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The gene encoding a putative phosphatidate phosphatase (PAP) from tolerant saline-alkali 
(TSA) Chlorella, ChPAP, was identified from a yeast cDNA library constructed from TSA 
Chlorella after a NaCl treatment. ChPAP expressed in yeast enhanced its tolerance to 
NaCl and sorbitol. The ChPAP protein from a GFP-tagged construct localized to the 
plasma membrane and the lumen of vacuoles. The relative transcript levels of ChPAP in 
Chlorella cells were strongly induced by NaCl and sorbitol as assessed by northern blot 
analyses. Thus, ChPAP may play important roles in promoting Na-ion movement into the 
cell and maintaining the cytoplasmic ion balance. In addition, ChPAP may catalyze 
diacylglycerol pyrophosphate to phosphatidate in vacuoles.
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INTRODUCTION

Phosphatidate phosphatase (PAP) has the effects of catalyzing the dephosphorylation of phosphatidate 
(PA), and generating diacylglycerol and inorganic phosphate (Smith et  al., 1957). It is also an 
essential enzyme in lipid metabolism, plays important roles in lipid synthesis, and is involved 
in the generation or degradation of lipid signaling molecules (Brindley and Pilquil, 1984; Carman, 
1997; Nanjundan and Possmayer, 2001). The PAP enzymes are divided into Mg2+-dependent 
PAP1 or Mg2+-independent PAP2 [also be called lipid phosphate phosphatase (LPP) or diacylglycerol 
pyrophosphate (DGPP) phosphatase] based on the cofactor requirement for catalytic activity 
(Jamal et  al., 1991; Brindley et  al., 2002). The PAP1 enzymes play roles in cell homeostasis and 
lipid synthesis (Han et  al., 2006; Sherr et  al., 2017; Hassaninasab et  al., 2019), and PAP1 enzyme, 
PAH1, performs catalytic function to regulate phospholipid synthesis on the nuclear and endoplasmic 
reticulum (Eastmond et  al., 2010; Hassaninasab et  al., 2019). The absence of Pahp1 (encoded 
PAH1) leads to the upregulated of V-ATPase (Sherr et  al., 2017). The expression of PAH1 is 
induced in the absence of Zn (Soto-Cardalda et  al., 2012). The PAH1 protein of the fungal 
pathogen Candida albicans restricts viral replication by affecting phospholipid synthesis and plays 
significant roles in hyphal growth and environmental stress regulation (Mu et  al., 2019). In this 
study, the PAP2 enzymes are highlighted. PAP2, encoded by DPP1 and LPP1, is a vacuole 
membrane-associated enzyme that catalyzes DGPP to form PA and then catalyzes PA to form 
diacylglycerol by removing the phosphate (Wu et  al., 1996; Han et  al., 2001). PAP2 enzymes 
contain a three-domain lipid phosphatase catalytic motif containing the conserved sequences 
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KxxxxxxRP (domain 1), PSGH (domain 2), and SRxxxxxHxxxD 
(domain 3). The conserved arginine residue in domain 1 and 
the conserved histidine residues in domains 2 and 3 are essential 
for the catalytic activities of PAP2 enzymes (Hemrika et  al., 
1997; Neuwald, 1997; Stukey and Carman, 1997; Toke et  al., 
1998, 1999a,b; Zhang et  al., 2000; Han et  al., 2004). The PAP2 
enzymes are localized on the hydrophilic surfaces of the membrane 
(Stukey and Carman, 1997; Toke et  al., 1998, 1999a,b; Zhang 
et  al., 2000; Han et  al., 2004), the vacuole (Han et  al., 2001, 
2004), and Golgi (Huh et  al., 2003) and have broad substrate 
specificity levels and may function under stress conditions (Oshiro 
et  al., 2003). In the early studies, PAP2 enzymes are found that 
are responsible for lipid signaling in yeast and mammals (Carman, 
1997; Nanjundan and Possmayer, 2001; Brindley, 2004; Pyne 
et  al., 2005). In plants, Arabidopsis thaliana AtLPP1 appears to 
be  more highly expressed in the leaves and roots compared 
with other tissues, and the expression level of AtLPP1 increased 
in Arabidopsis after ionization and UV-B irradiation (Brindley, 
2004; Pierrugues et al., 2011). In addition, the AtLPP2 appears 
to be  expressed at similar levels in all the plant’s tissues, and 
AtLPP2 is involved with abscisic acid signaling and regulation 
of stomatal movements (Paradis et  al., 2011).

The PAP2 gene has been also identified in microalgae 
(eukaryotic microbes), including Chlorella variabilis (Blanc et al., 
2010), Chlorella protothecoides (Gao et al., 2014), Chlamydomonas 
reinhardtii (Deng et  al., 2013), and Coccomyxa subellipsoidea 
(Blanc et  al., 2010). However, there are limited reports on the 
cloning and functional analyses of PAP2 genes of microalgae. 
Some studies indicated that the expression levels of citrate 
synthase and phosphoenolpyruvate carboxylase 1  in 
Chlamydomonas reinhardtii are decreased, but the PAP2 has 
higher expression in the RNAi transgenic Chlamydomonas 
strains (Deng et  al., 2013, 2014). In our previous study, 
we  determined that tolerant saline-alkali (TSA) Chlorella can 
survive in an environment containing 600-mm NaCl, and the 
TSA Chlorella PAP gene was isolated from a TSA Chlorella 
full-length cDNA yeast library constructed under 1-M NaCl-
stress conditions (Qiao et  al., 2015). Here, we  determined the 
growth rates of transgenic yeast on a solid medium under 
high salinity and drought conditions. The subcellular localization 
of the ChPAP protein in yeast cells was detected using confocal 
microscopy, and the effects of high salinity and drought conditions 
on ChPAP expression were investigated.

MATERIALS AND METHODS

Chlorella Source, Culture, and Gene
The TSA Chlorella was previously isolated from extreme saline-
alkali soil on the Songnen Plain, Heilongjiang Province, China 
(Wang et  al., 2011), which is rich in different salt types, 
including NaCl and NaHCO3, and grown in liquid Bold’s basal 
medium (BBM, Bold and Wynne, 1984). The culture conditions 
were 23°C under a 16-h light/8-h dark photoperiod. The 
illumination intensity was 40-mmol photons m−1  s−1. The TSA 
Chlorella cells were maintained in solid BBM, and the 
sub-culturing and rapid propagation of TSA Chlorella was 

cultured in liquid BBM. A full-length cDNA yeast library of 
TSA Chlorella was constructed (Qiao et  al., 2018). A sequence 
screened from the 1-M NaCl-treated TSA Chlorella library 
had close similarity levels to sequences of other species’ PAP 
genes. Accordingly, it was named ChPAP.

Sequence Analysis
The full-length ChPAP sequence was analyzed using BlastX 
and ORFfinder on the NCBI Web site.1 GeneDoc 3.0 software 
was used to align the sequences of the ChPAP protein and 
other species. The maximum-likelihood-based phylogenetic tree 
was constructed using MEGA 5.1 software. The transmembrane 
domains in the ChPAP sequence were predicted using the 
TMHMM server v. 2.0.2

Plasmid Construction, Yeast 
Transformation, and Stress-Tolerance 
Assays
The ChPAP cDNA fragment harboring the open reading frame 
was amplified from TSA Chlorella using PCR with the ChPAP-
forward (5'-GGATCCATGTTGCACGCGATGGTGG-3'; BamHI 
restriction site) and -reverse (5'-GTCGACTCAAACAGGCACCAT 
GCTGC-3'; KpnI restriction site) primers and Phanta Max Super-
Fidelity DNA Polymerase (Vazyme Biotech Co., Ltd., Nanjing, 
China). For yeast transformation, ChPAP was ligated into the 
pYES2 vector (Invitrogen, United  States) digested with BamHI 
and NotI restriction enzymes to construct the plasmid pYES2-
ChPAP, which was transferred into InVSC1 yeast cells using 
the PEG/LiAC method (Gietz et  al., 1992). First, to test the 
tolerance of transgenic yeast under different stress conditions, 
yeast cells containing, independently, the pYES2-ChPAP and 
empty pYES2 vectors were cultivated in liquid SD-Uracil (pH 
5.8) medium at 30°C for 2 days. The concentration of the 
transgenic yeast cells was adjusted to an OD600 value of 0.5 and 
then diluted to 10−1, 10−2, 10−3, and 10−4 with sterile H2O. A 
total of 4.5 μl of each dilution series was placed into a solid 
yeast (1% yeast extract, 2% peptone, and 2% galactose) medium 
supplemented independently with 0.8-M NaCl, 1.0-M NaCl, and 
1.6-M sorbitol. The empty pYES2 vector in yeast cells was used 
as a control, and the growth of yeast cells at 30°C was observed 
and photographed for 5–10 days.

Subcellular Localization of the ChPAP 
Protein in Yeast
To determine the subcellular localization of ChPAP, the expression 
plasmid pYES2-ChPAP-EGFP was constructed. The ChPAP 
full-length sequence with restriction sites was cloned using 
PCR with EGFP-specific forward GFP-F (5'-GGATCCATGTT 
GCACGCGATGGTGGAC-3') and reverse GFP-R (5'-GGTACC 
CCAACAGGCACCATGCTGCTTGC-3') primers. The PCR 
product was ligated into the pEGFP plasmid (Clontech) digested 
with the BamH1 and KpnI sites. The ChPAP-pEGFP fusion 

1 http://www.ncbi.nlm.nih.gov
2 http://www.cbs.dtu.dk/services/TMHMM/
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fragment was digested at the BamHI and NotI sites in the 
pEGFP plasmid to construct the empty pYES2 vector.

The pYES2-ChPAP-EGFP and pYES2-EGFP plasmids were 
transferred independently into yeast cells. The transgenic yeast 
cells were pre-cultured in liquid medium containing 1% yeast 
extract, 2% peptone, and 2% glucose at 30°C for 2 days. 
Afterward, they were washed three times to remove the remaining 
glucose. The EGFP and ChPAP-EGFP plasmids in yeast cells 
were induced to express in liquid yeast (1% yeast extract, 2% 
peptone, and 2% galactose) medium at 30°C for 6 h, and then, 
ChPAP-EGFP yeast cells were incubated at 30°C with 20-μm 
FM4-64 dye for 3 h. The remaining dye was removed by washing 
three times with sterile H2O before samples were observed. 
The fluorescence was detected using laser-scanning confocal 
imaging system (Olympus Fluoview, FV500). The EGFP and 
FM4-64 signals were excited at 488 nm and 543 nm, respectively.

Expression Analysis of ChPAP
To investigate the ChPAP transcript levels under high salinity 
and drought stresses, the TSA Chlorella samples were grown 
on medium supplemented independently with 200-mm NaCl 
and 300-mm sorbitol. The samples were collected at 0, 3, 6, 
12, 24, and 48 h and then ground with a mortar and pestle 
in liquid nitrogen for RNA isolation.

The total RNA of TSA Chlorella was extracted using RNAiso 
Plus reagent (TaKaRa, Japan). The ChPAP-specific forward 

(5'-ATGGGCCTCAAGGAAGAC-3') and reverse 
(5'-TCAAGCGTACTTCGCCTTCAG-3') primers were used to 
amplify the cDNA probes using a PCR Digoxigenin Probe 
Synthesis kit (Roche, Switzerland). The northern blot analysis 
was performed in accordance with a previously published 
protocol (Qiao et  al., 2018).

RESULTS AND DISCUSSION

Characterization of ChPAP Gene
The ChPAP nucleic acid sequence contained an open reading 
frame of 1,002 nucleotides that translated into 333 amino acids. 
The ChPAP amino acid sequence shared close similarities with 
the previously reported PAP sequences of other species, such 
as 70% similarity with C. variabilis and 53% similarity with 
Micractinium conductrix. A comparison of the ChPAP domains 
with those in PAPs of other species revealed the presence of 
conserved domains 1, 2, and 3 (Figure  1), which contained 
two arginine, one histidine, and two histidine residues, 
respectively. These results were consistent with previously 
reported PAP2 protein structures (Hemrika et al., 1997; Neuwald, 
1997; Stukey and Carman, 1997). The phylogenetic analysis 
showed that ChPAP was closely related to the PAP of C. 
variabilis (XP_005848979.1). The TSA Chlorella firstly clustered 
with unicellular microalgae, and then clustered with microbes, 

FIGURE 1 | Sequence alignment of the phosphatidate phosphatase (PAP) domains from tolerant saline-alkali (TSA) Chlorella ChPAP2 with those of other species. 
The conserved residues, including the KxxxxxxRP (domain 1), PSGH (domain 2), and SRxxxxxHxxxD (domain 3) motif, are indicated by boldface in boxes. The 
ChPAP2 sequence data have been deposited in the GenBank database and assigned accession no. KT750011. The other PAP protein sequences were 
downloaded from GenBank.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Wang et al. Molecular Characterization of Phosphatidate Phosphatase

Frontiers in Microbiology | www.frontiersin.org 4 September 2021 | Volume 12 | Article 738282

FIGURE 2 | The maximum-likelihood (ML) phylogenetic relationships of PAP proteins between TSA Chlorella sp. and those of other species. Bootstrap values were 
calculated 1,000 times, and values below 50% were not included. The TSA Chlorella sp. is indicated by boldface in a box.

animals, and plants (Figure  2). Thus, ChPAP2 is the PAP gene 
of TSA Chlorella.

Overexpression of ChPAP2 in Yeast 
Enhanced Tolerance to NaCl and Sorbitol
The five serial dilutions of transgenic yeast cells were spotted 
into a solid yeast medium. The growth of yeast cells harboring 
the empty pYES2 vector was similar to that of the ChPAP2 
transgenic yeast in medium containing 1% yeast extract, 2% 
peptone, and 2% glucose without any stress. The ChPAP2 
transgenic yeast grew better than the controls in the presence 
of 0.8-M NaCl, 1-M NaCl, or 1.6-M sorbitol (Figure  3). Thus, 
the expression of ChPAP2 in yeast cells improved the tolerance 
to NaCl and sorbitol, which indicated that ChPAP2 functions 
as lipid signaling molecule during abiotic stress (Munnik et  al., 
1996). PAH1 encoded PAP1 was regulated to express under Zn 
deficiency and enhanced the activity of PAP enzyme (Soto-
Cardalda et al., 2012). In addition, Arabidopsis PAP2 was found 
that was involved with ABA signaling and regulating the stomatal 
movements (Paradis et al., 2011). However, there was no relevant 
report on the investigation of PAP2 under abiotic stress.

The Expression of ChPAP2 Was Inducible 
Under NaCl and Sorbitol Stresses
A northern blot analysis was used to detect ChPAP2 expression 
patterns. Total RNA was used to analyze the effects of high 
salinity and drought stresses on ChPAP2 expression. The TSA 
Chlorella cells were exposed independently to NaCl and sorbitol 
for 0, 3, 6, 12, 24, and 48 h. The ChPAP2 mRNA expression 
dramatically increased with the 200-mm NaCl treatment from 
6 to 48 h compared with the control (0 h), indicating that 
ChPAP2 was upregulated (Figure  4A). Thus, in yeast, the 
increased ChPAP2 expression level may increase NaCl resistance. 
The PA and DGPP levels also increase under hyperosmotic 
stress conditions (Munnik et  al., 2000). The presence of NaCl 
in liquid media not only leads to high salinity stress, but also 
to hyperosmotic stress in plants. We  hypothesized that the 
ChPAP2 expression level may be  upregulated, allowing it to 
catalyze the excess DGPP into PA.

In this study, a sorbitol solution was used as the drought 
agent (Bocchini et  al., 2018; Lu et  al., 2019). The ChPAP2 
expression levels did not differ significantly compared with 
those of the control after 3–6 h of exposure to 300-mm sorbitol. 
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The ChPAP2 mRNA level began to rise at 12 h, and the level 
was the most significantly different from that of the control 
at 48 h after treatment (Figure 4B). In Saccharomyces cerevisiae, 
PAP accumulates during exposure to hyperosmotic and 
dehydration stresses (Munnik et al., 2000). Thus, the upregulated 
ChPAP2 expression may enhance drought tolerance.

ChPAP2 Localized at the Plasma 
Membrane and in the Lumen of Vacuoles
The deduced ChPAP2 amino acid sequence was predicted to 
contain six transmembrane domains (Figure 5A). To determine 
its subcellular localization, GFP was fused to the C-terminus 
of ChPAP2 (ChPAP2-GFP). The green fluorescence of the GFP 
protein alone was almost evenly distributed throughout the 
yeast cells (Figures  5B1,2). FM4-64 stained the vacuole 
membrane, and its localization signal was consistent with the 
vacuolar membrane signal (red fluorescence area; Figure 5B4). 
Thus, the ChPAP2 protein appeared to localize on the plasma 
membrane and in the lumen of vacuoles in yeast cells 
(Figures  5B3,5). The results suggested that ChPAP2 might 
play important roles in transporting lipids through the plasma 
membrane and in catalyzing DGPP into PA in the vacuoles.

ChPAP2, as a catalytic enzyme, participates in lipid 
metabolism. ChPAP2 localized on the plasma membrane may 
function in maintaining cell membrane stability and the ion 
balance of the cytoplasm in response to abiotic stresses. The 
ChPAP2 protein also is localized in the lumen of vacuoles, 
where it may be  involved with lipid translocation and DGPP 
catalysis to form PA. Therefore, we  hypothesized that ChPAP2 
participates in catalyzing DGPP in the lumen of vacuoles.

The PAP protein may function as a signaling molecule in planta 
under stress conditions, and its levels accumulate during hyperosmotic 
and dehydration stresses (Munnik et  al., 1996). Therefore, the 
PAP enzyme may play a role in regulating specific cellular DGPP 
and PA pools under stress conditions (Oshiro et  al., 2003).

In summary, the ChPAP in TSA Chlorella was upregulated 
expression in treated with high salinity and drought, and the ChPAP 
in yeasts could tolerate high salinity and drought stresses. Its protein 
was localized at the plasma membrane and in the lumen of vacuoles. 
The ChPAP might translocate excess NaCl and sorbitol from plasma 
membrane and then segregate them into vacuole to regulate ion 
balance in the cytoplasm. As a consequence, the PAP as a novel 
transporter can enhance high salinity tolerance and accumulate 
excess high salinity. These characteristics make ChPAP for the 
bioremediation of saline-alkali soil.

FIGURE 3 | ChPAP2-overexpressing yeast cells exposed to NaCl and sorbitol stresses. Serial dilutions of yeast cells containing the pYES2 empty vector or pYES2-
ChPAP2 were independently spotted into solid yeast (1% yeast extract, 2% peptone, and 2% galactose) medium containing plates supplemented independently 
with 0.8-M NaCl, 1.0-M NaCl, and 1.6-M sorbitol.

A B

FIGURE 4 | The mRNA expression levels of ChPAP2 at various time points after exposure to NaCl- and sorbitol-stress treatments. Northern blot analyses of the 
ChPAP2 gene’s expression levels in TSA Chlorella cells using a digoxigenin-labeled ChPAP2 cDNA probe. The total RNA (5 μg) was extracted from Chlorella cells 
treated independently with 200-mm NaCl (A) and 300-mm sorbitol (B).
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