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Deforestation of native tropical forests has occurred extensively over several decades.
The plantation of fast-growing trees, such as Acacia spp., is expanding rapidly in tropical
regions, which can contribute to conserve the remaining native tropical forests. To better
understand belowground biogeochemical cycles and the sustainable productivity of
acacia plantations, we assessed the effects of vegetation (acacia plantations vs. native
forests) and soil types (Oxisols vs. Ultisols) on soil properties, including the diversity and
community structures of bacteria- and fungi-colonizing surface and subsurface roots
and soil in the Central Highlands of Vietnam. The results in surface soil showed that pH
was significantly higher in acacia than in native for Oxisols but not for Ultisols, while
exchangeable Al was significantly lower in acacia than in native for Ultisols but not
for Oxisols. Bacterial alpha diversity (especially within phylum Chloroflexi) was higher
in acacia than in native only for Oxisols but not for Ultisols, which was the same
statistical result as soil pH but not exchangeable Al. These results suggest that soil
pH, but not exchangeable Al, can be the critical factor to determine bacterial diversity.
Acacia tree roots supported greater proportions of copiotrophic bacteria, which may
support lower contents of soil inorganic N, compared with native tree roots for both
Oxisols and Ultisols. Acacia tree roots also supported greater proportions of plant
pathogenic Mycoleptodiscus sp. but appeared to reduce the abundances and diversity
of beneficial ECM fungi compared with native tree roots regardless of soil types. Such
changes in fungal community structures may threaten the sustainable productivity of
acacia plantations in the future.

Keywords: acacia plantations, FUNGuild, microbial diversity, Oxisols, root microbiome, tropical mountain forests,
Ultisols
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INTRODUCTION

Tropical forests play important roles in biogeochemical cycling
and global climate regulation, and also are a major reservoir
of biodiversity (Lee-Cruz et al., 2013). However, native tropical
forests have undergone rapid clearance for agriculture (i.e.,
deforestation) over the past several decades (Gibbs et al., 2010;
Hansen et al., 2013). Recently, extensive areas of non-forest
lands are being converted to planted forests (i.e., afforestation
and reforestation), and the areas of planted forests occupy
approximately 7% of world forests, with the largest proportion
in the Asia region (Keenan et al., 2015; Food Agriculture
Organization United Nations (FAO), 2020). Plantation of fast-
growing trees, such as Acacia spp., is expanding rapidly to meet
the growing demand for wood (Chaudhary et al., 2016). The high
productivity of acacia trees to produce large amounts of wood
fiber for paper industries and charcoal for steel industries over
a relatively short period can help to reduce the deforestation
pressure on remaining native forests (Cossalter and Pye-Smith,
2003). However, uncertainties remain about the sustainability of
productivity of acacia plantations (Hung et al., 2016).

Forest conversion such as deforestation, afforestation,
and reforestation can significantly affect the belowground
biogeochemical cycling, including mineral weathering and
organic matter decomposition, through changes in bacterial and
fungal community structures (Uroz et al., 2016; Baldrian, 2017).
The changes in microbial communities in surface horizons
can occur through both changes in the soil physicochemical
properties (especially soil pH) and the vegetation species
(Schneider et al., 2015; Kerfahi et al., 2016; Brinkmann et al.,
2019), although the effects of such changes in subsurface horizons
remain unknown (Stone et al., 2014, 2015; Pereira et al., 2017).

Deforestation with burning initially raises soil pH by adding
base-rich ash from combusted tree biomass, and the effect lasts
for decades (McGrath et al., 2001). In contrast, according to
a global meta-analysis, afforestation and reforestation typically
decreases soil pH by increased uptake of cations by planted
trees (Berthrong et al., 2009). Soil pH is widely recognized as
the most important factor affecting the structure and diversity
of belowground microbial communities after land use changes
(Zhou et al., 2020), and bacterial alpha diversity has often
decreased with decreasing soil pH in tropical regions (Tripathi
et al., 2012, 2016). In addition, exchangeable Al (exch. Al)
increases in acidic soil below a pH of 5.5 and is known as
a toxic element for plant roots and microbial activities (Foy,
1984; Kunito et al., 2016; Jones et al., 2019). However, the
effect of exch. Al on the structure and diversity of microbial
communities was rarely investigated. Only Lammel et al. (2018)
statistically found that soil pH and exch. Al differently affected
each taxon of soil bacterial communities in tropical agricultural
soils with pH from 4 to 6.

Tree species compositions in forest vegetation can also affect
the belowground microbial communities (Prescott and Grayston,
2013; Liu et al., 2018), in particular, root-associated communities
because specific tree roots are typically associated with specific
groups of microbes, although soil properties often have
influence on root-associated communities (Bonito et al., 2014;

Goldmann et al., 2016; Ballauff et al., 2021). The roots of most
trees are associated with either arbuscular mycorrhizal fungi
or ectomycorrhizal (ECM) fungi (Smith and Read, 2010).
In addition, Sawada et al. (2021) observed that roots in
natural forest supported greater proportions of copiotrophic
plant-growth-promoting bacteria such as Bradyrhizobiaceae and
Burkholderia sp. compared with roots in a cedar plantation
in a temperate region. Brinkmann et al. (2019) observed
the increases in pathogenic fungi in monoculture plantations
compared with native tropical rain forests in Sumatra, Indonesia.
Since mycorrhizal fungi and plant-growth-promoting bacteria
may improve tree productivity, while plant pathogen may reduce
it, examining root-associated microbial communities can extend
our understanding not only on belowground biogeochemical
cycles but also on tree productivity and sustainability in
forest ecosystems.

In Vietnam, forest cover has changed dramatically from 57.0%
in 1950 and steadily declined over the next 40 years to 28.3%
in 1990 (Food Agriculture Organization United Nations (FAO),
2015) due to widespread herbicide use during the Indochina
wars and unsustainable logging and land-use practices (Cochard
et al., 2017; Do et al., 2019). Afterward, Vietnam has experienced
a forest transition from net deforestation to net reforestation
(Mather, 2007), and its forest cover has increased to 40.4% in 2010
(Food Agriculture Organization United Nations (FAO), 2015).
Vietnam has over 400,000 ha of acacia plantations, including over
220,000 ha of clonal Acacia hybrid (Acacia mangium × Acacia
auriculiformis) (Sein and Mitlöhner, 2011; Dong et al., 2014).

In the Central Highlands of Vietnam, Oxisols are widely
distributed on mafic rocks as parent materials, which are rare in
Southeast Asia (United States Department of Agriculture, 2015),
while Ultisols are slightly distributed on felsic rocks (Watanabe
et al., 2017). This area is originally covered by tropical mountain
forests with evergreen broadleaf trees. Deforestation in this area
started later than in other regions of Vietnam from 1990 mainly
due to cash crop expansion such as coffee and rubber (Cochard
et al., 2017). Only recently, many cash crop fields have been
combusted and converted to acacia plantations, in which the
effect of adding base-rich ash lasts until now. The effect of ash
on soil pH and exch. Al should be different between Oxisols
and Ultisols, since Oxisols typically contain kaolin minerals and
Fe and Al oxides with lower capacities to buffer soil pH, while
Ultisols contain weatherable 2:1 clay minerals with relatively
higher buffering capacities (Shibata et al., 2017). Therefore, the
soil and root samples corrected from both newly occurred acacia
plantations and native forests in both Oxisols and Ultisols in this
region are the ideal materials to investigate the effects of tree
species compositions and soil properties including soil pH and
exch. Al on belowground microbial communities.

To better understand not only belowground biogeochemical
cycles but also the sustainable productivity of acacia plantations,
we investigated the effect of vegetation (acacia plantations vs.
native forests) and soil types (Oxisols vs. Ultisols) on the diversity
and structure of root-associated and soil bacterial and fungal
communities in surface and subsurface horizons using a high-
throughput amplicon sequencing technique. We hypothesized
that: (1) the vegetation would affect root-associated microbial
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communities regardless of soil types, and (2) the vegetation
would differently affect soil microbial communities between
Oxisols and Ultisols through the different changes in soil pH and
exch. Al by adding ash, especially in surface soil.

MATERIALS AND METHODS

Study Site and Sampling
The study sites were located in So’n Lang commune, K’Bang
district, Gia Lai province, in the northern part of the Central
Highlands region of Vietnam (N14◦21′, E108◦34′; 780–900 m
a.s.l.), where the mean annual temperature is 22.0◦C, and the
mean annual precipitation is 1,864 mm.

Our sampling sites were acacia plantations and native forests
in Oxisols and Ultisols, a total of four sites within approximately
7 km, under similar climatic and topographic conditions. In
this region, intact native forests are now very limited. The
main species in the native forests are Lithocarpus sp., Dialium
cochinchinense, Machilus spp., Syzygium jambos, etc., and their
compositions differ slightly between Oxisols and Ultisols: being
higher in Lithocarpus sp. in Oxisols and Dialium cochinchinense
in Ultisols. The acacia plantations in our sampling sites have
been planted with Acacia hybrid since 2015 and 2014 in Oxisols
and Ultisols after combusting coffee trees, which were planted
since 1990, like most of the acacia plantations in this region.
Aboveground biomasses of acacia plantations in autumn 2018,
calculated by the tree allometric equation using mean diameters
at breast height (Hiratsuka et al., 2010), were 74.3 and 50.5 Mg
ha−1 for Oxisols and Ultisols, which were within the range of
growth rates for Acacia hybrid in Vietnam (Hung et al., 2016).

Soil and root samples were collected from each four sites in
autumn 2018. Three sampling plots in each site were prescribed
as three field replicates, which were ca. 10 m apart. In each
sampling plot, a soil pit with 1-m wide and 40-cm depth was
dug, and mineral surface (0–5 cm) and subsurface (25–30 cm)
soil samples were taken from three points within each horizon
by a garden trowel to form composite samples with a total
amount of about 1 kg. Surface (0–5 cm) and subsurface (25–
30 cm) soil samples were within A and B horizons, respectively,
in all sampling plots (n = 12), and then, the root samples were
separated randomly regardless of root morphology from the soil
samples in the field. All samples were kept at about 4◦C following
sampling and during transport for about 2 weeks after sampling.
Immediately after arriving at the Japanese laboratory, all soil
samples were sieved through a 2-mm mesh. Soil subsamples
were air dried for chemical analyses, and the remaining soil
subsamples and roots were stored at field moisture at−25◦C until
use for DNA extraction.

Soil Chemical Analyses
Soil pH was determined in a 1:5 water-soluble extract.
Exchangeable Al3+ (exch. Al) was determined by an atomic
absorption spectrophotometer (ZA3300, Hitachi, Japan) after
1 M KCl extraction. Total C and N were measured using a dry
combustion method with an NC analyzer (SUMIGRAPH NC-
TR-22, Sumika Chemical Analysis Service, Ltd., Japan). Inorganic

N (NH4
+ and NO3

−) was extracted from 2 g of soil (dry
base) with 10 ml of 1 M KCl for 30 min on a shaker, and the
suspension was filtered through filter paper (No. 5C, Advantec,
Co., Ltd, Japan). NH4

+–N in the extract was analyzed using
the modified indophenol blue method (Rhine et al., 1998) with
a spectrophotometer (UV-1280, Shimadzu, Co., Ltd., Japan).
NO3

−–N in the extract was analyzed by flow injection analysis
using a flow-through visible spectrophotometer (S3250, Soma
Optics, Ltd., Japan). All soil measurements were expressed on an
oven-dry soil weight basis (105◦C, 24 h).

DNA Extraction and Quantitative PCR
Total soil DNA was extracted from 500 mg of each soil sample
using ISOIL for Beads Beating kit (Nippon Gene Co., Ltd., Tokyo,
Japan) following the protocol of the manufacturer. For root DNA
extraction, root tissue up to 1 cm from the root tip was separated
from root sample using a sterile pair of scissors after washing the
roots three times with sterile deionized water in order to remove
adhering soil particles. Total root DNA was extracted from the
30 roots tips with two laboratory replicates using ISOIL (Nippon
Gene Co., Ltd., Tokyo, Japan) without bead beating to avoid
extracting root DNA (Toju and Sato, 2018). The DNA was eluted
in 100 µl of TE buffer.

Bacterial and fungal gene copy numbers were quantified by
real-time SYBR Green PCR assays in a StepOne Real-Time PCR
System (Life Technologies Japan, Tokyo, Japan) with the 16S
rRNA gene primer pair Eub338 and Eub518 and the 18S rRNA
gene primer pair 5.8 s and ITS1f (Rousk et al., 2010) as previously
described (Sawada et al., 2021). Standard curves were obtained
using a 10-fold serial dilution of a plasmid containing either the
Escherichia coli 16S rRNA gene or the Saccharomyces cerevisiae
18S rRNA gene. The measurements were expressed as copy
numbers on an oven-dry soil weight basis (105◦C, 24 h).

PCR and Amplicon Sequencing
The amplicon sequencing was performed as previously described
(Sawada et al., 2021) with minor modifications. Briefly, the
bacterial 16S rRNA gene was amplified using the primer
pair 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) (Caporaso et al., 2011).
The fungal ITS region was amplified using the primer pair
ITS1F_KYO1 (5′-CTHGGTCATTTAGAGGAASTAA-3′) and
ITS2_KYO2 (5′-TTYRCTRCGTTCTTCATC-3′) (Toju et al.,
2012). For fungi, we pooled two laboratory replicates of DNA
extracted from root samples to one to obtain enough DNA
contents for amplicon sequencing. The first PCR reactions were
performed using the pairs of primers without tags to obtain
enough amount of DNA to amplify directly with tagged pairs
of primers. Then, 2 µl of each PCR product was used as DNA
insert for a second PCR reaction with 10 cycles performed with
tagged pair of primers as recommended by Illumina as well as 8-
bp tags specific for each sample. Each PCR amplicon was cleaned
using an Agencourt AMpure XP system (Beckman Coulter,
Brea, CA, United States) to remove short DNA fragments. The
quantities and length of the PCR products was verified by Qubit
and Fragment Analyzer instrument (Advanced Analytical). The
amplicons were mixed and sequenced on an Illumina MiSeq
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sequencing system (Illumina, San Diego, CA, United States)
using the MiSeq Reagent Kit v2.

Bioinformatics and Analysis of Microbial
Community Structures
After quality filtering with a minimum Sanger quality of 20 and
a minimum length of 40, the sequencing data were analyzed
by QIIME (Caporaso et al., 2010) with default parameters.
Chimeric sequences were identified and removed by UCHIME
algorithm (Edgar et al., 2011). The remaining sequences were
clustered into operational taxonomic units (OTUs) based on
97% identity threshold. Phylogenetic assignation was performed
on a consensus sequence from each OTU using the Greengene
and UNITE database for bacteria and fungi, respectively. For
bacteria, chloroplast, mitochondria, and low-abundance OTUs
represented by five or fewer sequences in all samples were
removed for the following analysis. For fungi, singleton OTUs
in all samples were removed. Furthermore, we classified fungal
OTUs into functional groups using the program FUNGuild 1.1
(Nguyen et al., 2016). We only focused on taxa with confidence
levels “highly probable” or “probable.” We picked the ECM and
plant pathogen guilds.

Statistics
To calculate the bacterial and fungal diversity metrics, a subset
of 20,000 and 5,000 sequences from each sample dataset for
bacteria and fungi, respectively, was randomly selected to avoid
potential bias caused by sequencing depth. The richness and
diversity within each sample (alpha diversity) were estimated
using observed number of OTUs and Shannon diversity index.
The difference of microbial community structures among
samples (beta diversity) was represented on a non-metric
multidimensional scaling (NMDS) analyses on a Bray–Curtis
dissimilarity matrix between samples. Permutational multivariate
analysis of variance (PERMANOVA) was performed with
10,000 permutations to test the effect of horizons (surface vs.
subsurface), compartments (roots vs. soil), vegetation (acacia
vs. native), and soil types (Oxisols vs. Ultisols) on microbial
community structures. A heat map for the hierarchical clustering
of more than 1% of the average relative abundances at phylum–
class level and at family level was generated using Morisita–
Horn dissimilarity matrix between samples. The analyses were
conducted using the package “vegan” (Oksanen et al., 2013) of
the R v.3.3.0 project (R Core Team, 2016).

The effects of vegetation and soil types were tested by two-
way ANOVA analyses and a post hoc Tukey’s test only if an
interactive effect was significant, after dividing the data into
four groups of surface roots, subsurface roots, surface soil, and
subsurface soil. The relative abundance values at phylum–class
and at family levels at more than 1% of the average abundance
and at genus level within ECM and plant pathogen guilds were
compared after transformation to arcsine square root to achieve
a normal distribution.

RESULTS

Soil Biochemical Properties
In surface soil, a significantly higher pH of mean 0.8 U was
measured in acacia than in native for Oxisols, but no difference
was observed for Ultisols (Table 1). In contrast, exch. Al in
Acacia was significantly lower than in native for Ultisols, but
no difference was observed for Oxisols (Table 1). In subsurface
soil, although exch. Al was significantly higher in native than
in acacia, and for Ultisols than for Oxisols, the ranges of soil
pH and exch. Al among the four sites were narrow compared
with surface soil.

In both surface and subsurface soils, total C and N, inorganic
N, and bacterial and fungal gene copies were significantly
higher for Oxisols than for Ultisols (Table 1). NH4

+–N in
surface and subsurface soils, and total N and bacterial gene
copies in surface soil, were significantly lower in acacia than in
native (Table 1).

Alpha and Beta Diversity Patterns
We assessed a total of 2,858,557 and 1,253,527 sequences
(average 39,702 and 26,115 per sample) for bacteria and
fungi, respectively. Both bacterial and fungal community
structures were clustered in the NMDS ordination (Figure 1).
PERMANOVA showed that horizons (R2 = 0.106, p < 0.001 and
R2 = 0.081, p < 0.001), compartments (R2 = 0.296, p < 0.001
and R2 = 0.080, p < 0.001), vegetation (R2 = 0.074, p < 0.01
and R2 = 0.063, p < 0.001), and soil types (R2 = 0.049,
p < 0.05 and R2 = 0.060, p < 0.001) significantly influenced
both bacterial and fungal community structures, respectively.
Since horizons and compartments more affected the microbial
community structures than vegetation and soil types, the effect
of vegetation and soil types was tested after dividing the data into
surface roots, subsurface roots, surface soil, and subsurface soil to
avoid interactive effects of horizons or compartments. As a result,
vegetation more significantly influenced both bacterial and fungal
community structures than soil types in surface roots and soil
(Table 2), while soil types more affected those than vegetation
in subsurface soil (Table 2). Regarding the subsurface roots,
bacterial communities differed significantly between vegetation
(p < 0.01) and soil types (p < 0.05), while fungal communities
differed significantly between soil types (p < 0.01) but not
vegetation (Table 2).

Bacterial and fungal OTU richness and Shannon diversity
indices for surface and subsurface roots were not significantly
different between vegetations and between soil types, except for
fungal OTU richness in surface roots, being higher in native
than in acacia only for Ultisols (Table 3). Bacterial OTU richness
and Shannon diversity for surface soil was significantly higher in
Acacia than in native for Oxisols but not for Ultisols (Table 3),
which was the same statistical result as soil pH but not exch.
Al (Table 1).

We further analyzed OTU richness in each bacterial
phylum for surface soil to determine which bacterial phyla
mostly contributed to the difference of total bacterial diversity
(Figure 2A). The OTU richness in only Chloroflexi showed the
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TABLE 1 | Soil biochemical properties in surface and subsurface horizons in two vegetations (Acacia and Native; V) for two soil types (Oxisols and Ultisols; S).

Oxisols Ultisols

Acacia Native Acacia Native V S V × S

pH Surface 5.1 (0.1)a 4.3 (0.1)c 4.9 (0.0)ab 4.8 (0.1)b *** * ***

Subsurface 5.1 (0.0)a 4.9 (0.1)ab 4.8 (0.1)b 4.9 (0.0)ab NS * *

Exchangeable Al (cmolc kg−1) Surface 1.9 (0.2)bc 2.5 (0.5)ab 1.2 (0.5)c 3.1 (0.4)a *** NS *

Subsurface 0.5 (0.1) 1.2 (0.2) 1.2 (0.0) 1.8 (0.1) *** *** NS

Total C (mg g−1) Surface 50 (8) 43 (7) 11 (1) 17 (3) NS *** NS

Subsurface 19 (3) 18 (3) 8 (1) 7 (1) NS *** NS

Total N (mg g−1) Surface 3.0 (0.2) 3.4 (0.2) 1.0 (0.1) 1.7 (0.0) *** *** NS

Subsurface 1.3 (0.1) 1.4 (0.1) 0.6 (0.1) 0.7 (0.1) NS *** NS

NH4
+-N (µg g−1) Surface 56.6 (7.7) 93.4 (11.4) 33.1 (7.1) 76.1 (3.0) *** ** NS

Subsurface 32.4 (3.6) 46.8 (2.1) 18.9 (4.4) 31.1 (4.5) *** *** NS

NO3
−-N (µg g−1) Surface 22.8 (2.4) 28.4 (6.6) 7.6 (3.2) 7.8 (1.0) NS *** NS

Subsurface 4.1 (0.6)b 6.1 (0.3)a 2.8 (1.3)bc 1.7 (0.1)c NS *** **

Bacteria (copies *109 g−1) Surface 235 (18) 316 (52) 57 (14) 91 (28) * ** NS

Subsurface 127 (106) 147 (45) 48 (21) 42 (18) NS ** NS

Fungi (copies *109 g−1) Surface 29 (15) 27 (9) 4 (1) 6 (4) NS *** NS

Subsurface 1.4 (0.8) 2.5 (0.7) 0.4 (0.4) 0.5 (0.4) NS * NS

Data are means (standard deviations) of three replicates.
NS, not significant; *P < 0.05, **P < 0.01, and ***P < 0.001, respectively, by two-way ANOVA.
Different letters indicate significant differences (P < 0.05) by multiple comparison if an interactive effect was significant.

FIGURE 1 | Non-metric multidimensional scaling (NMDS) ordination using Bray-Curtis dissimilarity index of (A) bacterial and (B) fungal OTU distribution for surface
root (blank squares), subsurface root (blank circles), surface soil (filled squares) and subsurface soil (filled circles).

same statistical result as total bacterial OTU richness, which was
significantly higher in acacia than in native for Oxisols but not
for Ultisols (Figure 2B and Table 3). In addition, the numbers
after removing the numbers of OTUs in Chloroflexi from the total
numbers were not significantly different between vegetation and
between soil types (Figure 2C).

Bacterial Taxonomic Distribution
We applied heat map analysis with hierarchical clustering
to intuitively display the differences in relative abundance of
microbial taxa among samples. Hierarchical clustering analysis
separated bacterial taxa initially into roots and soil samples both
at phylum-class level (Supplementary Figure 2) and at family

level (Figure 3). Root samples had high Copiotrophic bacteria
such as Alphaproteobacteria (mainly Bradyrhizobiaceae
and Sphingomonadaceae, but not Hyphomicrobiaceae
and Rhodospirillaceae), Betaproteobacteria (mainly
Burkholderiaceae, Comamonadaceae, and Oxalobacteraceae),
Gammaproteobacteria (mainly Sinobacteraceae and
Xanthomonadaceae), Actinobacteria (mainly Actinospicaceae,
Actinosynnemataceae, and Pseudonocardiaceae, but
not unidentified Actinomycetales), and Bacteroidetes
(mainly Chitinophagaceae) (Figure 3 and Supplementary
Figures 1, 2). In contrast, soil samples had high oligotrophic
bacteria such as Deltaproteobacteria (mainly unidentified
Myxococcales and Syntrophobacteraceae), Acidobacteria (mainly
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TABLE 2 | Effects of vegetations (Acacia and Native) and soil types (Oxisols and
Ultisols) on bacterial and fungal community structures in surface and subsurface
roots and soils.

Vegetation Soil types

R2 P R2 P

Surface roots

Bacteria 0.355 0.002** 0.113 0.204NS

Fungi 0.244 0.003** 0.096 0.300NS

Subsurface roots

Bacteria 0.218 0.002** 0.164 0.039*

Fungi 0.143 0.083NS 0.191 0.014*

Surface soil

Bacteria 0.371 0.003** 0.233 0.020*

Fungi 0.217 0.003** 0.149 0.039*

Subsurface soil

Bacteria 0.195 0.033* 0.334 0.002**

Fungi 0.141 0.040* 0.199 0.003**

NS, not significant; *P < 0.05, and **P < 0.01, respectively, by PERMANOVA.

Koribacteraceae, unidentified Ellin6513 and Solibacteraceae,
but not Acidobacteriaceae), Verrucomicrobia (mainly
Chthoniobacteraceae), Planctomycetes (mainly Gemmataceae),
Chloroflexi (mainly Thermogemmatisporaceae), WPS-2, and
AD3 (mainly ABS-6) (Figure 3 and Supplementary Figures 1, 2).

Relative abundances of total copiotrophic bacteria
enriched in roots were significantly greater in acacia
than in native for surface and subsurface roots in both
Oxisols and Ultisols (Figure 4A). Within copiotrophic
bacterial families, Chitinophagaceae was significantly
greater in Acacia than in Native, while Bradyrhizobiaceae,
Oxalobacteraceae, and Sinobacteraceae were not significantly
different between vegetation for surface and subsurface roots
(Supplementary Table 3).

Relative abundances of most oligotrophic bacteria such
as Syntrophobacteraceae, unidentified Ellin6513, and
Solibacteraceae enriched in soil were significantly greater in
native than in acacia for surface soil in both Oxisols and Ultisols
(Figure 4B and Supplementary Table 3). In contrast, the relative
abundance of only oligotrophic Thermogemmatisporaceae
(phylum Chloroflexi) for surface soil was significantly greater in
acacia than in native for Oxisols but not for Ultisols (Figure 4C
and Supplementary Table 3), which was the same statistical
result as soil pH (Table 1).

Fungal Taxonomic Distribution
Fungal taxonomic distributions were initially clustered between
roots and soil both at phylum–class level (Supplementary
Figure 2) and family level (Figure 3) by clustering heatmap
analyses. Sordariomycetes (mainly Hypocreaceae, Nectriaceae,
and Magnaporthaceae) appeared to be greater in roots than
in soil, while Mortierellomycota appeared to be greater in soil

TABLE 3 | Richness and diversity index values of the bacterial and fungal
communities in two vegetations (Acacia and Native; V) for two soil types (Oxisols
and Ultisols; S).

Oxisols Ultisols

Acacia Native Acacia Native V S V × S

Surface
roots

Bacterial OTU
richness

1852
(171)

1857
(158)

1917
(145)

2156
(23)

NS NS NS

Bacterial
Shannon
index

5.22
(0.33)

5.50
(0.34)

5.51
(0.18)

5.59
(0.10)

NS NS NS

Fungal OTU
richness

159
(38)ab

111
(7)b

126
(13)b

205
(18)a

NS * **

Fungal
Shannon
index

3.11
(0.36)

3.02
(0.43)

3.08
(0.45)

3.58
(0.19)

NS NS NS

Subsurface
roots

Bacterial OTU
richness

1450
(144)

1605
(67)

1618
(69)

1399
(490)

NS NS NS

Bacterial
Shannon
index

5.13
(0.16)

5.43
(0.06)

5.34
(0.28)

5.14
(0.47)

NS NS NS

Fungal OTU
richness

40 (18) 44 (2) 53 (8) 45 (38) NS NS NS

Fungal
Shannon
index

2.38
(0.63)

2.06
(0.56)

1.86
(0.65)

2.36
(0.63)

NS NS NS

Surface soil

Bacterial OTU
richness

1988
(61)a

1644
(92)b

1733
(161)ab

1784
(134)ab

NS NS *

Bacterial
Shannon
index

6.12
(0.04)a

5.57
(0.02)c

6.01
(0.16)ab

5.80
(0.04)b

*** NS **

Fungal OTU
richness

140
(33)

176
(24)

158
(10)

176
(12)

NS NS NS

Fungal
Shannon
index

2.31
(0.36)

3.11
(0.48)

3.55
(0.42)

3.67
(0.41)

NS * NS

Subsurface
soil

Bacterial OTU
richness

1439
(10)

1485
(91)

1223
(94)

1199
(161)

NS ** NS

Bacterial
Shannon
index

5.44
(0.02)a

5.52
(0.10)a

5.47
(0.12)a

5.25
(0.14)a

NS NS *

Fungal OTU
richness

41 (9) 68 (9) 77 (22) 104
(34)

NS * NS

Fungal
Shannon
index

2.28
(0.51)

2.86
(0.10)

2.98
(0.23)

3.33
(0.61)

NS * NS

Data are means (standard deviations) of three replicates.
NS, not significant; *P < 0.05, **P < 0.01, and ***P < 0.001, respectively, by two-
way ANOVA.
Different letters indicate significant differences (P < 0.05) by multiple comparison if
an interactive effect was significant.

than in roots, although the differences between roots and soil
were not clear compared with bacterial taxa (Figure 3 and
Supplementary Figures 1, 2).
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FIGURE 2 | Number of (A) total bacterial OTUs, (B) Chloroflexi OTUs, and (C) OTUs after removing Chloroflexi OTUs for surface soil. Bars show standard deviations
of the means. NS, *, **, and *** in inserted tables indicate not significant, P < 0.05, P < 0.01, and P < 0.001, respectively, by two-way ANOVA, V and S indicate
Vegetation and Soil types. Different letters indicate significant differences (P < 0.05).

FIGURE 3 | A heat map for the hierarchical clustering of (A) bacterial and (B) fungal average relative abundances at family level, Taxa with more than 1% of the
abundance are represented. Relative abundance of each taxon was transformed into a row Z-score, and darker red and blue indicate higher and lower abundances,
respectively, sur, sub, R, S, O, U, A, and N in x axis indicate surface, subsurface, Root, Soil, Oxisols, Ultisols, Acacia, and Native, respectively.

Relative abundances of ECM taxa classified by FUNGuild
were significantly greater in native than in acacia for subsurface
soil in both Oxisols and Ultisols (Figure 5A). The dominant
ECM taxa in native forests were the Tomentella spp., Russula

spp., Clavulina sp., and Boletaceae. The ECM (mainly Tomentella
spp.) were detected for Oxisol surface roots and soil in acacia
(Figure 5A). Relative abundances of plant pathogens (mainly
Mycoleptodiscus sp.) classified by FUNGuild were significantly
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FIGURE 4 | Relative abundances of (A) copiotroph, (B) Oligotroph (except Thermogemmatisporaceae) and (C) Thermogemmatisporaceae. sur, sub, R, S, O, U, A,
and N indicate surface, subsurface, Root, Soil, Oxisols, Ultisols, Acacia, and Native, respectively. NS, *, **, and *** in inserted tables indicate not significant,
P < 0.05, P < 0.01, and P < 0.001, respectively, by two-way ANOVA. Different letters indicate significant differences (P < 0.05).

greater in acacia than in native for surface roots in both Oxisols
and Ultisols (Figure 5B).

DISCUSSION

Effects of Vegetation and Soil Types on
Soil pH and Exchangeable Aluminum
We found that the effect of vegetation on pH and exch. Al in
surface soil was different between Oxisols and Ultisols (Table 1).
In the native forests, when higher root activities and higher rates
of nutrient cycles accelerate acidification in surface compared
with subsurface soil, highly weathered Oxisols with a lower
buffering capacity can decrease soil pH, while Ultisols with
a relatively higher buffering capacity can suppress soil pH
decrement by solubilizing Al (Shibata et al., 2017). Thus, soil pH
decrement in surface compared with subsurface in native forests
was greater for Oxisols than for Ultisols. In acacia plantations,

the addition of base cations from combusted trees to surface
soil directly increased soil pH for Oxisols, but precipitated Al
to buffer soil pH for Ultisols. Therefore, acid neutralization by
adding base cations would more easily increase the pH in surface
Oxisols and would more easily decrease the exch. Al in surface
Ultisols (Table 1).

Effects of Vegetation on Microbial
Community Structures
We found that vegetation, but not soil types, strongly influenced
root-associated bacterial and fungal community structures in the
surface based on the PERMANOVA analyses in our study sites
(Table 2), although there were several reports that soil types
affected root-associated microbial communities (Bonito et al.,
2014; Ballauff et al., 2021). Therefore, tree roots appeared to
mainly control root-associated microbial communities regardless
of soil types in this region (Table 2), supporting our first
hypothesis in surface.
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FIGURE 5 | Relative abundances of (A) ECM and (B) Plant pathogen, sur, sub, R, S, O, U, A, and N indicate surface, subsurface, Root, Soil, Oxisols, Ultisols,
Acacia, and Native, respectively. NS, *, and *** in inserted tables indicate not significant, P < 0.05 and P < 0.001, respectively, by two-way ANOVA.

On bacterial taxonomic distribution, it was reasonable that
the relative abundances of copiotrophic bacteria such as Alpha-,
Beta-, and Gamma-proteobacteria and Bacteroidetes (Eilers
et al., 2010) were greater in roots than in soil (Figure 3 and
Supplementary Figures 1, 2), since tree roots exudate labile
C compounds, such as sugars, amino acids, and organic acids
(Uroz et al., 2016; Lladó et al., 2017). Intriguingly, the relative
abundances of total copiotrophic bacteria enriched in roots were
significantly greater in acacia than in native for both surface and
subsurface roots regardless of soil types (Figure 4A), suggesting
that acacia tree roots more actively selected copiotrophic bacterial
taxa. Among copiotrophic bacteria, Bradyrhizobiaceae, which
may include N-fixing rhizobia associated with Acacia spp. (Le
Roux et al., 2009), was not significantly different between
vegetation (Supplementary Table 3). Pereira et al. (2017) also
found no increases in N-fixing rhizobia in acacia soils compared
with that in the Eucalyptus plantation in Brazil. In contrast,
Chitinophagaceae, which is known to be a rapid user of root
exudates (el Zahar Haichar et al., 2008), was significantly greater
in acacia than in native for both surface and subsurface roots
(Supplementary Table 3), suggesting that the acacia tree roots
appeared to exudate more labile substrates to surrounding roots
compared with roots in native forests. It was known that fast-
growing plants can invest more of their assimilated-C into
root exudation compared with slow-growing plants in grassland

ecosystems to accelerate soil N cycling (Kaštovská et al., 2015;
Guyonnet et al., 2018). Therefore, fast-growing acacia trees may
also adopt the strategy to invest more C to root exudation to
acquire more N, which may support lower NH4

+–N in acacia
than in native regardless of soil type (Table 1).

The relative abundances of most oligotrophic bacteria, in
particular, Acidobacteria including unidentified Ellin6513 and
Solibacteraceae, were significantly greater in native than in
acacia in surface soil (Figure 4B). The results would be due
to soil acidity such as lower soil pH for Oxisols and higher
exch. Al for Ultisols in native than in acacia in surface soil,
since it is well known that Acidobacteria are greater in acidic
soils (e.g., Rousk et al., 2010). In contrast, we found that only
oligotrophic Thermogemmatisporaceae involving the phylum
Chloroflexi had different trends of other oligotrophic bacteria
(Figure 4C), being higher in acacia than in native only for Oxisols
but not for Ultisols. More details on Chloroflexi are discussed in
the next section.

On fungal taxonomic distribution, relative abundances
of well-known ECM fungi such as Tomentella spp., Russula
spp., Clavulina sp., and Boletaceae in the native forest
soils were about 5–20%, which were comparable with
the observations in the other native tropical forest soils
(Tripathi et al., 2016; Brinkmann et al., 2019). This is because
the native vegetation species consist of ECM-associated
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trees such as Lithocarpus sp. and Syzygium jambos. Acacia
trees in Oxisols were also associated with ECM Tomentella
spp., which was known to associate with Acacia spp. (Lee
et al., 2006). Overall, the trees in the native forests might
acquire better nutrients via ECM pathways than acacia
trees, although the abundances of ECM taxa were highly
variable between sites and even within field replicates
due to high spatial heterogeneity of forest ecosystems
(Baldrian, 2017).

Plant pathogens classified by the FUNGuild were abundant
in acacia surface roots regardless of soil type, although the
acacia trees had been growing there only for 3–4 years
(Figure 5B). An increase in pathogens in monocultures is a
well-known phenomenon (McDonald and Stukenbrock, 2016),
for example, Brinkmann et al. (2019) observed that the
abundances of pathogens in rubber and oil palm plantations
were greater than in those of native tropical rain forests in
Sumatra, Indonesia. Mycoleptodiscus sp., which is known to
be pathogenic to Fabaceae (Hernández-Restrepo et al., 2019),
was detected in acacia (Fabaceae) surface roots and soil for
both Oxisols and Ultisols (Figure 5B). Until now, no obvious
disease symptoms are observed in this region, and there is
no report of such species as pathogens to Acacia hybrid.
However, our results suggest that acacia plantations can foster
the proliferation of the plant pathogen, which has a potential
risk of disease and, thus, might threaten the sustainability of
their productivity.

Effects of Vegetation and Soil Types on
Alpha Diversity
We found that the conversion of the native forests to the
acacia plantations had little effect on fungal alpha diversity
in surface and subsurface roots and soil (Table 3), while
it largely affected fungal community structures (Table 2), in
agreement with previous studies in tropical land-use systems
(Kerfahi et al., 2016; Brinkmann et al., 2019; Ballauff et al.,
2021).

In contrast to fungi, we found that vegetation differently
affected bacterial alpha diversity between Oxisols and Ultisols
with different capacities to buffer soil pH in surface soil (Table 3),
supporting our second hypothesis. In addition, we clearly showed
that the increase in soil pH, but not the decrease in exch. Al,
significantly increased soil bacterial alpha diversity (Tables 1, 3).
The result suggests that forest conversion in Oxisols would more
easily affect bacterial diversity compared with Ultisols in surface
soils, since adding ash by deforestation and acidification by
afforestation and reforestation would more easily affect the pH
in Oxisols with lower buffering capacities.

The numbers of OTUs in only Chloroflexi showed the
same statistical result as soil pH and bacterial alpha diversity
(Figure 2B), and there was no significant effect of vegetation and
soil types after removing the numbers of OTUs in Chloroflexi
from total numbers (Figure 2C). The results suggested that the
diversity of Chloroflexi appeared to mainly contribute to the
total bacterial diversity in surface soil. The relative abundances
of Thermogemmatisporaceae, which occupy 48% of Chloroflexi,

also showed the same statistical result as the bacterial alpha
diversity and soil pH (Figure 4C and Supplementary Table 3).
The result was consistent with several studies that observed that
the relative abundances of Chloroflexi were positively correlated
with soil pH among different vegetation types (Tripathi et al.,
2016; Deng et al., 2018) and that calcium carbonate application
increased the relative abundances of Chloroflexi as well as soil
pH and bacterial alpha diversity (Guo et al., 2019). Therefore,
Chloroflexi (mainly Thermogemmatisporaceae) appeared to
be the key to determine the structures and diversity of
bacterial communities through pH changes but not exch. Al by
forest conversion in surface soil. The members of the family
Thermogemmatisporaceae have a mycelia-forming morphology
and the capacity to produce several secondary metabolites like
Actinomycetes (Cavaletti et al., 2006). Lammel et al. (2018)
observed that some Actinobacteria were more affected by the
pH changes than the indirect pH effects like availability of Al.
Therefore, the bacteria with such a unique morphology and
capacity might directly respond to the pH change by forest
conversion, although further study is needed to fully reveal their
physiological properties and their roles in soil environments
(Yabe et al., 2017).

CONCLUSION

Our study revealed two important findings in this region: (1)
Acacia tree roots supported greater proportions of copiotrophic
bacteria and plant pathogenic fungi (i.e., Mycoleptodiscus sp.)
but appeared to reduce the abundance and diversity of beneficial
ECM fungi compared with the native tree roots, irrespective
of soil types. (2) Conversion from the native forests to the
acacia plantations increased bacterial alpha diversity (mainly
within phylum Chloroflexi) in surface soil through the increase
in pH only for Oxisols but not for Ultisols. The increase in
plant pathogens and the decrease in ECM fungi may threaten
the sustainable productivity of acacia plantations in the future,
although forest conversion might increase bacterial diversity
depending on the soil pH change. Our analysis is limited to
clarify the roles of such changes in the structure and diversity
of belowground microbial communities (especially phylum
Chloroflexi) on soil functions such as mineral weathering and
nutrient cycles. Furthermore, our results must be interpreted
with caution due to the following limitations of our sampling
design: (1) We compared belowground microbial communities
only between a single acacia plantation and a single native
forest under Oxisols and Ultisols, and thus, an additional study
replicated in different locations is needed to separate a spatial
effect from the effects of vegetation and soil types. (2) Since acacia
plantations had been planted after combusting coffee trees, coffee
trees before planting acacia trees might affect the belowground
microbial communities. (3) The differences in the compositions,
ages, and biomass of the native forest stands between Oxisols and
Ultisols might affect the belowground microbial communities.
Nevertheless, our study provides important information on
the impact of forest conversion on belowground microbial
communities and ecosystem functioning in tropical mountain
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forests, leading to develop effective microbe-based strategies for
sustainable management of acacia plantations.
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