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Purpose: Choroidal neovascularization (CNV) is the defining feature of neovascular age-
related macular degeneration (NnAMD). Gut microbiota might be deeply involved in the
pathogenesis of NAMD. This study aimed to reveal the roles of the gut microbiome and
fecal metabolome in a mouse model of laser-induced CNV.

Methods: The feces of C57BL/6J mice with or without laser-induced CNV were
collected. Multi-omics analyses, including 16S rBRNA gene sequencing and untargeted
metabolomics, were conducted to analyze the changes in the gut microbial composition
and the fecal metabolomic profiles in CNV mice.

Results: The gut microbiota was significantly altered in CNV mice. The abundance of
Candidatus_Saccharimonas was significantly upregulated in the feces of CNV mice,
while 16 genera, including Prevotellaceae_NK3B31_group, Candidatus_Soleaferrea,
and Truepera, were significantly more abundant in the controls than in the
CNV group. Fecal metabolomics identified 73 altered metabolites (including 52
strongly significantly altered metabolites) in CNV mice compared to control
mice. Correlation analysis indicated significant correlations between the altered
fecal metabolites and gut microbiota genera, such as Lachnospiraceae_UCG-001
and Candidatus_Saccharimonas. Moreover, KEGG analysis revealed six pathways
associated with these altered metabolites, such as the ABC transporter, primary bile
acid biosynthesis and steroid hormone biosynthesis pathways.

Conclusion: The study identified an altered fecal microbiome and metabolome in a
CNV mouse model. The altered microbes, metabolites and the involved pathways might
be associated with the pathogenesis of NAMD.

Keywords: choroidal neovascularization, age-related macular degeneration, gut microbiome, metabolomics,
mouse model
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INTRODUCTION

Age-related macular degeneration (AMD) is one of the main
causes of vision loss and blindness worldwide, and its incidence
has dramatically increased in the population worldwide (Mitchell
etal., 2018). The presence of choroidal neovascularization (CNV)
is the defining feature of wet or neovascular AMD (nAMD),
which is one of the two advanced forms of AMD (Patel and
Sheth, 2021). As a first-line therapy, intravitreal injection of anti-
vascular endothelial growth factor (VEGF) agents is effective
in patients with nAMD because it targets pathological CNV
(Kovach et al., 2012; Ferrara and Adamis, 2016). However,
the limitations of anti-VEGF therapy should not be ignored,
such as the side effects of the injection (Xi, 2020) and the
unsatisfactory duration of the therapeutic effect (Ehlken et al,
2019). In addition, long-term use of anti-VEGF therapy may lead
to serious economic burdens, especially in developing countries
and regions (Ruiz-Moreno et al, 2021). Therefore, thorough
investigation of the mechanisms of nAMD pathogenesis beyond
VEGEF is urgently needed.

As an in vivo model, laser-induced CNV in mice is widely
used to investigate the mechanisms of nAMD (Lambert et al.,
2013). We have previously reported the expression profiles of
mRNA and various types of non-coding RNAs in a CNV mouse
model (Zhang et al., 2019, 2020; Liu et al., 2020) and indicated
the importance of inflammatory cytokines and immune cells in
AMD pathogenesis (Zhou Y. etal., 2017; Zhou Y. D. et al., 2017;
Li and Zhou, 2019; Tan et al., 2020).

Changes in the intestinal microbiota significantly affect barrier
function and metabolic pathways and gradually regulate the host
immune system (Cerf-Bensussan and Gaboriau-Routhiau, 2010),
and loss of gut microbiota diversity affects age-related changes
(O’'Toole and Jeftery, 2015). Recently, numerous studies have
indicated that the gut microbiome is involved in ophthalmic
diseases, such as diabetic retinopathy (DR) (Huang et al., 2021),
Vogt-Koyanagi-Harada disease (Ye et al., 2020), and glaucoma
(Gong et al., 2020).

Zinkernagel et al. (2017) revealed enrichment of the genera
Anaerotruncus and Oscillibacter as well as Ruminococcus torques
and Eubacterium ventriosum in nAMD patients; on the other
hand, Bacteroides eggerthii was enriched in controls compared to
patients. However, an intestinal metagenomic study with a larger
number of included cases demonstrated elevated abundance
of the class Negativicutes in patients with nAMD, while the
genus Oscillibacter and Bacteroides species were more abundant
in healthy controls without AMD (Zysset-Burri et al., 2020).
Therefore, further explorations and verifications in more research
centers are necessary to identify changes in the gut microbiota
in AMD patients.

Overweight and obesity are essential risk factors for AMD
(Zhang et al., 2016). High-fat diets (HFD) enhance pathology by
inducing gut microbiota alteration, and the heightened intestinal
permeability and chronic low-grade inflammation induced by
gut dysbiosis have been found to upregulate the production
of proinflammatory cytokines and VEGF-A and enhance CNV
in a laser-induced mouse model (Andriessen et al., 2016).
Therefore, alteration of the gut microbiome might be a potential

therapeutic target in patients with AMD. Further investigation
of the intestinal microbiome might reveal the mechanisms and
metabolic pathways of AMD pathogenesis, which might also
generate novel therapeutic strategies for AMD.

To clarify the pathogenesis and consequences of nAMD, in
this study, we characterized fecal microbiome and metabolomics
profiles in a mouse model of laser-induced CNV via 16S rRNA
gene sequencing and untargeted metabolomics analysis.

MATERIALS AND METHODS
Animal Model

Seven-week-old male C57BL/6] mice were obtained from Hunan
SJA Laboratory Animal Co., Ltd. (Changsha, China). A model
of CNV in the mice was induced by laser photocoagulation as
described previously (Zhang et al., 2019). Laser photocoagulation
was conducted with a 532-nm diode laser (100 mW, 0.1 s
duration, 50 pm), with 25 spots burned on each eye.

Fecal samples collected 7 days after laser
photocoagulation. For control group, we used age-matched
mice without laser treatment. Samples were collected from 16
mice with laser-induced CNV and 15 controls. The fecal pellets
of each mouse were deposited into a sterile conical tube and
stored at —80°C.

The animal experiments were performed according to the
ARVO Statement for the Use of Animals in Ophthalmic
and Vision Research, and the Institutional Animal Care and
Use Committee of The Second Xiangya Hospital of Central
South University approved all procedures of the experiments
(Approval No. 2021533).

were

DNA and Metabolite Extraction

DNA was isolated from fecal samples by using an E.Z.N.A.® Soil
DNA Kit (Omega Bio-Tek, Inc., Norcross, GA, United States).
Assessment of the DNA extract was performed on an
agarose gel (1%), and the concentration and purity of the
DNA were determined by using a NanoDrop 2000 UV-Vis
spectrophotometer (Thermo Fisher Scientific, Wilmington,
DE, United States).

A 400 L methanol:water (4:1, v/v) solution was used for the
extraction of the fecal metabolites. The mixture was allowed to
settle at —20°C. It was then treated with a Wonbio-96¢ high-
throughput tissue crusher (Shanghai Wanbo Biotechnology Co.,
Ltd., Shanghai, China) at 50 Hz for 6 min, vortexed for 30 s and
ultrasonicated at 40 kHz for 30 min. To precipitate proteins, the
samples were placed at —20°C for 30 min. After centrifugation
(13000 x g, 4°C, 15 min), the supernatant was collected for
LC-MS/MS analysis.

16S rRNA Gene Sequencing Analysis

As previously described (Peng et al., 2018, 2019), the V3-
V4 region of the bacterial 16S rRNA gene was amplified
with the primers 338F (5-ACTCCTACGGGAGGCAGCAG-3')
and 806R (5'-GGACTACHVGGGTWTCTAAT-3') in an ABI
GeneAmp® 9700 PCR thermocycler (ABI, CA, United States).
The purified amplicons were pooled in equimolar amounts and
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subjected to paired-end sequencing on an Illumina MiSeq PE300
platform/NovaSeq PE250 platform (Illumina, San Diego, CA,
United States). To minimize the effects of sequencing depth on
diversity measures, the number of reads from each sample was
rarefied to 5567 (the minimum number of sample sequences).
The Wilcoxon rank-sum test was used for statistical analysis of
16S rRNA gene sequencing analysis. The different enrichment of
specific bacterial taxa was determined by the linear discriminant
analysis (LDA) effect size (LEfSe) algorithm with an LDA score
threshold of 2.0.

Fecal Metabolomics Analysis

A Thermo UHPLC system equipped with an ACQUITY UPLC
HSS T3 (100 mm x 2.1 mm i.d., 1.8 pm; Waters Corporation,
Milford, MA, United States) was used for chromatographic
separation of the metabolites. A Thermo UHPLC-Q Exactive

Mass Spectrometer equipped with an electrospray ionization
(ESI) source operating in either positive or negative ion mode
was used to collect the mass spectrometric data. Data-dependent
acquisition (DDA) mode was used for the data acquisition.
Detection was conducted over the mass range of 70-1050 m/z.

After UPLC-MS analyses, the raw data were imported into
Progenesis QI 2.3 (Non-linear Dynamics, Waters Corporation,
United States) for peak detection and alignment. The mass
spectra of these metabolic features were identified by using the
accurate masses, MS/MS fragment spectra and isotope ratio
differences with searching in the following biochemical databases:
the Human Metabolome Database (HMDB)' and the METLIN
database’.

'www.hmdb.ca
2metlin.scripps.edu
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Multivariate Statistical Analysis

Variables of all metabolites were scaled to unit variances
and then subjected to principal component analysis (PCA) to
obtain a visualized overview of the metabolic data, general
clustering, trends, and outliers. Orthogonal partial least squares
discriminant analysis (OPLS-DA) was used to determine the
global alterations of metabolites between the CNV group and the
control group. Prior to OPLS-DA, all of the metabolite variables
were Pareto-scaled. Variable importance in the projection (VIP)
was calculated from the OPLS-DA model. Paired Student’s
t-test was used in calculating P-values. Statistically significant
differences between CNV group and control group were
determined according to p < 0.05 and VIP > 1.0.

Bioinformatics Analyses
The Majorbio I-Sanger Cloud Platform® was used for the data
analyses and bioinformatics analyses. The pathways associated

3www.i-sanger.c0m

with the altered metabolites were analyzed through metabolic
enrichment and pathway analyses according to a database search
(KEGG)*. Spearman’s correlation analysis was conducted to
assess the significance of microbiota-metabolite correlations with
the threshold values of | #| > 0.50 and p < 0.01.

RESULTS

Diversity of the Gut Microbiota Between
CNV Mice and Controls

To reveal the differences in structural diversity of the gut
microbiota between CNV mice and controls, microbial
a-diversity was assessed using the Chao, Shannon, Simpson, and
Sobs indices. Although no significant difference in a-diversity
was observed by measurement of the Chao, Shannon, and
Simpson indices (Figures 1A-C, p > 0.05), significantly lower

*www.genome.jp/kegg/
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diversity was found in the CNV group than in the control group,
as measured by the Sobs index (Figure 1D, p = 0.03079). For
the P-diversity analysis, principal coordinate analysis (PCoA)
was used after a genus selection-based bacterial taxonomy
analysis was performed, and significant differences were not
observed when the CNV group was compared with the control
group (Figure 1E). However, PLS-DA indicated that the
samples derived from the CNV group significantly differed
from those collected from the control group (Figure 1F), which
demonstrated the different compositions of the gut microbiota
between these two groups.

Change in the Gut Microbiota
Composition in CNV Mice

Taxonomic analysis revealed the differences relative
abundance at the genus level between CNV and control
mice (Figure 2A). Among the genera, norank_f_Muribaculaceae
was the predominant genus in both the CNV group (62.7%)
and the control group (57.2%). By the LEfSe algorithm, we
identified 17 genera as key discriminants (Figures 2B,C).
Candidatus_Saccharimonas was significantly overrepresented
in the feces of CNV mice, while 16 genera, including

in

Prevotellaceae_NK3B31_group, — Candidatus_Soleaferrea, and
Truepera, were significantly more abundant in the control group
than in the CNV group. These results demonstrate the different
fecal microbiota compositions between these two groups.

Altered Fecal Metabolomic Profiles of
CNV Mice

The fecal samples above were also used for identification of
metabolites that are altered in CNV by metabolomics. The QC
samples clustered closely in both positive and negative ion modes
in the PCA (Figures 3A,B). OPLS-DA score plots revealed
remarkable separation of these two groups under both modes
(Figures 3C,D).

Metabolites with p < 0.05 and VIP > 1 were considered
to be significantly altered (Supplementary Table 1), and those
with p < 0.05 and VIP > 1.5 were considered to be strongly
significantly altered (Supplementary Table 2). In total, 73
significantly altered metabolites (24 in positive ion mode and
49 in negative jon mode) and 52 strongly significantly altered
metabolites (21 in positive ion mode and 31 in negative ion
mode) were identified between the CNV and control groups.
To visualize these 52 strongly significantly altered metabolites,
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we constructed a heat map (Figure 4). Overall, 27 metabolites
were significantly increased in CNV mice, while 25 metabolites
were significantly decreased in CNV mice. Among them, 25
metabolites belonged to the superclass of lipids and lipid-like
molecules, which accounted for the largest proportion of the
strongly significantly altered metabolites.

Correlations of the Fecal Metabolome
and Gut Microbiota

To explore the functional correlations between the alterations
of the gut microbiome and the fecal metabolome, Spearman’s
correlation coefficient analysis was conducted between the 17
discriminatory genera and 52 strongly significantly altered
metabolites (p < 0.05 and VIP > 1.5). A total of 24 significant
correlations were recognized (Figure 5). In particular, both
Lachnospiraceae_UCG-001 and Candidatus_Saccharimonas were
significantly associated with five fecal metabolites. Moreover,
norank_f__NS9_marine_group, Prevotellaceae_NK3B31_group,
and Eubacterium_nodatum_group were significantly associated
with 4, 3, and 3 metabolites, respectively. The correlations
indicated that CNV mice demonstrated significant alterations in
their gut microbiomes that may have led to significant changes in
their metabolomic profiles.

Pathways Associated With the Altered
Fecal Metabolites According to KEGG
Analysis

To identify the pathways associated with these metabolites,
KEGG pathway enrichment analyses were performed for the 73

significantly altered metabolites. Several essential pathways
were detected (p < 0.05), as follows: the ATP-binding

cassette (ABC) transporter pathway; primary bile acid
biosynthesis; steroid hormone biosynthesis; hepatocellular
carcinoma; caffeine metabolism; and cutin, suberine, and wax
biosynthesis (Figure 6).

DISCUSSION

In this study, we characterized the gut microbiome and fecal
metabolome in mice with laser-induced CNV, a widely used
model of nAMD. The results indicated that the composition
of the gut microbiota and the levels of fecal metabolites
were significantly altered in CNV mice compared to the age-
matched controls.

Linear  discriminant analysis effect size revealed
Candidatus_Saccharimonas as the only dominant genus in
the CNV group, while we found 16 genera that were more
abundant in the control group than in the CNV group
(Figure 2). The bacterial genus Candidatus_Saccharimonas,
which belongs to the phylum Patescibacteria (Lemos et al.,
2019), was upregulated in CNV mice compared with control
mice. Chen et al. (2021) revealed that the probiotic LPPS23
enriches Candidatus_Saccharimonas in aged mice. Green tea
leaf powder improves lipid metabolism in HFD-fed mice,
and gut microbiota reprogramming might be involved in
the mechanism. Green tea leaf powder reduces systemic
inflammation and the abundance of Candidatus_Saccharimonas
in HFD-fed mice (Wang et al, 2020). Another study has
demonstrated that egg white peptides significantly increase
the relative abundance of Candidatus_Saccharimonas
and inhibit the production of proinflammatory cytokines
(Ge et al, 2021). Sang et al. (2020) reported that the
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mushroom Bulgaria inquinans reduces the diversity of
the gut microbiota and downregulates the abundance of
Candidatus_Saccharimonas and that Candidatus_Saccharimonas
is positively correlated with several cytokines (IL-2, IL-
4, IL-10, and IFN-y). Therefore, despite some unclear
mechanisms, Candidatus_Saccharimonas might be associated
with inflammation and the host immunological response.
As previously described, inflammation plays an essential
role in the pathogenesis of AMD (Tan et al, 2020), and
it is worth further clarifying the roles and mechanisms of

Candidatus_Saccharimonas in inflammation associated with
AMD pathogenesis in future studies.

In addition, we identified 73 metabolites that were altered
in CNV mice compared to controls and found that 52 of them
had strong significant alteration. KEGG analysis revealed six
pathways associated with these altered metabolites, such as the
ABC transporter pathway. ABC transporter Al (ABCAI), a
gene involved in high-density lipoprotein (HDL) metabolism,
mediates the lipid efflux pathway and has functional effects in
RPE cells, and it might also contribute to the development and
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FIGURE 6 | KEGG pathway analysis reveals the pathways associated with the altered fecal metabolites. Colors represent the sizes of the p-values. *p < 0.05,

“p < 0.01.

progression of AMD (Storti et al., 2017). Storti and Grimm
(2019) reported the essential role of the ABCA1/G1 pathway
and the mechanism of active cholesterol efflux in the RPE,
rods, and retinal inflammatory cells. Interestingly, in a study
we have previously reported, the pathway of ABC transporters
was also found to be associated with plasma metabolites that
are altered in retinopathy of prematurity, which is another kind
of ocular neovascular disease that occurs in premature infants
(Zhou et al., 2020). Therefore, the association of mechanisms of
ABC transporters with the gut microbiota in AMD needs to be
further studied.

Significant  correlations observed between the
altered fecal metabolites and gut microbiota genera such as
Lachnospiraceae_UCG-001 and Candidatus_Saccharimonas.
Lachnospiraceae UCG-001 produces short-chain fatty acids,
and compositional alterations of gut microbiotas including
this genera have been found to be associated with inhibition
of colon inflammation and tumorigenesis (Guo and Li,
2019). The abundance of Lachnospiraceae_ UCG_001 is
lower in rats with ischemic stroke than in sham rats (Wu
et al., 2021). Additionally, opposite to the alteration in the
abundance of Candidatus_Saccharimonas, the abundance of
Lachnospiraceae_UCG-001 is suppressed by the probiotic
LPPS23 in aged mice (Chen et al, 2021). These findings
indicate that the genera Lachnospiraceae_UCG-001 and
Candidatus_Saccharimonas together with their associated altered
fecal metabolites might be involved in the pathogenesis of
nAMD, which is worth further exploration.

Recent studies demonstrated the alterations and possible
application prospects of the gut microbiome in patients with
other ocular neovascular diseases, such as DR (Das et al., 2021;

were

Huang et al., 2021) and retinopathy of prematurity (Skondra
et al, 2020). Das et al. (2021) recognized a reduction in
anti-inflammatory, probiotic and other bacteria that could be
pathogenic in the microbiomes of patients with both diabetes
mellitus and DR, compared to the healthy controls, and the
changes observed in DR patients were more pronounced. Huang
et al. (2021) indicated the potential use of gut microbiota as a
biomarker of DR, which could be helpful for diagnosis in clinical
applications. Moreover, it has been suggested that the effect of
antihyperglycemic drugs might be involved in the connection
between the gut microbiota and DR, and targeting the gut
microbiome could be novel therapeutic strategies in treating DR
(Rowan and Taylor, 2018).

There were some limitations of our present study. First, the
laser-induced CNV model in mice cannot completely recapitulate
the characteristics of clinical samples of nAMD patients; thus,
larger cohorts of patients should be investigated in future studies.
Second, this study included only one time point (day 7 after
laser photocoagulation), which is a representative time point for
CNV. However, it is still necessary to assess alterations of the gut
microbiota and metabolomics at multiple time points, especially
during the period of subretinal fibrosis, which is 3-4 weeks
after laser photocoagulation. Third, the roles and regulatory
functions of the altered gut microbes and fecal metabolites
remain to be further studied. Fecal microbiota transplantation is
a novel therapy to restore the gut microbiota and cure diseases,
and the investigation of this field is rapidly emerging in many
diseases (Vindigni and Surawicz, 2017). Andriessen et al. (2016)
confirmed that fecal microbiota transplantation regulates
pathological angiogenesis in obesity-driven CNV in vivo.
Therefore, this method could be used in future studies to
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investigate the functions and mechanisms of gut microbes and
fecal metabolites in CNV and nAMD.

In conclusion, we demonstrated significant alterations of the
gut microbiome and fecal metabolome in CNV mice. Some
altered gut microbe genera, such as Lachnospiraceae_UCG-001
and Candidatus_Saccharimonas, were strongly correlated with
altered fecal metabolites. Our results demonstrated concurrent
alterations of the gut microbiota and fecal metabolites during
the pathological process of CNV. Further studies are needed to
reveal whether these altered microbiota and metabolites as well
as their associated pathways play modulatory roles in CNV and
nAMD pathogenesis, which might be helpful in developing novel
therapeutic strategies of nAMD.
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