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Background: Hospital mortality is high for patients with encephalopathy caused by
microbial infection. Microbial infections often induce sepsis. The damage to the central
nervous system (CNS) is defined as sepsis-associated encephalopathy (SAE). However,
the relationship between pathogenic microorganisms and the prognosis of SAE patients
is still unclear, especially gut microbiota, and there is no clinical tool to predict hospital
mortality for SAE patients. The study aimed to explore the relationship between
pathogenic microorganisms and the hospital mortality of SAE patients and develop a
nomogram for the prediction of hospital mortality in SAE patients.

Methods: The study is a retrospective cohort study. The lasso regression model was
used for data dimension reduction and feature selection. Model of hospital mortality of
SAE patients was developed by multivariable Cox regression analysis. Calibration and
discrimination were used to assess the performance of the nomogram. Decision curve
analysis (DCA) to evaluate the clinical utility of the model.

Results: Unfortunately, the results of our study did not find intestinal infection and
microorganisms of the gastrointestinal (such as: Escherichia coli) that are related to
the prognosis of SAE. Lasso regression and multivariate Cox regression indicated that
factors including respiratory failure, lactate, international normalized ratio (INR), albumin,
SpOo», temperature, and renal replacement therapy were significantly correlated with
hospital mortality. The AUC of 0.812 under the nomogram was more than that of
the Simplified Acute Physiology Score (0.745), indicating excellent discrimination. DCA
demonstrated that using the nomogram or including the prognostic signature score
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status was better than without the nomogram or using the SAPS Il at predicting

hospital mortality.

Conclusion: The prognosis of SAE patients has nothing to do with intestinal and
microbial infections. We developed a nomogram that predicts hospital mortality in
patients with SAE according to clinical data. The nomogram exhibited excellent
discrimination and calibration capacity, favoring its clinical utility.

Keywords: sepsis associated encephalopathy, prognosis, hospital mortality, nomogram, microbial infection

INTRODUCTION

Sepsis is defined as a life-threatening organ dysfunction with
host response imbalance caused by infection (Singer et al.,
2016). Sepsis-associated encephalopathy (SAE) is defined as
diffuse brain dysfunction without the central nervous system
(CNS) infection in sepsis patients. Metabolic encephalopathy,
drug intoxication, structural brain lesions, cerebrovascular
events, encephalitis, meningitis, and non-convulsive status
epilepticus need to be ruled out in sepsis patients before
a diagnosis of SAE (Eidelman et al, 1996). SAE develops
in up to 70% of septic patients (Gofton and Young, 2012;
Fraser et al., 2014).

SAE is related to increased mortality, extensive costs,
prolonged hospitalization, followed by persistent cognitive
impairment (Iwashyna et al., 2010; Sonneville et al., 2017). The
mortality rates of SAE patients over 60% in sepsis patients
(Eidelman et al., 1996; Schuler et al., 2018). At hospital discharge,
45% of patients are related to the development of dementia
(Annane and Sharshar, 2015). Early recognition of brain injury
and prompt management are of great importance for the survival
and prognosis of septic patients. Intestinal microbial infection is
one of the important sites of infection in patients with sepsis.
Intestinal microbes are not only related to infections. Studies
have found that can have an impact on the brain through
the microbiota-gut-brain axis, included depression, anxiety,
dementia, and other diseases (Grochowska et al., 2018). Li et al.
(2018) found that intestinal flora can affect SAE through the
vagus nerve. The relationship between intestinal flora and the
prognosis of SAE patients is still unclear.

Therefore, further studies for identifying the relationship
between intestinal flora and the prognosis of SAE patients,
and the predictors of the prognosis of SAE patients, especially
accurate and measurable prediction models for hospital
mortality, are pivotal for risk-optimized therapeutic strategies
and to improve the prognosis of sepsis patients. This study aimed
to investigate the predictors associated with hospital mortality in
patients with SAE and establish a comprehensive visual predictive
nomogram of hospital mortality, calculating a probabilistic
estimate that could be of use to clinicians these patients.

Abbreviations: SAE, sepsis-associated encephalopathy; SAPS II, simplified acute
physiology score; SOFA, sequential organ failure assessment; qSOFA, quick
sequential organ failure assessment; GCS, Glasgow coma scale; ICU, intensive
care unit; MIMIC-III, Medical Information Mart for Intensive Care III; ICD-9,
International Classification of Diseases, Ninth Revision; ROC, receiver operating
characteristic curve; INR, international normalized ratio.

MATERIALS AND METHODS

Data Source

Data were obtained from the Medical Information Mart for
Intensive Care (MIMIC-III, Version 1.4), which contains 46,520
patients admitted to the Beth Israel Deaconess Medical Center
(Boston, MA, United States) from 2001 to 2012 (Johnson et al.,
2016). The database documents included charted events such
as demographics, vital signs, microbiology events, medication
prescriptions, laboratory tests, etc. International Classification of
Diseases, Ninth Revision (ICD-9) codes were also documented by
hospital staff on patient discharge. The following CITI program
course was completed: CITI 33690380. The raw data were
extracted using a structure query language (SQL) using Navicat
and further processed with R software.

Patient Population
Inclusion criteria were as follows: Patients with (1) sepsis 3.0. (2)
age > 18 years-old. (3) at least 24 h stay in the ICU. Sepsis was
defined as an infected patient on discharge according to ICD-9
codes and microbial culture positive. According to the definition
of sepsis 3.0, we included patients with SOFA score > 2.
Exclusion criteria (Sonneville et al, 2017; Yang Y. et al,
2020): (1) Patients without SAE. (2) Primary brain injury
including traumatic brain injury, intracerebral hemorrhage,
cerebral embolism, ischemic stroke, epilepsy, or intracranial
infection, and other cerebrovascular diseases according to ICD-9
codes. (Supplementary Materials 1-5); (3) Mental disorders
and neurological disease (Supplementary Material 6); (4)
Chronic alcohol or drug abuse (Supplementary Material 7);
(5) Encephalopathy caused by other causes including metabolic
encephalopathy,  hepatic ~ encephalopathy,  hypertensive
encephalopathy, hypoglycemic coma, and other liver disease
or kidney disease affecting consciousness (Supplementary
Material 8); (6) Severe electrolyte imbalances or blood
glucose disturbances, including hyponatremia (<120 mmol/l),
hyperglycemia (>180 mg/dl), or hypoglycemia (<54 mg/dl);
(7) Partial pressure of CO, (PCO;) > 80 mmHg; (8)Without
an evaluation of a Glasgow Coma Scale (GCS) score; (9)
Patients who have been sedated by tracheal intubation at the
time of admission.

Sepsis-Associated Encephalopathy
Sepsis-associated encephalopathy was defined as (1) patients
with GCS < 15. (2) The patient was diagnosed with delirium,
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cognitive impairment, altered mental status according to the
ICD-9 code. (3) The patient was treated with haloperidol during
hospitalization. (4) Exclude consciousness disorders caused by
other reasons. Many studies use GCS score as an essential tool
for evaluating SAE patients (Iwashyna et al., 2010).

Data Extraction and Management

The following data was extracted from the MIMIC III database
using R statistical software (R Foundation for Statistical
Computing, Vienna, Austria): basic patient demographical data,
vital signs (mean value) during the first 24 h of intensive care
unit (ICU) stay, the first laboratory data since ICU admission and
severity scores (including SAPS II, quick sequential organ failure
assessment (QSOFA) score, sequential organ failure assessment
(SOFA) score), comorbidity index at discharge according to
the ICD-9 code (Supplementary Material 9), site of infection
and types of microbial infections (Supplementary Material 10),
organ failure (Supplementary Material 11). A matrix diagram
of missing data is illustrated in the Data Profiling report
(Supplementary Material 12). The percentage of missing values
of partial thromboplastin time (0.47%), platelet (0.57%), aspartate
aminotransferase (0.66%), alanine aminotransferase (0.47%),
resprate (0.85%), heartrate (0.85%), blood urea nitrogen (1.14%),
dysbp (1.14%), diasbp (1.23%), tempc (1.52%), glucose_min
(1.42%), albumin (5.02%), lactate (3.6%), and hemoglobin
(3.03%) were <6%. To facilitate statistical analysis, missing
individual values were substituted with their mean values.

Statistical Analysis
The Shapiro-Wilk test for the sample distribution was used.
Continuous variables with normal distribution were expressed
as the mean =+ standard deviation (SD), and continuous non-
normal distributed variables were expressed as the median
(interquartile range, IQR), categorical variables were expressed as
frequency and percentage, as appropriate. A non-parametric test
(Mann-Whitney U test or Kruskal-Wallis test) was applied for
data with non-normal distribution or heterogeneity of variances.
Pearson Chi-squared test was applied to categorize variables.
Patients were randomly assigned to either the training cohort
(80%) or the validation cohort (20%). The selection of predictive
features of the nomogram used the least absolute shrinkage and
selection operator (Lasso) regression model (Sauerbrei et al,
2007; Sun et al., 2013; Wang et al., 2020). A multivariate COX
regression analysis was performed on the selected variables,
and a nomogram was constructed based on the results of the
multivariate COX regression analysis (P < 0.05). We applied a
bootstrapped resample with 1,000 iterations to verify the accuracy
of the nomogram. The C-index was employed as an indicator to
determine the discrimination ability of the nomogram through
receiver operating characteristic (ROC) curve analysis and
area under the curve (AUC). The calibration was performed
by plotting the calibration curve to analyze the association
between the observed incidence and the predicted probability.
We evaluated the clinical usefulness and net benefit of the new
predictive models by using decision curve analysis (DCA).
Statistical analysis was conducted with R software (version
3.4.3). Statistical significance was defined as p < 0.05.

RESULTS

Demographic Baseline Characteristics

1,055 patients with SAE were identified from the MIMIC
database after applying the inclusion and exclusion criteria. We
randomly assigned 80% and 20% of the patients to the training
(n = 844) and validation (n = 211) cohorts. The recruitment
process is illustrated in Figure 1.

Table 1 shows the patient characteristics in the primary and
validation cohorts. SAE patients who were older, had urinary tract
infection or yeast infection were more likely to die. Circulatory
failure was more common in non-survivors [Heartrate, 112
(96-132) vs. 109 (94-125), P = 0.008; Dysbp, 77 (64.8-86) vs.
85 (77-94), P < 0.001; Diasbp, 35 (26-41) vs. 39 (33-47),
P < 0.001; Lactate, 2.3 (1.6-4.4) vs. 1.8 (1.2-2.7), P < 0.001]
than survivors. Patients in the non-survival group had worse
liver function [Alanine aminotransferase, 33 (17-84) vs. 24 (14—
51.3), P = 0.001; Aspartate aminotransferase, 49 (25-139) vs.
31.5 (20-64), P < 0.001; Albumin, 2.8 (2.2-3.0) vs. 2.9 (2.5-3.3),
P < 0.001], worse renal function [Creatinine, 1.1 (0.8-1.9) vs. 1.5
(0.9-2.6), P < 0.001; Blood urea nitrogen, 24 (16-41) vs. 33 (20—
50.3), P < 0.001], and worse coagulation [Partial time, 14.3 (13.0-
16.4) vs. 15.5(13.8-19.6), P < 0.001; Partial thromboplastin time,
30.5 (26.9-36.9) vs. 36.7 (30.2-49.6), P < 0.001; INR 1.3 (1.1-1.5)
vs. 1.5 (1.2-2.0), P < 0.001], and more serious infections [White
blood cell count, 10.7 (7.2-15.3) vs. 11.9 (7.9-16.9), P = 0.061].
Patients in the non-survival group also had a higher incidence of
anemia (53.2 vs. 67.8%). Non-surviving patients have more severe
disease [SOFA 6.0 (9.0-12.0) vs. 6.0 (4.0-8.0), p < 0.001; gSOFA
2.0 (2.0-3.0) vs. 2.0 (2.0-3.0) p < 0.001; SAPS II 56 (45-72) vs. 42
(32-51), p < 0.001].

Patient Outcomes

Table 2 shows the outcomes for the survival group and non-
survival group. Among non-survivors, there was a higher
incidence of multiple organ failure including respiratory failure
(63.6 vs. 32.9%), renal failure (69.4 vs. 57.3%), hepatic failure
(10.5 vs. 3.3%), cardiovascular failure (58.1 vs. 8.5%), and
hematological failure (26.7 vs. 21.2%). This led to a higher rate
of mechanical ventilation (52.7 vs. 35.2%) and renal replacement
therapy (12.0 vs. 2.0%) among non-survivors.

Feature Selection

Using the LASSO regression model, among the non-survivors
of SAE, we identified 89 features which reduced to 13 potential
predictors. They include SAPS II, renal replacement therapy,
temperature, SpO,, albumin, INR, lactate, respiratory failure,
urinary tract infection, anemia, systolic blood pressure (sysbp),
partial thromboplastin time (Supplementary Material 13: Data
supplement) (Figures 2A,B).

Multivariate Cox Regression

Furthermore, we performed a univariate, and multivariate
cox regression analysis of these 13 potential predictors, sex,
and admission type. According to our results, SAPS II, renal
replacement therapy, temperature, SpO,, albumin, international
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A total of 4687 patients were
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sepsis” and “septic shock”
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FIGURE 1 | Flow chart of the enrolled patients. MIMIC-IIl, Medical Information Mart for Intensive Care ll.

normalized ratio (INR), lactate, and respiratory failure were
independent prognostic factors for SAE patients (p < 0.01 or
p < 0.05) (Table 3).

Predictive Nomogram Development

A Lasso regression model and multivariate cox regression
analysis identified SAPS 1II, renal replacement therapy,
temperature, SpO,, albumin, INR, lactate, and respiratory
failure as independent prognostic factors for SAE patients in
the training cohort. These factors can be used to predict the
hospital mortality of patients with SAE (Table 3), which was
presented as the visualization nomogram (Figure 3). The hazard
ratio values of these risk factors were established and scored
for each level of prognostication. By adding up the scores
associated with each variable to assess the hospital mortality
of SAE patients.

Discrimination and Calibration

The AUC for the hospital mortality prediction nomogram was
0.812 (95% CI, 0.780-0.843) in the training cohort, which is
greater than the SAPS II score of 0.745 (95% CI, 0.708-0.783)
(Figure 4). The predictive accuracy of the nomogram was
shown with a sensitivity of 0.601 and a specificity of 0.867. Our
study employed the bootstrap resampling method for internal
validation of the model. The calibration plot of hospital mortality
of SAE patients revealed good agreement between the observed
and predicted values (Figure 5).

Clinical Utility

The DCA of the nomograms and SAPS II for the hospital
mortality of patients with SAE are illustrated in Figure 6. The
results showed that the nomogram provided a greater net benefit
in predicting hospital mortality compared to that of SAPS II.

DISCUSSION

In our study, patients with SAE have a hospitalized mortality
rate of 30.5%. Intestinal infections and microbial infections
were not found to be related to the prognosis of SAE patients.
We identified independent factors for the prognosis of SAE
patients, which included SAPS II, renal replacement therapy,
albumin, INR, lactate, temperature, SpO,, and respiratory failure.
We further developed and validated a comprehensive visual
nomogram to predict the prognosis of SAE patients. The
nomogram showed a high degree of validity, discrimination, and
clinical utility.

Microorganisms in the body are related to many diseases. Li-
Hong Peng and Lihong Peng et al. (2018, 2020a) established
a model to predict the association of microorganisms with
various diseases through microorganisms, and the model
showed excellent performance. Probiotics can change the
types of intestinal microflora and affect patients mood and
memory function (Bagga et al, 2018). Xia et al. (2018)
found that probiotics can improve the cognitive function of
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TABLE 1 | Characteristics of patients in the primary and validation cohorts.

Primary cohort Validation cohort
Survive group Non-survival group P Survive group Non-survival group P
n =586 n =258 n =147 n =64
Age, median 72 (569.0-82.4) 76.7 (64-84.4) 0.003 70.0 (566.8-81.7) 75.2 (65.2-83.7) 0.068
Sex n (%)
Female 299 (51.0) 118 (45.7) 0.721 63 (42.9) 33(51.6) 0.243
Male 287 (49.0) 140 (54.3) 84 (57.1) 31 (48.4)
Admission_type (%)
Emergency 535 (92.0) 248 (91.0) 0.043 136 (92.5) 59 (92.2) 0.014
Elective 38 (6.1) 8(7.2) 9(6.1) 6.3
Urgent 13(1.9) 2(1.9) 2(1.4) (1.5
Comorbidity, n (%)
Hypertension 365 (62.3) 146 (56.6) <0.001 91 (61.9) 0 (62.5) 0.935
Diabetes 179 (30.5) 88 (34.1) <0.001 41 (27.9) 9(29.7) 0.790
Cardiovascular diseases 388 (66.2) 176 (68.2) 0.569 93 (63.9) 7 (73.4) 0.151
Chronic pulmonary disease 122 (20.8) 57 (22.1) 0.677 25 (17.0) 4 (21.9) 0.402
Liver disease 51(8.7) 27 (10.5) 0.415 17 (11.6) 1(17.2) 0.268
Anemias 312 (563.2) 175 (67.8) <0.001 80 (54.4) 9 (76.6) 0.002
Infection site, n (%)
Lung 235 (40.1) 8 (38.0) 0.562 66 (44.9) 27 (42.2) 0.715
Intestinal 108 (18.4) 1(15.9) 0.373 30 (20.4) 11 (17.2) 0.587
Urinary system 238 (40.6) 61 (23.6) <0.001 58 (39.5) 16 (25) 0.043
Catheter related 98 (16.7) 29 (11.2) 0.040 25(17.0) 7 (10.9) 0.259
Skin and soft tissue 81(13.8) 1(12.0) 0.476 19 (12.9) 11(17.2) 0.415
Abdominal cavity 135 (23.0) 0 (23.3) 0.945 31 (21.1) 17 (26.6) 0.383
Microorganisms, n (%)
Escherichia coli 122 (20.8) 31 (12.0) 0.002 32 (21.8) 11 (17.2) 0.448
Klebsiella oxytoca 8(1.4) 6 (2.3 0.314 7 (4.8) 0(0) 0.076
Acinetobacter baumannii 10 (1.7) 4(1.6) 0.870 2(1.4) 2(3.1) 0.388
Enterobacter 28 (4.8) 7(2.7) 0.166 1(0.68) 2(3.1) 0.168
Staphylococcus aureus coag 137 (23.4) 71 (27.5) 0.198 38 (25.9) 14 (21.9) 0.538
Pseudomonas aeruginosa 78 (13.3) 22 (8.5) 0.048 16 (10.9) 10 (15.6) 0.336
Enterococcus sp. 130 (22.2) 45 (17.4) 0.034 43 (29.3) 10 (15.6) 0.036
Streptococcus 1(3.6) 7(2.7) 0.515 7 (4.8) 1(1.5) 0.263
Candlida albicans 0 (3.4) 13 (5.0) 0.262 11 (7.5) 34.7) 0.453
Yeast 178 (30.4) 101 (39.1) 0.013 64 (43.5) 32 (5.0) 0.386
Aspergillus fumigatus 4 (2.4) 6 (2.3) 0.955 0 (0) 1(1.5) 0.129
Positive for methicillin resistant Staphylococcus aureus 41 (7.0) 8(3.1) 0.026 8 (5.4) 4(8.3) 0.816
Staphylococcus coagulase negative 140 (23.9) 51(19.8) 0.187 32 (21.8) 10 (15.6) 0.304
Virus 3(0.51) 3(1.2) 0.300 4(2.7) 0(0) 0.183
Vital signs, median
Heartrate (opm) 109 (94-125) 112 (96-132) 0.008 11194227 117.4 £22.7 0.055
Dysbp (mmHg) 85 (77-94) 77 (64.8-86) <0.001 83.5 (75-94.8) 78 (62-89) 0.009
Diasbp (mmHg) 39 (33-47) 35 (26-41) <0.001 39.5+10.9 36.4 +£13.8 0.047
Resprate (bpm) 28 (24-32) 29 (25-35) 0.021 29 (25-33.5) 29 (26-34) 0.283
Tempc (°C) 37.6 (36.9-38.3) 37.4 (36.7-38.0) 0.002 37.7 (37.0-38.3) 37.3 (36.7-38.2) 0.042
Laboratory parameters
Lactate (mmol/L) 8(1.2-2.7) 2.3(1.6-4.4) <0.001 1.9 (1.3-2.6) 2.3(1.3-4.2) 0.088
PCO, (mmHg) 40 (36-42) 40 (32-45) 0.874 40 (36-44) 40 (35-44) 0.592
PO, (mmHg) 92 (90-95) 91 (83.8-93) <0.001 93 (89.5-95) 89 (80-95) 0.018
PH 7.34 (7.34-7.39) 7.34 (7.28-7.41) 0.142 7.34 (7.32-7.42) 7.34 (7.25-7.40) 0.229
Glucose_min (mg/dL) 101 (85-120) 99 (75-122) 0.053 104.1 £ 30.5 99.0+ 314 0.378
(Continued)
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TABLE 1 | Continued

Primary cohort Validation cohort
Survive group Non-survival group P Survive group Non-survival group P
n =586 n =258 n =147 n =64

Glucose_max (mg/dL) 122 (156-200) 165 (139-205.3) 0.116 147 (124-202.5) 183.5 (147.5-234.5) 0.001
Creatinine (mg/dL) 1(0.8-1.9) 1.5(0.9-2.6) <0.001 1.0(0.7-1.4) 1.4 (0.7-2.5) 0.050
Blood urea nitrogen (mg/dL) 24 (16-41) 33 (20-50.3) <0.001 22 (13-36) 29.0 (18.3-54.8) 0.005
Alanine aminotransferase (IU/L) 24 (14-51.3) 33 (17-84) 0.001 26.5 (15-43.5) 31 (15.8-49.3) 0.608
Aspartate aminotransferase (IU/L) 31.5 (20-64) 49 (25-139) <0.001 31 (18-51) 35 (23.8-70.3) 0.090
Albumin (g/dL) 2.9 (2.5-3.3) 2.8 (2.2-3.0) <0.001 2.9(2.5-3.2) 2.8(2.2-3.3) 0.532
Hemoglobin (g/dL) 9.6 (8.5-10.7) 9.7 (8.6-10.8) 0.728 9.7 (8.6-11.1) 9.6 (8.9-11.3) 0.630
Platelet (K/uL) 182.5 (122-272.3) 171 (110.8-246) 0.082 174.0 (106-246) 181.0 (118-271) 0.269
Potassium (mEg/L) 0(3.6-4.4) 4.1 (3.8-4.6) 0.005 0(3.7-4.2) 3(3.8-4.5) 0.010
Sodium (MEg/L) 139 (136-142) 139 (134-142) 0.027 139 (136-142) 138 (135-141) 0.200
Partial time (s) 14.3 (13.0-16.4) 15.5(13.8-19.6) <0.001 14.1 (13.0-16.3) 14.7 (13.4-18.2) 0.080
Partial hromboplastin time 30.5 (26.9-36.9) 36.7 (30.2-49.6) <0.001 29.7 (26.1-36.3) 33.5 (28.9-40.3) 0.004
INR 1.3 (1.1-1.5) 1.5(1.2-2.0) <0.001 1.3 (1.1-1.5) 1.4 (1.2-1.9) 0.030
White blood cell count (K/uL) 10.7 (7.2-15.3) 11.9(7.9-16.9) 0.061 10.2 (6.6-14.9) 11.8(8.8-15.3) 0.029
Lymphocyte (%) 9.8 (5.4-16.4) 8.0 (5.0-14.0) 0.017 11.2 (6.3-17.6) 10.3 (6.1-16.7) 0.557
Neutrophil (%) 80.1(70.0-87.5) 80.8 (71.2-88) 0.426 80.0 (70.1-87.8) 82.3 (69.8-89.0) 0.445
Monocytes (%) 4.0 (2.5-6.0) 4.0 (2.0-6.4) 0.776 1(2.7-6.0) 3.9(2.5-5.2) 0.393
Eosinophils (%) 0.6 (0.0-2.0) 0.2 (0.0-1.2) 0.001 0.55 (0.08-1.4) 0.3 (0.0-1.4) 0.423
Severe Score

SOFA 6.0 (4.0-8.0) 6.0 (9.0-12.0) <0.001 5.0 (3.0-8.0) 9.5 (6.0-12.8) <0.001
aSOFA 2.0 (2.0-3.0) 2.0 (2.0-3.0) <0.001 2.0 (2.0-3.0) 2.5(2.0-3.0) 0.003
SAPSII 42 (32-51) 56 (45-72) <0.001 41 (32-50) 58 (45-70) <0.001
GCS 14 (11-14) 13 (8-14) <0.001 14 (10-14) 13 (14-8.25) 0.056

SAPSII, patients’ simplified acute physiology score; SOFA, sequential organ failure assessment; gSOFA, quick sequential organ failure assessment; GCS, Glasgow coma

scale; INR: international normalized ratio.

patients with hepatic encephalopathy. Wei et al. (2020) found
that Enterobacteriaceae can improve patients mild cognitive
impairment. Although the study of Li et al. (2018) has proved
that the intestinal flora could affect SAE through the vagus nerve.
Unfortunately, our study found that intestinal infections and
microbes have nothing to do with the prognosis of SAE patients.
It may require further experimental study in the future.

The SAPS II was developed from a European/North American
study. Patients included in that study were from medical and
surgical wards, as well as ICUs, in ten European and two
North American countries. The authors showed that SAPS
I demonstrated a high level of predictivity on the death of
hospitalized patients (Le Gall et al., 1993). Although later studies
have suggested better predictive tools than SAPS II (Norrie,

TABLE 2 | Patients’ Outcome in the primary and validation cohorts.

Primary cohort Validation cohort
Survive group Non-survival group P Survive group Non-survival group P
n =586 n =258 n =147 n =64

Mechanical ventilation, n (%) 206 (35.2) 136 (562.7) <0.001 60 (40.8) 36 (56.3) 0.038
Renal replacement therapy, n (%) 12 (2.0) 31(12.0) <0.001 9(6.1) 5(7.8) 0.650
Organ failure (%)

Respiratory 193 (32. 9) 164 (63.6) <0.001 (3 5) 45 (70.3) <0.001
Cardiovascular 50 (8.5 150 (58.1) <0.001 9 (40.1) 40 (62.5) 0.003
Renal 336 (57. 3) 179 (69.4) <0.001 (53 1) 44 (68.8) 0.034
Hepatic 29 (3.3) 27 (10.5) <0.001 6 (4.1) 7 (10.9) 0.057
Hematologic 124 (21.2) 69 (26.7) <0.001 31 (21.1) 25 (39.1) 0.007
ICU stay time, days 2.8 (1.7-5.6) 3.4 (1.8-8.7) <0.001 3.0 (1.8-6.8) 2.7(1.1-7.2) 0.234

ICU, intensive care unit.
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FIGURE 2 | Texture feature selection using the least absolute shrinkage and
selection operator (LASSO) binary logistic regression model. (A) Each curve in
the figure represents the change trajectory of each independent variable
coefficient. The ordinate is the value of the coefficient, the lower abscissa is
log(r), and the upper abscissa is the number of non-zero coefficients in the
model at this time. (B) 10-fold cross-cross validation fitting and then select the
model, and at the same time have a more accurate estimate of the
performance of the model. For each  value, around the mean value of the
target parameter shown by the red dot, we can get a confidence interval for
the target parameter. The two dashed lines indicate two special . values:c
(cvfitSlambda.min, cvfitflambda.1se). The area under the receiver operating
characteristic (AUC) curve was plotted vs. log(®).

2015), our cohort study showed that the SAPS II score of non-
surviving patients was significantly higher than that of patients
in the survival group, which further supports the accuracy of
SAPS II as an independent predictive factor for hospital mortality
in SAE patients.

Our cohort study demonstrated that the incidence of renal
replacement therapy in the non-survival group was significantly
higher than that in the survival group. After LASSO and
multivariate Cox regression analyses, it was found to be an
independent risk factor for the death of SAE. However, the
use of renal replacement therapy cannot be assumed to be
an independent factor for death. Patients who were given
renal replacement therapy were more likely to be severely ill
with worse kidney function, more serious infection, and a
higher incidence of multiple organ dysfunction, and internal
environmental disorders (Palevsky, 2008; Bagshaw and Wald,
2018; Tandukar and Palevsky, 2018). This, in turn, leads to a
higher mortality rate. Our cohort study also showed that SAE
patients with respiratory failure, worse coagulation function, and
lower albumin levels were more likely to die. The mechanism
of multiple organ dysfunction in patients with SAE is consistent
with sepsis patients, and it may be attributed to the immune
response to sepsis (Nolt et al., 2018); circulatory abnormalities
(De Backer et al., 2013; Finfer et al., 2013), organ ischemia;
hypoxia endothelial permeability increases (Kopterides et al.,

2011; Opal and van der Poll, 2015); cell death (Pinheiro da
Silva and Nizet, 2009); and mitochondrial dysfunction (Yang
et al., 2015; Sun et al., 2019). We should promptly correct the
respiratory failure, give component blood transfusions, correct
coagulation function, supplement albumin, and reduce the
mortality of SAE patients.

Lactate is a vital laboratory indicator that affects the prognosis
of patients with sepsis. It is widely known, the higher the lactate
level, the worse the patient’s prognosis (Suetrong and Walley,
2016; Liu et al., 2019). Serum lactate is also an independent
risk factor for the prognosis of SAE patients in our cohort
study. In patients with septic shock, fluid resuscitation guided
by monitoring the serum lactate is still the most effective
method for reducing the mortality of septic shock (Hernandez
et al., 2019). Serum lactate is used to evaluate disease severity,
guide treatment plan, and predict patient prognosis (Suetrong
and Walley, 2016). Lower serum lactate levels are associated
with reduced patient mortality (Puskarich et al., 2013; Vincent
et al., 2016). Therefore, serum lactate is an important indicator
for evaluating the prognosis of patients with sepsis and SAE.
The results of previous studies further support our conclusion.
Patients with lactate acidosis and hyperlactic acidosis, we should
timely rehydration and other treatments to reduce lactate levels
and improve the survival rate of SAE patients.

There is currently a lack of effective tools for predicting
hospital mortality in SAE patients. By exploring the clinical
indicators for evaluating the prognosis of SAE patients,

TABLE 3 | Multivariate COX analysis of risk factors to hospital mortality.

Multivariate analysis

RR 95.0% CI p-values
Lower Upper

Sex n (%) 1.018 0.857 1.207 0.842

Female

Male
Admission_type (%)

Emergency 1.000

Elective 1.209 0.546 2.676 0.639

Urgent 1.924 0.950 3.897 0.069
Urinary tract Infection (%) 1.022 0.849 1.230 0.817
Anemias (%) 0.363 0.912 1.286 0.363
SAPSII 1.013 1.008 1.018 <0.001
Renal replacement therapy, n (%) 2.282 1.598 3.258 <0.001
Sysbp (mmHg) 0.998 0.992 1.004 0.462
Tempc (°C) 0.776 0.703 0.857 <0.001
SpO2 (MmHg) 0.989 0.980 0.997 0.012
Albumin (g/dL) 1.182 1.040 1.343 0.011
INR 1.140 1.064 1.222 <0.001
Partial time (s) 0.997 0.987 1.008 0.645
lactate (mmol/l) 1.070 1.039 1.108 <0.001
Respiratory failure (%) 1.847 1.540 2.215 <0.001
SAPSII,  patients’ simplified acute physiology score; INR, international

normalized ratio.
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through Lasso and Cox regression analysis, eight potential
predictors, including SAPS II, renal replacement therapy,
albumin, INR, lactate, body temperature, SpO,, respiratory
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FIGURE 4 | Discriminatory accuracy for predicting the incidence of SAE
assessed by receiver operator characteristics (ROC) analysis calculating area
under the curve (AUC). SAPS Il, simplified acute physiology score.

failure were identified and used to establish a comprehensive
visual nomogram for predicting hospital mortality of SAE
patient. The nomogram demonstrated excellent discrimination
(AUC, 0.812; 95%CI: 0.780-0.843) that was better than SAPS II
(AUC, 0.745; 95%CI: 0.708-0.783) in the primary cohort. The
validation cohort is used to verify the calibration function of the
nomogram and has good consistency with the model (Figure 5).
In terms of clinical application, the net benefit of patients
using nomogram is better than that of SAPS II (Figure 6), and
the nomogram shows good performance in predicting hospital
mortality of SAE patients. For the evaluation of nomograms, in
addition to the above-mentioned AUC value and other methods,
some new methods may be needed to evaluate in the future (Zhou
etal., 2019; Liu F. et al., 2020).

Several limitations must be acknowledged. Firstly, our study
is retrospective based on the MIMIC database, which has its
inherent limitations. For instance, our study identified septic
patients using the definition from the ICD-9 diagnostic code,
which may be different from the Sepsis-3 definition. However,
this small discrepancy does not deny the clinical application
value of our study. Although our nomogram has excellent
performance, our data is older and we need new data to verify
in the future. Secondly, we included ICU patients for analysis,
which enhanced the heterogeneity of the study population, and
thus our results may not be suitable for patients outside the
ICU. Third, there are a lot of more widely used methods in
feature selection and classification than Lasso, such as elastic
net, random forest, and deep neural network (Huang et al,
2017; He et al.,, 2020a,b; Liang et al., 2020; Liu C. et al., 2020;
Yang J. et al., 2020). Model development only uses the general
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linear regression method, fusing various biological information  2020) should be further studied in the future. We will apply
by multi-information fusion (Peng et al., 2017), bipartite local  these methods to further improve the performance of our model.
model (Peng et al., 2020b), and the KATZ method (Zhou et al.,  Finally, the Model establishment was only verified internally, and
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further external verification is required in the future to illustrate
its extrapolation.

CONCLUSION

A nomogram was established for predicting hospital mortality
of SAE patients, which was accurate and clinically useful. The
nomogram also performed better than the SAPS II with a
higher net benefit.
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