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Rhipicephalus microplus, a vector that can transmit many pathogens to humans and
domestic animals, is widely distributed in Yunnan province, China. However, few reports
on the prevalence of tick-borne pathogens (TBPs) in Rh. microplus in Yunnan are
available. The aim of this study was to detect TBPs in Rh. microplus in Yunnan and
to analyze the phylogenetic characterization of TBPs detected in these ticks. The
adult Rh. microplus (n = 516) feeding on cattle were collected. The pooled DNA
samples of these ticks were evaluated using metagenomic next-generation sequencing
(MNGS) and then TBPs in individual ticks were identified using genus- or group-specific
nested polymerase chain reaction (PCR) combined with DNA sequencing assay. As
a result, Candidatus Rickettsia jingxinensis (24.61%, 127/516), Anaplasma marginale
(13.18%, 68/516), Coxiella burnetii (3.10%, 16/516), and Coxiella-like endosymbiont
(CLE) (8.33%, 43/516) were detected. The dual coinfection with Ca. R. jingxinensis and
A. marginale and the triple coinfection with Ca. R. jingxinensis, A. marginale, and CLE
were most frequent and detected in 3.68% (19/516) and 3.10% (16/516) of these ticks,
respectively. The results provide insight into the diversity of TBPs and their coinfections in
Rh. microplus in Yunnan province of China, reporting for the first time that C. burnetii had
been found in Rh. microplus in China. Multilocus variable number tandem repeat analysis
with 6 loci (MLVA-6) discriminated the C. burnetii detected in Rh. microplus in Yunnan
into MLVA genotype 1, which is closely related to previously described genotypes found
primarily in tick and human samples from different regions of the globe, indicating a
potential public health threat posed by C. burnetii in Rh. microplus in Yunnan.

Keywords: Rhipicephalus microplus, Candidatus Rickettsia jingxinensis, Anaplasma marginale, Coxiella burnetii,
Coxiella-like endosymbiont, MLVA, Yunnan province

INTRODUCTION

Ticks are distributed widely across the world, and approximately 10% of the currently known 867
tick species act as arthropod vectors in the transmission of human and animal pathogens (Zhang
et al., 2019; Yang et al., 2021). Likely due to human movement into tick habitats combined with
climate changes, tick-borne diseases are increasing in prevalence and present an increasing global
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concern (Ostfeld and Brunner, 2015). As tick-borne diseases
become more prevalent, the likelihood of coinfection with
more than one tick-borne pathogen (TBP) in ticks is increasing
and such coinfections have important repercussions on
human or animal health which can alter clinical presentation,
disease severity, and treatment response in tick-borne diseases
(Vaumourin et al, 2015) and may play a role in incidence,
distribution, and possible control of tick-borne diseases
(Andersson et al., 2017).

Risk of human infection is contingent on the geographic
distribution of the tick species as well as the prevalence of TBPs
carried by ticks in a given region (Wilson and Elston, 2018).
Rhipicephalus microplus is a common vector for the transmission
of a great variety of microorganisms including bacteria, viruses,
protozoa, fungi, or toxins. Among the TBPs in Rh. microplus,
Coxiella burnetii, an obligate intracellular bacterium and the
pathogenic agent of Q fever, is worldwide distributed. Q fever is
typically an acute febrile illness with non-specific clinical signs in
humans, but Q fever may manifest in human as an acute hepatitis
and pneumonia or as chronic diseases that are seen in severe
cases or life-threatening diseases such as valvular endocarditis
(Sulyok et al., 2014).

Rhipicephalus microplus have been proved to be one of six
most frequently reported tick species in China and mostly
distributed in the southeast part of China (Zhang et al., 2019).
Anaplasma spp., Theileria spp., Ehrlichia spp., Hepatozoon canis,
and the viral community (Wen et al., 2003; Chen et al., 2014; Guo
et al., 2019b; Li et al., 2020a; Shi et al., 2021) have been reported
to be found in Rh. microplus in the region, indicating a high risk
of exposure to these pathogens for humans and animals here.

Yunnan province is located in the southwestern part of
China with wide distribution of Rh. microplus; it is of great
importance for epidemiologists and physicians to be aware of
Rh. microplus here for evaluating their potential for spread of
the tick-borne diseases. In the present study, we investigated
the potential TBPs in Rh. microplus collected from cattle in
Yunnan. The results in the present study might provide a better
understanding of TBPs carried by Rh. microplus in Yunnan,
thereby strengthening programs to prevent and control the
potential infections caused by these TBPs.

MATERIALS AND METHODS

Tick Collection and Identification

An investigation was conducted from June to August in 2020, and
ticks collected were fed on cattle in Lincang city and Weishan city
in Yunnan province (Figure 1). Tick species were identified based
on morphological characterization and by molecular biology
methods based on the sequences of species-specific 16S rRNA and
mitochondrial cytochrome c oxidase I (COI) genes, as previously
described (Chitimia et al., 2010). Following identification, the
ticks were stored at —80°C for further analysis.

DNA Extraction

To remove environmental contaminants, ticks were individually
surface sterilized by 75% ethanol twice, followed by

phosphate-buffered saline (PBS) twice. Ticks were then
individually homogenized in 300 pl of PBS using the MagNA
Lyser Green Beads (Roche, Mannheim, Germany), and DNA
extraction was performed on 200 il of each tick homogenate
using QIAamp® Fast DNA Tissue Kit (Qiagen, Diisseldorf,
Germany) according to the manufacturer’s instructions. The
extracted genomic DNA was dissolved in 100 pl ultrapure
water and stored at —20°C for further analysis. Individual DNA
samples were mixed in an equal volume (10 1) to prepare pooled
DNA samples for full microbial genome sequencing using mNGS.

Metagenomic Profiling

All pooled DNA samples were paired-end sequenced on the
Mumina HiSeq platform (insert size 350 bp, read length 150 bp)
by The Beijing Genomics Institute (BGI) (Beijing, China), and
the depth of sequencing for all pooled DNA samples was 10x.
The reads with more than 40-nt low-quality bases (quality value
<38) were removed. Meanwhile, the reads with more than
10-nt “N” bases were filtered out of the datasets. Lastly, the
reads overlapping more than 15-nt bases with the adapters were
removed. Reads that aligned to tick genes were also removed
using Bowtie 2 (v2.2.4) (Karlsson et al., 2012, 2013). Accordingly,
the high-quality data were obtained.

Then, the high-quality reads were mapped against scaffolds
using SOAPdenovo (v2.04) (Luo et al., 2012). The unused
reads from each sample were then assembled. The scaffolds
were broken at N into the scaftigs (Nielsen et al.,, 2014), and
the scaftigs with the length of >500 nt were used for further
analysis (Li et al., 2014). Open reading frames (ORFs) in the
scaftigs (=500 bp) were predicted by MetaGeneMark (v2.10)
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FIGURE 1 | Map of the sampling sites in Yunnan Province, China. Ticks
collected were fed on cattle in Lincang city (sampling sites 1-8) and Weishan
city (sampling sites 9-12). The colored circles indicate the two cities where the
ticks were collected and the dots indicate the sampling regions in this study.
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(Karlsson et al., 2012; Qin et al., 2014). A non-redundant gene
catalog was obtained after processing by using the CD-HIT
(v4.5.8) (Li and Godzik, 2006; Fu et al., 2012). To determine the
gene abundances, the reads were realigned with the gene catalog
using Bowtie 2. Relative abundance of genes was calculated based
on the number of reads mapped to the genes and the length
of the genes, as previously described (Cotillard et al., 2013;
Le Chatelier et al., 2013; Villar et al., 2015).

To access the taxonomic assignments of genes, genes were
aligned to the integrated NR database (Version: 2018-01-02) of
NCBI using DIAMOND (v0.9.9) (Buchfink et al., 2015). Then,
the taxonomical level of each gene was determined by using the
lowest common ancestor (LCA)-based algorithm implemented in
MEGAN (Huson et al., 2007). The results containing the number
of genes and the abundance information of each sample and the
relative abundances of each taxonomic group were calculated by

adding the relative abundances of genes annotated to the same
feature (Karlsson et al., 2012; Li et al., 2014; Feng et al., 2015).

Polymerase Chain Reaction

Based on the results of mNGS, genus/group-specific PCR was
performed to confirm the presence of TBPs in individual
ticks. For nested PCR, 1 pl of each individual DNA sample
was used as template for the first round and 1 pl of the
primary PCR production was used as template for the second
round. The target genes and specific primers for the spotted
fever group rickettsia (SFGR; Cheng et al., 2016), Anaplasma
spp. and Ehrlichia spp. (Qin et al, 2018), and Coxiella spp.
(Duron et al., 2015) are listed in Table 1. All PCR amplifications
were carried out using the PrimeSTAR® HS (Premix) (TaKaRa,
Beijing, China) and performed on the PCR System 9700
(Applied Biosystems, GeneAmp®, United States). Amplified

TABLE 1 | Target genes and primer sequences used for nested PCR.

Pathogen Target gene Primer name Sequence (5'-3') Tm (T/C)
SFGR gltA CS2d ATGACCAATGAAAATAATAAT 50
CSEndr CTTATACTCTCTATGTACA
RpCS.877p GGGGACCTGCTCACGGCGG 48
RpCS.1258n ATTGCAAAAAGTACAGTGAACA
Anaplasma spp. 16S rRNA Eh-out1 TTGAGAGTTTGATCCTGGCTCAGAACG 55
Ehrlichia spp. Eh-out2 CACCTCTACACTAGGAATTCCGCTATC
Eh-gs1 GTAATAACTGTATAATCCCTG 55
Eh-gs2 GTACCGTCATTATCTTCCCTA
Coxiella spp. 16S rRNA Cox16SF1 CGTAGGAATCTACCTTRTAGWGG 55
Cox16SR2 GCCTACCCGCTTCTGGTACAATT
Cox16SF1 CGTAGGAATCTACCTTRTAGWGG 55
Cox16SR1 ACTYYCCAACAGCTAGTTCTCA

0.754

Relative Abundance
=

0.25+4

abundance of all genera except the top 10.

Sample Name

FIGURE 2 | Relative abundances of potential top 10 pathogens at the genus level in pooled Rhipicephalus microplus samples. The x-axis indicates pooled DNA
sample names of Rh. microplus for metagenomic next-generation sequencing; the y-axis indicates relative abundance. “Others” indicates the sum of the relative
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TABLE 2 | Prevalence of tick-borne pathogens in individual tick.

Number of individual tick positive
for single and coinfections

Pathogen

Rhipicephalus microplus (n = 516)

Single
Candidatus Rickettsia jingxinensis 74 (14.34%)
27 (5.23%)

14 (2.71%)

Anaplasma marginale
Coxiella burneti

Coxiella-like endosymbiont 5(0.97%)
Double

Ca. R. jingxinensis, A. marginale 19 (3.68%)

A. marginale, C. burnetii 2 (0.39%)

A. marginale, Coxiella-like endosymbiont 4 (0.78%)

Ca. R. jingxinensis, Coxiella-like 18 (3.49%)

endosymbiont
Triple
Ca. R. jingxinensis, A. marginale,
Coxiella-like endosymbiont
Total

16 (3.10%)

179 (34.69%)

products were then electrophoresed in 1.5% agarose gel, and the
positive amplicons were sent to TSINGKE Biological Technology
(Beijing, China) for sequencing.

Phylogenetic Analysis

The obtained DNA sequences were compared with those
available in GenBank wusing the National Center for
Biotechnology Information (NCBI; Bethesda, MD, United States)
Basic Local Alignment Search Tool (BLAST) search engine',
and multiple-sequence alignment was performed using the
ClustalW multiple alignment tool with the default parameters
in the MEGA X. The phylogenetic analysis of gltA for SFGR,
16S rRNA for Anaplasma spp., or 16S rRNA for Coxiella spp.
was performed using the maximum likelihood method based in
MEGA X. Bootstrap values were estimated for 1,000 replicates
(Hall, 2013; Kumar et al., 2016).

Multilocus Variable Number Tandem
Repeat Analysis

Multilocus variable number tandem repeat analysis was
performed in PCR targeting six highly variable loci,
including ms23, ms24, ms27, ms28, ms33, and ms34
(Arricau-Bouvery et al, 2006). The forward and reverse
primer sequences and PCR conditions were applied as
described previously (Klaassen et al., 2009; Tilburg et al., 2012;

"http://blast.ncbi.nlm.nih.gov/blast.cgi

MW114883 Candidatus Rickettsia jingxinensis isolate Rm3 China
MN842268 Uncultured Rickettsia sp. clone NKGT-UR South Korea

MW114882 Candidatus Rickettsia jingxinensis isolate Hl4 China

MHS500217 Candidatus Rickettsia jingxinensis isolate tick-XA197 China
. Yunnan Province weishan/2021/China

@  Yunnan Province Lincang/2021/China

90 | AY743327  Rickettsia japonica Inhal Korca

AF178034 Rickettsia heilongjiangii HLJ-054 China

100
EU036985 Rickettsia raoultii strain Elanda-23/95 Russia

— EU853830 Rickettsia monacensis isolate Hul-2007 Hungary

EF392725 Rickettsia helvetica Croatia

EF445981 Rickettsia tarasevichiae isolate 147 Russia
89 L RCUSO713 Rickettsia canadensis 2678
oo KX533943 Candid

Rickettsia isolate D RS Brazil

1
KX544808 Rickettsia asemboensis isolate 1-TB-1 Costa Rica

|- KX434741 Rickettsia amblyommatis haplotype DE-RS Ab Brazil

likelihood method, and bootstrap values were estimated for 1,000 replicates.

FIGURE 3 | Phylogenetic tree of Candidatus Rickettsia jingxinensis in ticks based on partial gitA gene sequence similarity. The sequences obtained in this study are
indicated with a colored dot. Sequences were aligned using the MEGA X (Version 10.2.5) software package. Phylogenetic analysis was performed by the maximum

MT309038 Rickettsia massiliae isolate AWaTi-12 China

EU716648 Rickettsia conorii ICB1004 Brazil

KRG08785 Rickeitsia raoultii in Haemaphysalis erinacei China

66 | MHT782170 Rickettsia parkeri strain ApPR Brazil

MF536974 Rickettsia parkeri strain Atlantic rainforest Brazil
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Gonzalez-Barrio et al., 2016). A C. burnetii strain (Nine
Mile) which was considered 9-27-4-6-9-5 for loci
ms23-ms24-ms27-ms28-ms33-ms34 was used as the reference
for normalization and for comparing the MLVA profiles
obtained. The MLVA pattern of the isolates was compared in
the database of MLVABank® to check similarities with other
isolates. Clustering of obtained MLVA profiles was performed
with BioNumerics v.7.6 software (Applied Maths, Belgium).

Zhttp://mlva.u-psud.fr/mlvav4/genotyping/

RESULTS

Taxonomic Classification

All adult hard ticks collected were identified as Rh. microplus
(n = 516) based on morphological identifications and confirmed
by species-specific PCR and sequencing assay. Fifteen pools
of Rh. microplus DNA samples were finally analyzed using
mNGS. Sequencing yielded between 6,166 and 7,273 million
reads per pool, while all were of high quality (Clean_Q20 > 96%)
(Supplementary Table 1).

95

88

CP006847 Anaplasma marginale str. Dawn Australia

CP023731 Anaplasma marginale strain Jaboticabal Brazil

NC 022784 Anaplasma marginale str. Gypsy Plains Mexico

CP001079 Anaplasma marginale str. Florida USA

CP001759 Anaplasma centrale str. Israel Israel

. Yunnan Province Lincang/2021/China

. Yunnan Province Weishan/2021/China

KM?206273 Anaplasma capra strain HLJ-14 China

KX817983 Uncultured Anaplasma sp. clone HNHL-64 China

| KJ700627 Anaplasma sp. A60 China

CP015994 Anaplasma ovis str. Haibei China

AF414870 Anaplasma ovis isolate OVI South Africa
KX579073 Anaplasma ovis isolate S43 China

T< KJ639879 Anaplasma ovis strain Ao89 China

NZ CP023730 Anaplasma marginale strain Palmeira Brazil

CP046391 Anaplasma platys strain S3 Saint Kitts and Nevis

7

CP046639 Anapl

phagocytoph str. Norway variantl Norway

95

0.01

likelihood method, and bootstrap values were estimated for 1,000 replicates.

CP015376 Anaplasma phagocytophilum str. Norway variant2 Norway
CP006617 Anaplasma phagocytophilum str. IM USA

89 | CP006616 Anaplasma phagocytophilum str. HZ2 USA

CP006618 Anaplasma phagocytophilum str. Dog2 USA

CP000235 Anaplasma phagocytophilum HZ USA

FIGURE 4 | Phylogenetic tree of Anaplasma marginale in ticks based on partial 76S rRNA gene sequence similarity. The sequences obtained in this study are
indicated with a colored dot. Sequences were aligned using the MEGA X (Version 10.2.5) software package. Phylogenetic analysis was performed by the maximum
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Then, the presence of Rickettsia and Anaplasma in the
pooled tick samples was identified by the taxonomic profiles
at the genus level (Supplementary Table 2) and the 10 most
abundant bacterial genera in pooled tick samples are as shown
in Figure 2. Rickettsia spp. and Anaplasma spp. were abundant
in all the sample pools. In addition, Pseudomonas spp. was most
abundant in pool 4.

Tick-Borne Pathogen Identification

By mNGS, the important pathogenic bacterial genera Rickettsia
and Anaplasma were found in the pooled tick samples, and thus
each tick sample was analyzed by the genus/group-specific PCR
combined with sequencing in order to identify TBPs carried by it.
In addition, Coxiella spp. was commonly found in ticks, and thus
each tick sample was also analyzed by Coxiella-specific PCR.

As a result, 34.69% (179/516) of ticks were tested positive for
at least one of the four pathogens/endosymbionts [Candidatus
Rickettsia jingxinensis, Anaplasma marginale, C. burnetii, and
Coxiella-like endosymbiont (CLE)] (Table 2). Ca. R. jingxinensis
was the highest prevalence in these ticks (24.61%, 127/516), while
the prevalence of A. marginale and C. burnetii were 13.18 and
3.10% in these ticks, respectively (Table 2).

Coinfections

In 179 TBP-positive ticks in the present study, 59 ticks (32.96%)
were found to be coinfected with more than one TBP identified
(Table 2). The dual coinfections with Ca. R. jingxinensis
and A. marginale (8.33%, 43/516) were most frequent in Rh.
microplus, while the dual coinfections with A. marginale and
C. burnetii, the dual coinfection with A. marginale and CLE,

and the dual coinfection with Ca. R. jingxinensis and CLE were
detected in 0.39% (2/516), 0.78% (4/516), and 3.49% (18/516)
of these ticks, respectively. The triple coinfections with Ca. R.
jingxinensis, A. marginale, and CLE were detected in 3.10%
(16/516) of these ticks (Table 2).

Phylogenetic Analysis

The gltA sequences of Ca. R. jingxinensis and 16S rRNA of
A. marginale and C. burnetii in this study were 100% identical
to those in GenBank, while CLE detected in the Rh. microplus
collected in Weishan showed 97.57-99.20% nucleotide sequence
identity to the known CLE strains and was most similar to
the CLE strain (JQ480818.1) detected in Rhipicephalus turanicus
in the 16S *rRNA comparison. By phylogenetic analysis, Ca.
R. jingxinensis detected in the present study were placed
in a clade with Ca. R. jingxinensis (MH500217, MW114882,
and MW114883) and an uncultured Rickettsia sp. clone
NKGT-UR (MN842268) (Figure 3). The A. marginale identified
was shown to be clustered with A. marginale (CP006847,
CP023731, NC022784, and CP001079) and Anaplasma centrale
str. Israel (CP001759) (Figure 4). C. burnetii was most close to
C. burnetii CbuK (NC011528) and C. burnetii Dugway 5J108-111
(NC009727), while CLE detected in the present study was placed
in a separated clade with the known CLE strains (Figure 5).

Multilocus Variable Number Tandem
Repeat Analysis Typing

In total, 14 tick DNA samples positive for C. burnetii and 10 DNA
samples were characterized by a complete MLVA analysis, and

LC464974 Coxiclla burnctii CB 27 Indonesia
LC464973 Coxiclla burnctii CB 25 Indonesia
LC464975 Coxiella burnetii CB 30 Indonesia
CPO14553 Coxiella burnetiistrain 701CbB1 France
CP014565 Coxiella burnetii strain Scurry Q217 Dutch
100 | CPO14563 Coxiella burnctiistr. Schperling Netherlands

NC 009727 Coxiella burnetii Dugway 51108-111 USA.

NC 011528 Coxiclla burnetii CbuK Q154 USA

@  Yunnan Province Lincang/2021/China

CP018150 Coxiella burnetii MSU Goat Q177 Germany

CP014559 Coxiella burnetii strain Henzerling Italy

CP014561 Coxiella burnetii strain Heizberg Greece

L CP064834 Coxiella endosymbiont of Amblyomma nuttalliisolate Craf2019 Kenya
CP011126 Coxiella-like endosymbiont strain CRt Israel

| KMO079623 Coxiellaceae bacterium CRO7 France

MNO088359 Uncultured Coxiella sp. clone ZOTU 82 Australia

JQ480818 Coxiella endosymbiont of Rhipicephalus turanicus isolate DGGE gel band 4.12 Israel

8

100 CP021379 Coxiella-lik d biont of ly isolate CLE-AaGA USA
NZ CP007541 Coxiella ymbiont of / isolate C904 USA
9% NZ CP033868 Coxiella iont of / I Ipt in CeAS-UFV Brazil

100 | CP033868 Coxiella endosymbiont of Amblyomma sculptum strain CeAS-UFV Brazil

FIGURE 5 | Phylogenetic tree of Coxiella spp. in ticks based on partial 76S rRNA gene sequence similarity. The sequences obtained in this study are indicated with a
colored dot. Sequences were aligned using the MEGA X (Version 10.2.5) software package. Phylogenetic analysis was performed by the maximum likelihood

method and bootstrap values were estimated for 1,000 replicates.

B Yunnan Province Weishan/2021/China
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not all C. burnetii DNA-positive samples could be characterized
probably due to the poor quality and quantity of DNA. The
allele codes of the identified MLVA type were 9-27-4-6-9-5
for loci ms23-ms24-ms27-ms28-ms33-ms34 and recognized as
MLVA genotype 1, suggesting that these 10 strains belong to the
same genotype and were closely related to tick Coxiella strains
isolated from United States and human Coxiella strains isolated
from United States, France, and Canada (Figure 6). A minimum
spanning tree based on host origin of the MLVA analysis showed
that the C. burnetii strains detected in the present study were
clustered to the previously described genotypes found primarily

in ticks and patients of Q fever from different regions of the
globe (Figure 7).

DISCUSSION

Although a variety of pathogens have been identified in ticks,
the single infection and coinfection with multiple pathogens
in Rh. microplus have rarely been investigated in China. In
this study, we applied mNGS combined with nested PCR to
survey TBPs in Rh. microplus feeding on cattle in Yunnan

Key Strain Source Country MLVA
@ 20101011CWZ109 Frl Cattle Milk France 4
. 20110225CWZ154 Saud 1 Cattle milk Arabia 4
. 20100705CWZ090 NL1 Cattle Milk Netherlands 4
. 200903 17Frankrijk021 L.IE. 90 Human Valve France 4
- . 20110829SP022 09.05227.016.01 Cattle BTM Spain 6
_— . 20120511CWZ012 Rund 107 Cattle Placenta Netherlands 7
— 201210021T003 941 Cattle Milk Cattle Ttaly 3
201210021T002 102 Milk Ttaly 2
[ 201210021T004 131 Cattle Milk Cattle Ttaly 2
Hung09 VS93 placenta Hungary 14
20110829S8P025 Esp9 Cattle BTM Spain 14
T . 20121002IT008 122 Cattle Vaginal swab Italy 13
— . 201210021T009 1502 Cattle Vaginal swab Ttaly 13
Cb*029 CbB10 Cattle placenta France 11
l: Cb*015 CbCl1 Sheep Placenta France 12
Cb*024 CbB3 Cattle Milk France 10
20120511 CWZ001 Cbg1506 Goat France 10
_ Cb*023 CbB2V Cattle France 10
Cb*022 CbB2 Cattle Milk Cattle France 10
Cb*021 CbB1 Placenta Cattle France 10
T . Hung06 VS41 placenta Hungary 5
. 20090317Frankrijk005 L.IE. 88 Human Native valve France 5
. 20100705CWZ093 NL4 Cattle Milk Netherlands 5
@ 20110113¢wWzIs1 Swit3 Cattle Milk Switzerland 5
] . 201210021T005 1561 Cattle Milk Italy 5
. 20101214CWZ129 Esp4 Cattle Milk Spain 9
@ cvroos NM Tick USA 1
. 20090106CWZ036 NineMile Reference  Nine Mile DNA Germany 1
. 20090317Frankrijk001 NINE MILE Human Tick infection USA 1
. 20090317Frankrijk013 CF.IE. 23 Human Blood France 1
. 20090317Frankrijk029 P.AC.25 Human Blood France 1
. 200903 17Frankrijk030 M.AC. 11 Human Blood Houphouet France 1
. 20090317Frankrijk061 Cb115b Human Valve Alberta Canada 1
. 20090324Frankrijk071 M.AC. 26 Human Blood France 1
} b } } b O Queried strain in this study Tick China 1

FIGURE 6 | UPGMA cluster analysis of Coxiella burnetii genotypes using a six-multiple locus variable number tandem repeat analysis. All 34 selected samples are
based on the MLVA-6 database (http://mlva.i2bc.paris-saclay.fr/mivav4/genotyping/). The reference strain included in the tree is Nine Mile RSA493. Strain, source,
geographical origin, and MLVA-6 type are indicated. The same genotype was coded with the same color. The hollow dots indicate the sample genotype obtained in

this studly.
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FIGURE 7 | Minimum spanning tree of Coxiella burnetii strains using a
six-multiple locus variable number tandem repeat analysis. The obtained
MLVA genotypes identified in this study and data of 304 strains based on the
MLVA-6 database (http://miva.i2bc.paris-saclay.fr/mivav4/genotyping/) were
used. Each circle represents a unique genotype (1-97). The minimum
spanning tree of the analyzed isolates provides information on the proportion
of hosts of each identified genotype (see color index), and the size of the pie
charts represents the number of isolates of the corresponding genotype.

province and to analyze the phylogenetic characterization of
TBPs detected in these ticks.

The pooled DNA samples of Rh. microplus collected were
assayed by mNGS. Although each tick was surface sterilized
and ultrapure water, sterile tubes, and filter tips were used and
all operations were carried out in a biological safety cabinet
during DNA extraction, bacteria like Pseudomonas, Enterobacter,
and Rhizophagus were abundant in the pooled DNA samples
of Rh. microplus when analyzed using mNGS. Pathogenic,
environmental, and skin-associated bacteria have also been
reported as highly abundant (Greay et al., 2018), and it is one of
the possibilities that bacteria like Pseudomonas were predominant
in the present study. Rickettsia spp. and Anaplasma spp. were also
revealed at the genus level in pooled DNA samples. Moreover,
Ca. R. jingxinensis, A. marginale, C. burnetii, and CLE were
further identified in individual tick DNA by sequencing of PCR-
amplified DNA fragments. Coxiella spp. was not identified in the
pooled DNA sample via mNGS, and one of the possibilities is the
degradation of nucleic acids during sequencing.

Spotted fever group rickettsias are devastating human
infections, and no licensed vaccine is available (Liu et al,
2021). More than 20 species of Rickettsia are associated with
SEGR, of which 16 are considered as human pathogens
(Cohen et al,, 2021). Ca. R. jingxinensis, one uncultured SFGR
species, was identified in 24.61% of these ticks. The sequence

of Ca. R. jingxinensis was first described in Haemaphysalis
longicornis in Japan (Ishikura et al., 2003), and its presence in
Ha. longicornis or Rh. microplus has been reported in China
(Zou et al, 2011; Dong et al, 2014) and then was named
based on its geographical origin in 2016 (Liu et al, 2016).
Many Ca. R. jingxinensis-specific DNA sequences have been
deposited in GenBank. Of these, a gltA sequence (KU853023) was
recovered from a patient, suggesting its potential pathogenicity
to humans (Guo et al,, 2019a). Our analysis showed that the
gltA of Ca. R. jingxinensis in Rh. microplus was 100% identical
to that of Candidatus Rickettsia longicornii, suggesting that the
two organisms should be recognized as one species, which is
consistent with the previous report (Jiang et al., 2018). These
results revealed that Ca. R. jingxinensis is widely distributed
in China even in the world and its pathogenicity remains
to be determined.

Anaplasma marginale, the causative agent of bovine
anaplasmosis, can be transmitted by at least 20 species of
ticks mainly in the genera Dermacentor and Rhipicephalus (Duan
et al., 2020). The infection rate of A. marginale is determined
by the level of rickettsemia in the host and the ability to infect
the midgut of tick vector and undergo successful biological
replication (Ueti et al., 2007). A. marginale has been detected
in ticks from Ningxia, Hubei, and Henan provinces and the
Qinghai-Tibet Plateau in China (Lu et al., 2017; Cui et al., 2018;
Han et al., 2019; Duan et al., 2020). The presence of A. marginale
has been detected in 13.18% of Rh. microplus in the present
study, suggesting its wider geographical distribution in China.

Coxiella burnetii is the causative agent of Q fever, and this
bacterium is highly infectious and classified as a category B
biological weapon (Madariaga et al, 2003). In the 1950s, Q
fever was first reported in China and then C. burnetii has
been isolated from patients, livestock, wild mice, and ticks (Ni
et al,, 2020). The sporadic human Q fever cases and several
small outbreaks of Q fever that occurred in leather factories or
goat/sheep farms were reported in China (Yu, 2000). In 2018-
2019, an epidemic of human Q fever in Zhuhai city of China was
determined by mNGS (Huang et al., 2021). In the present study,
C. burnetii were detected in 3.10% of Rh. microplus (14/516),
while the previous reports show that it was detected in 12.50%
of Dermacentor nuttalli (7/56), 2.79% of Dermacentor silvarum
(11/394), 14.75% of Dermacentor niveus (9/61), and 22.65% of
Hyalomma asiaticum (41/181) in China (El-Mahallawy et al,
2015; Li et al.,, 2020b,c; Ni et al., 2020), strongly demonstrating
its wide distribution in China. C. burnetii has been detected
in Rh. microplus in the Philippines, Thailand, and Mali before
(Muramatsu et al.,, 2014; Diarra et al,, 2017; Galay et al., 2020),
and this is the first time that C. burnetii has been detected in Rh.
microplus in China.

Genotyping C. burnetii from wildlife will help in tracing back
clinical cases in humans directly exposed to wildlife. MLVA
is nowadays the first-choice method to compare C. burnetii
genotypes due to its powerful method to type C. burnetii from a
diversity of hosts and geographic origins (Klaassen et al., 2009;
Roest et al., 2011). In the present study, C. burnetii genotypes
1 were obtained using the MLVA-6-marker and genotype 1
was mainly found in strains from both patients and ticks.
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C. burnetii genotypes from ticks in the present study clustered
mainly with C. burnetii genotypes from human Q fever cases
in France, Canada, and United States (Figures 6, 7), suggesting
that these strains identified in the ticks in Yunnan province
were phylogenetically closely related to the strains from ticks
and patients in different regions of the world. Interestingly, Q
fever in humans in Yunnan province where our samples were
collected has been reported (Fang et al., 2015). C. burnetii is a
zoonotic pathogen transmitted from infected vertebrate animals
to humans via contaminated aerosols (Graves et al., 2016).
Although direct transmission of C. burnetii to humans through
ticks has never been properly documented (Pacheco et al., 2013),
tick bite cannot be ruled out and a previous report has suggested
that Q fever may have been transmitted by tick bite (Beaman and
Hung, 1989), and ticks may play a critical role in the transmission
of C. burnetii among vertebrate animals (both domestic and
native). To the best of our knowledge, this is the first time that
C. burnetii found in China has been genotyped using MLVA.

A common characteristic of the various tick species is the
presence of bacterial endosymbionts, typically bacterial members
of Coxiella, Rickettsia, and Francisella genera, some of which are
closely related to vertebrate pathogens (Tsementzi et al., 2018).
CLEs are uncultured and relatively common in the microbiota of
various tick species around the world and affect the development,
nutrition, chemical defense, or reproduction of the hosts (Ben-
Yosef et al., 2020). CLEs form multiple subclusters in the cluster
of the genus Coxiella in phylogenetic analysis (Duron et al,
2015). CLE has not been reported in Rh. microplus before,
and in the present study, CLEs were detected in 8.33% of Rh.
microplus, similar to the prevalence level of CLE in Rhipicephalus
sanguineus in North America and Europe (Ueti et al., 2007).
More importantly, CLE detected in Rh. microplus collected from
Weishan shared 97.57-99.20% of 16S rRNA sequence identity
with the known CLE strains, forming a separated clade in
phylogenetic analysis.

CONCLUSION

This study provides a better understanding of TBPs in Rh.
microplus in Yunnan and the presence of TBP coinfections in Rh.
microplus, reporting for the first time that C. burnetii had been
found in Rh. microplus in China. MLVA data-based phylogenetic
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