%),
while in the fall, it was Alphaproteobacteria (41–51.46%).
During the summer, differences were observed between
locations, since Alphaproteobacteria were dominant at La
Laguna (43.45%), but Betaproteobacteria dominated at
Izaña (39.54%). Bacteroidetes phylum presented a relative
abundance between 14% and 20% throughout the year in
Izaña, while in La Laguna, it was lower than 13%, especially
in fall where it ranged from 4 to 5%. Actinobacteria and
Firmicutes were the other two main phyla represented,
with relative abundances < 10%. Less than 2% of the air
microbiome could not be identified as a known taxon.
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FIGURE 3 | Relative abundances of the most predominant bacterial taxa at the phylum level in both locations by season (A) and wind back trajectory (B). Venn
diagram of unique and common bacterial phyla by season (C).

Figure 3B also shows relative abundances, but taking into
account the origin of the air masses (see Supplementary
Table 5). No major differences were detected, except for the
Tropical air masses, which showed a significantly high presence
(75%) of the Firmicutes phylum during the spring and the
Betaproteobacteria class (58.67%) during the summer. Also,
Bacteroidetes showed a significant presence in the fall and

winter in Tropical air masses (15.78–16.87%). The other three
categories (African, European, and Marine) presented more
similar compositions during the spring, fall, and winter, with a
predominance of Gammaproteobacteria. Alphaproteobacteria in
the summer. However, Betaproteobacteria reached percentages
of approximately 20% in African and Marine wind back
trajectories for the summer season. In Figure 3C, a Venn
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diagram is shown, representing the richness of bacterial phyla
in the different seasons, with summer and winter presenting the
highest number of unique OTUs.

Bacterial Diversity
The monthly distribution of bacterial richness is illustrated
in Figure 4. La Laguna (Figure 4A) reached its peak in the
summer, while the Izaña (Figure 4B) maximum was in the winter.
Spearman’s correlation tests were performed to analyze any links
between environmental variables (average temperature and wind
speed, and accumulated rainfall) and observed monthly richness,
but no significant correlations were detected (data not shown).
Regarding temperature, La Laguna showed the highest levels
of richness at the highest and lowest temperature values, while
in Izaña, richness rose as temperatures decreased. Higher wind
velocities also appeared to positively impact prokaryotic richness
in Izaña, up to its maximum in January 2018, and heavy rainfall
seemed to have a direct effect at both locations.

Alpha diversity estimators, including Chao1 and Shannon
indices, were calculated to estimate the average observed richness
and biodiversity of the bacterial communities (Supplementary
Figure 1). Izaña samples presented a similar diversity in all
seasons (Kruskal–Wallis chi-squared = 3.6168, p-value = 0.3059),
whereas the differences were statistically significant between
samples from La Laguna (Kruskal–Wallis chi-squared = 31.82,
p-value = 5.71e−07). Specifically, Dunn’s test showed that
diversity was very similar between the spring and the summer,
as well as between fall and winter, but detected significant
differences between the warmer (spring + summer) and the
cooler seasons (fall + winter) (Supplementary Figure 1A and
Supplementary Table 6). Regarding the air mass origin, in
samples collected in La Laguna (Supplementary Figure 1B),
significant differences (Kruskal–Wallis chi-squared = 15.999,
p-value = 0.001134) were found between African and Marine
wind back trajectories, as well as between the Marine and Tropical
air masses (Supplementary Table 7). A significant difference was
also detected in the air masses for the samples of Izaña (Kruskal–
Wallis chi-squared = 8.8896, df = 3, p-value = 0.0308), specifically
between the African and Tropical wind back trajectories
(Supplementary Table 8).

Seasonality and Wind Back Trajectory
Relationship With Taxonomic
Assignment
Over 500 different genera were identified, with five being the
most abundant during different seasons of the year (relative
abundance > 10%). Cellvibrio was the most frequent genera
during winter and spring, at 30.73 and 34.75%, respectively.
Limnobacter (29.49%) and Blastomonas (19.88%) prevailed over
the other genera detected during the summer. Fall samples
produced the highest levels for Sphingomonas (17.15%), a genus
barely detectable during the other seasons. Fall also had 10.26%
relative abundance of Sediminibacterium genus, which was
also detected in the winter samples with a similar percentage
(12.41%). In addition, potential pathogenic bacterial genera were
detected. Among the groups with relative abundances over

10%, some genera with known human pathogenic species were
Acinetobacter, Enterococcus, and Pseudomonas.

Considering the origin of the air masses, African, and Marine
plumes presented a similar composition regarding the most
common genera (Figure 5 and Supplementary Table 9). During
the spring (30–56%) and winter (22–28%), Cellvibrio was the
most frequently identified, while in summer, Blastomonas and
Limnobacter dominated the bacterial communities. European
air masses, which also showed a high number of Cellvibrio
OTUs, produced sequence prevalence of over 10% for the
genera Pseudomonas (35.06%), Sediminibacterium (13.00%), and
Pseudoxanthomonas (10.61%). Tropical plumes also produced a
greater number of different genera. The most frequent bacterial
genera during spring were Cloacibacterium, Alicyclobacillus,
Enterococcus, and the Lachnospiraceae family (ranging between
12 and 28%). The summer was dominated by Limnobacter
(46.94%), while during fall, Sphingomonas dominated (25.35%).
Unclassified genera from the Pseudomonadaceae family were
detected in the fall (10.98%) and in winter (25.60%).

Non-metric multidimensional scaling analysis using two
dimensions was performed to determine dissimilarity between
sampling locations and showed good ordination stress values (a
value under 0.2 denotes good ordination of microbial community
samples in two dimensions) (Figure 6). La Laguna samples
showed a more compact distribution throughout the year, while
Izaña samples exhibited a wider pattern, indicating that the
prokaryotic community at the high mountain site fluctuated
more than the urban location, especially during the spring and
summer. During the cooler seasons, both locations presented a
more compact allocation, and only in the fall were the Izaña
samples surpassed by those collected at La Laguna. ANOSIM and
PCoA tests were additionally conducted to determine similarity
in the airborne bacterial community between locations and
seasons (Supplementary Figures 2, 3, respectively). ANOSIM
values ranged between 0.0519 and 0.546, p-values < 0.01, except
in the spring, when the value was equal to 0.0701, and there
was no disaggregation by location. In the other three seasons,
especially the fall, community composition tended to cluster by
sampling location. The PCoA results based on the Bray–Curtis
dissimilarity matrix showed the separation among samples by
season for a high percentage of variability within the bacterial
community structure. Between 55 and 60% of the variance was
explained by the two axes’ components for both locations, La
Laguna, and Izaña.

DISCUSSION

The focus of this research is to gain a deeper understanding
of the communities of airborne bacteria in different locations
in Tenerife and to determine if there are any links between
airborne bacterial community composition and the origin of the
air masses. Considering sampling location, we found the high
mountain site to be more diverse than the urban one. Significant
differences have been previously reported for studies conducted
in France (Samaké et al., 2021), Italy (Gandolfi et al., 2015),
and China (Xie et al., 2018). In those cases, land use, climate,
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FIGURE 4 | Monthly distribution of observed richness by sampling location, La Laguna (A) and Izaña (B), along with monthly average values of temperature and
wind speed, and monthly accumulated rainfall.

or diverse urban characteristics influenced the airborne bacterial
composition. Our results are more in line with those found by
Tanaka et al. (2019) they also collected samples at two sites with
different altitudes (23 and 2,839 m.a.s.l.), and they reported a
higher fluctuation in the bacterial community composition at the
high mountain site (Tanaka et al., 2019).

Seasonal Variations
Although composition changed throughout the year, it was
dominated by bacteria belonging to Proteobacteria. Most of the
relevant literature has reported similar findings. Proteobacteria
is regularly the most frequent phylum in airborne samples (Cáliz
et al., 2018; Aalismail et al., 2020). However, percentages obtained
here are significantly higher (>65%) than those of most previous
studies (25–51%) (Tringe et al., 2008; Barberan et al., 2014;
Prussin et al., 2016; Abd Aziz et al., 2018; Tanaka et al., 2019;
Uetake et al., 2019). There are also studies that have reported
different phylum abundances; e.g., samples collected in Korea
showed Proteobacteria were predominant during non-dust days,
while Bacteroidetes were the most frequent during Asian dust
days (Cao et al., 2014; Abd Aziz et al., 2018; Núñez et al., 2019).

Different classes within the Proteobacteria phylum
predominate over the seasons, while Alphaproteobacteria

have been found to prevail in previous reports (Gao et al., 2017;
Cáliz et al., 2018; Samaké et al., 2021). Particularly noteworthy
is that Gammaproteobacteria were frequently found during
the spring and winter (>30%) in this study, in contrast to
previously published reports where this group rarely surpassed
15% prevalence (Gao et al., 2017; Cáliz et al., 2018; Yan et al.,
2018; Tanaka et al., 2019; Samaké et al., 2021). In fact, in a 7-year
study performed in the Pyrenees, relative abundances by main
phyla and Proteobacteria classes had similar results to our 1-year
analysis, with the exception of Gammaproteobacteria, which only
represented 6% compared with the maximum 48.5% in this work
(Cáliz et al., 2018). Bacteroidetes, Firmicutes, and Actinobacteria
abundances were more variable throughout the year and did not
show a clear trend. Other frequent phyla previously described in
air samples, such as Acidobacteria, Cyanobacteria, Chloroflexi,
or Deinococcus-Thermus (Kellogg et al., 2004; Gao et al., 2017;
Aalismail et al., 2020), were identified in less than 1% of the
sequences in this study. Generally, summer samples showed the
highest abundance levels at both sampling sites, similar to trends
observed in previous reports (Bowers et al., 2012; Bertolini et al.,
2013; Be et al., 2015; Genitsaris et al., 2017; Núñez et al., 2021),
but the highest number of unique OTUs for a given season
corresponded to winter in this study. However, when abundance
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FIGURE 5 | Radar chart presentation of relative operational taxonomic unit (OTU) abundance of taxa at the genus level for different seasons and wind back
trajectories. Each chart shows the season levels for the most abundant bacterial genera (>10%). The values along each axis of the radar chart are connected linearly
to visualize genera relative abundance as a polygon.

was classified by season and air mass source, summer showed the
highest abundance for the Marine and Tropical trajectories, while
for the African and European trajectories, it was winter. This
agrees with the current postulation that airborne communities
are influenced by multiple factors, both meteorological and
environmental (Uetake et al., 2019; Núñez et al., 2021).

Influence of Wind Back Trajectories
Significant differences were detected between African and
Tropical air masses for both sampling sites. Previous authors
have described how diversity may increase under the influence
of desert dust (Tang et al., 2016), while others have reported
how the Shannon diversity index may decrease after a dust
event (Guo et al., 2018). In this study, such differences were
mostly due to the diversity described for Tropical air masses,
not African ones. Differences between African and Marine air
masses in La Laguna may have been influenced by the number
of samples within each category, since Marine air masses in the
urban site almost quadrupled the African ones. Moreover, there
were some rare genera only present in the Marine samples (e.g.,
Anaerococcus, Opitutus, Niabella, Rothia, Ezakiella, Veillonella,

Sutterella, and Sphingorhabdus). Some have been previously
described in air samples linked to an oceanic origin, for example,
Opitutus (Uetake et al., 2019), while others were related to soil
environments, like Sutterella (Gusareva et al., 2019). However, for
the whole set of samples, Marine and African air masses bacterial
composition was very similar, as illustrated in the radar plot in
Figure 5. We consider that, given the insularity of the archipelago
and its proximity to the African continent, there is a high
interconnection between these two types of air masses. Future
studies should include soil analyses from source regions, which
would allow better comparisons and discrimination regarding the
origin of certain microbes.

Environmental Impact on Airborne
Bacterial Richness and Diversity
Observed richness showed quite a different trend at both
sampling sites. In La Laguna, the lowest diversity levels were
during the fall and winter, increasing again from late in the winter
season. To the contrary, in Izaña, bacterial diversity presented
its peak during the cold seasons, showing an inverse correlation
with temperature. No significant correlation to environmental

Frontiers in Microbiology | www.frontiersin.org 9 October 2021 | Volume 12 | Article 732961

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-732961 October 19, 2021 Time: 10:22 # 10

González-Martín et al. Airborne Bacteria in Tenerife

FIGURE 6 | Non-metric multidimensional scaling (NMDS) analysis by season and sampling site. Operational taxonomic units (OTUs) that did not appear more than
five times in more than half of the samples were removed. Five most predominant phyla were selected for the analysis. Stress value under 0.2 denotes good
ordination of microbial community samples in two dimensions.

variables was found in the sample sets analyzed. As some
authors have stated before, especially using next-sequencing
technologies (Bowers et al., 2011; Shin et al., 2015), these
factors vary throughout the year and follow different patterns
(Fahlgren et al., 2010; Whon et al., 2012; Gandolfi et al., 2015).
However, there are authors that have reported a direct and
positive correlation between temperature and bacterial diversity
(Zhen et al., 2017; Núñez et al., 2021). These studies have been
conducted in continental areas with stable climatic conditions
throughout the year, unlike Tenerife, in the Canary Islands,
which is an archipelago with very variable seasonal conditions
and regions of elevated topography (0–3.718 m.a.s.l.). The
influence of wind speed on bacterial richness has been described
before, with a positive correlation (Gandolfi et al., 2015). In
our particular case, the highest wind velocities corresponded
to a snowstorm and heavy rainfall event in February 2018 in
Izaña, and it was a defining moment for an observed decreased
in richness. Another possible explanation for these results has
been described by Uetake and others; although alpha diversity
usually decreases after precipitation, they suggest that heavy rain
events may increase bioaerosols because of the impact of rain
drops on different surfaces (Wang et al., 2016; Joung et al., 2017;

Uetake et al., 2019). During the winter season 2017–2018,
two intense storms affected both sampling sites, storm Ana
in December and storm Emma in late February. This could
have led to the increased diversity observed (AEMET, 2020),
which marks the completely different trends at both sampling
sites over the seasons (Supplementary Figure 3). Also, some
authors have reported that variations in local bacterial sources
may have a higher impact on airborne communities than local
meteorological conditions (Bowers et al., 2011).

Diversity values obtained were similar or higher than
previously reported (Cáliz et al., 2018; Smith et al., 2018; Els et al.,
2020), yet we could not establish a seasonal pattern. Although
the summer showed the highest observed diversity, the Shannon
index for this season was the lowest, especially within the Izaña
sample set, indicating that the bacterial community identified is
not evenly distributed.

Distinguished Taxonomic Data
In the current study, most of the identified phylotypes are derived
from soil and marine environments, as expected due to the
geographic condition and the frequent dust events over the
archipelago. Cellvibrio and Blastomonas have been previously
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reported from air samples collected in Singapore (Gusareva
et al., 2019). Conversely, Limnobacter and Sediminibacterium, the
other two most frequent genera identified in this study, have
only been reported in water or soil studies (Jia et al., 2015).
All these four genera were most abundantly identified in the
Izaña samples.

Moreover, the effect of anthropogenic activities could
be inferred from the results for some genera, such as
Cloacibacterium, Enterococcus, or the Lachnospiraceae family.
Lachnospiraceae have been identified in airborne studies, some
analyzed airborne bacterial composition in animal facilities
(Hong et al., 2012; Nguyen et al., 2019), and others were more
similar to this study, which analyzed airborne communities
during diverse atmospheric conditions (Seifried et al., 2015;
Smith et al., 2018; Guo et al., 2020). However, in this study,
these genera were more abundant at the high mountain
site than the urban one, which was especially due to
one sample collected on March 9, 2018 (IZ103). The high
concentration of bacteria within the Firmicutes group on that
particular day from a Tropical air mass may indicate that
only the most stress-resistant bacteria are able to withstand
the stress resulting from the atmospheric transport to Izaña
for that sampling period. That sample was also the only
one where the genera Thermicanus and Terrisporobacter were
identified, which contrasts with previous airborne descriptions
conducted in built-up environments for Thermicanus (Dubuis
et al., 2017; Hamoda and Mahmoud, 2019). Moreover, the
Terrisporobacter genus contains species that are known to be
human and animal pathogens (Cheng et al., 2016; Fong et al.,
2020).

Recurrent genera usually identified in airborne microbial
studies, like Kocuria, Delftia, Mesorhizobium, Methylobacterium,
and Paracoccus (Zhai et al., 2018; Chen et al., 2020), were also
detected in our samples, though they were more frequent in
the La Laguna samples. There was one genus, Tepidisphaeara,
only identified in La Laguna, specifically on September 8, 2017
(LL028), which is considered an indicator for algal blooms (Shao
et al., 2020). Curiously, during the summer of 2017, Tenerife was
affected by multiple episodes of algal blooms along its coast. An
abundant genus in the Tropical air masses was Alicyclobacillus,
a bacteria commonly found in soil and extreme environments,
which has been described in previous airborne studies (Korves
et al., 2012; Miletto and Lindow, 2015).

Among the 519 genera identified, there were also many
potentially hazardous bacteria: Acinetobacter, Bacillus, Brucella,
Enterococcus, Neisseria, Staphylococcus, Streptococcus, and
Pseudomonas are among those that contain species that are
pathogenic to plants and/or animals (Polymenakou et al.,
2008; Li et al., 2020; Bayle et al., 2021). Some of these
airborne transmissions have been studied (Leski et al.,
2011; Fan et al., 2019; Ruiz-Gil et al., 2020). Also, the genus
Brevundimonas was among the most abundant genera identified.
A species of this genus has been considered an emerging
potential pathogen for nosocomial infections (Triadó-Margarit
et al., 2019), which, given its global presence and ability to
survive under extreme conditions (Dartnell et al., 2010),
should be a concern for public health authorities. Some

samples also produced a high number of OTUs (>10) for
some of the pathogenic genera (e.g., Escherichia/Shigella,
Staphylococcus, and Streptococcus), but no significant trend
was observed that illustrated a specific link to season or
air mass origin.

Concluding Remarks
The description of the airborne bacterial community in two
different areas has been achieved for the first time in the Canary
Islands, showing great diversity, especially at the high mountain
site. This report is the starting point for further characterization
of airborne microbial communities that we aim to analyze
and establish over a longer term together with their links to
different environmental variables. Indeed, previous atmospheric
microbiology studies have described how local meteorology may
have a greater influence on composition than short/long term
transport, meaning that origin may not play such an important
role (Uetake et al., 2019; Samaké et al., 2021). However, others
have reported a strong correlation between airborne bacteria
and aerosol source (Cáliz et al., 2018). Some have hypothesized
how urban and industrial sites are influenced by non-seasonal
variables, such as human activities, while more rural locations
are dominated by, for example, bacteria related to vegetation
(Xie et al., 2018). A combination of all these variables can lead
to a bacterial community structure in the atmosphere that can
be predicted. While each study has their own particularities,
the sampling period appears to be a decisive factor in order
to obtain strong correlation patterns. More long-term studies
are needed that will help explain the variations observed in
the airborne microbial communities described throughout the
world. In addition, they could help identify airborne bacterial
community patterns due to different variables. In both cases,
we suggest that a global airborne microbiology network be
put in place, so that longer-term datasets could be utilized to
produce global scale trends. In a global climate change scenario
and considering the impact that microorganisms may have on
receptor ecosystems (public health and agronomy, etc.), it is
imperative to engage in new scientific advances and alliances
that allow us to investigate how and for how long some
microbes are transported through various atmospheric routes
and remain viable.
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