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Mitochondrial antiviral signaling protein (MAVS) functions as a “switch” in the immune 
signal transduction against most RNA viruses. Upon viral infection, MAVS forms prion-like 
aggregates by receiving the cytosolic RNA sensor retinoic acid-inducible gene I-activated 
signaling and further activates/switches on the type I  interferon signaling. While under 
resting state, MAVS is prevented from spontaneously aggregating to switch off the signal 
transduction and maintain immune homeostasis. Due to the dual role in antiviral signal 
transduction and immune homeostasis, MAVS has emerged as the central regulation 
target by both viruses and hosts. Recently, researchers show increasing interest in viral 
evasion strategies and immune homeostasis regulations targeting MAVS, especially 
focusing on the post-translational modifications of MAVS, such as ubiquitination and 
phosphorylation. This review summarizes the regulations of MAVS in antiviral innate 
immune signaling transduction and immune homeostasis maintenance.

Keywords: antiviral signal transduction, immune homeostasis, mitochondrial antiviral signaling protein,  
post-translational modification, viral evasion

INTRODUCTION

The battle between humans and viruses is never ending. In recent years, new emerging viruses, 
such as SARS-CoV-2 (also referred to as 2019-nCoV), pose a tremendous threat to public 
health. Our bodies developed different immune systems to defend ourselves against viral 
infection. Innate immunity is the body’s first line of defense against foreign pathogens. It 
consists of tissue barriers (skin and mucous membranes), phagocytes (macrophages and 
neutrophils), dendritic cells (DC), and killer cells (Thompson and Locarnini, 2007). Innate 
immunity produces interferons (IFNs) and pro-inflammatory factors to inhibit and eliminate 
the invading pathogens and maintain the hots immune homeostasis. Meanwhile, IFNs have 
immunomodulatory effects and can activate acquired immunity through antigen presentation. 
In addition, innate immunity also plays a key role in inhibiting tumor growth and metastasis.
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THE STRUCTURE AND FUNCTION OF 
RLRS AND MAVS

The activation of the innate immune system requires pattern 
recognition receptors (PRRs) to recognize pathogen-associated 
molecular patterns (Kawai and Akira, 2010; Broz and Monack, 
2013; Cao, 2016). retinoic acid-inducible gene I  (RIG-I)-like 
receptors (RLRs) are the main PRRs in the cytoplasm that 
sense and respond to viral RNA (Hiscott et al., 2010), including 
RIG-I, melanoma differentiation-associated gene 5 (MDA5), 
and laboratory of genetics and physiology 2 (LGP2; Yoneyama 
et  al., 2004; Katze et  al., 2008), which all belong to the family 
of RNA helicases containing DExD/H characteristic domains. 
RIG-I and MDA5 contain three identical basic domains. The 
N-terminal caspase-recruitment domains (CARDs) are 
responsible for transducing signals to downstream protein 
factors and then activate nuclear factor κB (NF-κB) and INF 
regulatory factor 3/7 (IRF3/7)-related signaling pathways. A 
central DExD/H-box helicase domain and a C-terminal domain 
(CTD) can bind to the 5′ppp-RNA tail of viral RNA (Yoneyama 
et  al., 2004; Hornung et  al., 2006). RIG-I recognizes short-
stranded viral RNA, while MDA5 recognizes long-stranded 
viral DNA with the help of LGP2. RLRs play critical roles in 
the antiviral innate immunity system via the induction of type I  
INF and its downstream INF-stimulated genes.

Mitochondrial antiviral signaling protein (MAVS; also known 
as IPS-1/VISA/Cardif) functions as a platform for antiviral 
innate immune signal transduction (Kawai et al., 2005; Meylan 
et  al., 2005; Seth et  al., 2005; Xu et  al., 2005). MAVS consists 
of 540 amino acids. The N-terminal CARD can interact with 
the CARD of RIG-I/MDA5. The C-terminal is the transmembrane 
domain (TM) which locates MAVS on the outer mitochondrial 
membrane. Moreover, a proline-rich region contains three active 
motif binds to the downstream E3 ubiquitin ligase TRAFs 
(Seth et  al., 2005). Upon viral infection, MAVS forms prion-
like aggregates by receiving the signal from the cytosolic RNA 
sensor RIG-I and subsequently activates downstream NF-κB 
and IRF3/7-related signal pathways, switching on the type 
I IFN signaling to produce type I IFNs (e.g., IFN-α and IFN-β) 
and other cytokines (e.g., TNF-α and interleukins) through a 
series of cascade reactions (Castanier et  al., 2012; Liu et  al., 
2017a). Figure  1 shows the framework of this review.

The current research and exploration on the regulation 
mechanism of MAVS mainly focus on four aspects. The first 
is the regulation of the molecular activity of MAVS by protein 
interactions. For example, LGP2 interacts with the TM domain 
of MAVS to prevent MAVS from recruiting E3 ligase TRAF3. 
The second is the regulation of mitochondrial polymorphism 
on the molecular activity of MAVS. Studies have shown that 
factors affecting the physical state of mitochondria, such as 
mitochondrial fusion, changes in membrane potential, and the 
level of reactive oxygen species (ROS), also alter the formation 
of MAVS aggregates (de Brito and Scorrano, 2008; Onoguchi 
et  al., 2010; Zhao et  al., 2012). Thirdly, post-translational 
modification (PTM) on MAVS molecular activity has become 
a pivotal host antiviral innate immune signaling regulation. 
Lastly, cells have evolved many automated mechanisms to 

maintain immune homeostasis to balance the activation and 
suppression of the innate immune response.

PTMS CONTROL OF MAVS

Brief Conception of PTMs
Post-translational modifications of proteins can dynamically 
regulate the partitioning, transport, and physical interaction 
of pivotal molecules in the immune process (Diskin et  al., 
2021). It is emerging as a key mechanism by which intracellular 
metabolites can modulate immunity (Deribe et  al., 2010; Liu 
et  al., 2016). The precursor protein is generally inactive and 
often requires a series of post-translational processing to become 
a functional mature protein. The stability and activity of the 
protein are regulated by covalently binding with new functional 
groups, such as phosphate, methyl, and acetate. It has been 
demonstrated that traditional aluminum electrolytic 
phosphorylation and ubiquitination and non-traditional 
modifications, such as carbonylation and hydroxylation (Yang 
et  al., 2017; Boeynaems and Gitler, 2018; Strowitzki et  al., 
2019), can target inflammatory responses related to PRRs 
through natural immune signaling pathways. These reversible 
modifications are catalyzed by specific enzymes. PTMs of MAVS 
are listed in Table  1, with the bested-studied phosphorylation 
and ubiquitination illustrated in Figure  2.

MAVS Regulation by Ubiquitination
Ubiquitination is a common PTM in the RLR signaling pathway. 
E3 ubiquitin ligase TRIM31-mediated K63-linked ubiquitination 
plays a positive role in the antiviral immune pathway. Upon 
viral infection, TRIM31 is recruited to MAVS and catalyze 
the K63-linked polyubiquitination at K10, K311, and K461, 
leading to the higher efficient formation of MAVS prion-like 
aggregates (Liu et  al., 2017a). The O-GlcNAcylation of MAVS 
on S366 mediated by OGT promotes TRIM31-mediated 
ubiquitination, thereby facilitating the activation of IRF3 and 
the production of IFN-β. This discovery clarifies the important 
role of the glucose metabolism pathway in antiviral immunity 
(Li et  al., 2018; Song et  al., 2019). Conversely, scaffold protein 
FAF1 negatively regulates the antiviral signal by competing 
with the TRIM31-mediated K63-linked polyubiquitination and 
diminishing the prion-like aggregation of MAVS. After viral 
infection, IKKε mediates FAF1 phosphorylation and, following 
acetylation, degradation and consequent enhancement of the 
MAVS antiviral signaling (Dai et  al., 2018). As an acetylation-
dependent deubiquitinase, OTUD3 can restrict IFN signaling 
by directly hydrolyzing the K63-linked poly-ubiquitinated MAVS 
at K129 residue (Zhang et  al., 2020c).

Several lines of evidence suggest that K48-linked ubiquitination 
catalyzed by different E3 ligases is also critical in antiviral 
innate immunity (Zhong et  al., 2010; Du et  al., 2015; Yoo 
et  al., 2015; Liuyu et  al., 2018; Park et  al., 2020). Compared 
with the K63-linked ubiquitination that positively regulates 
MAVS aggregation, TRIM25-mediated K48-linked ubiquitination 
negatively regulates the RLR signaling pathway through MAVS 
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degradation by the proteasome (Castanier et al., 2012). However, 
this phenomenon can be  competitively suppressed by CypA 
(Liu et al., 2017b). It has been reported that nucleotide-binding 
oligomerization domain-like receptor X1 (NLRX1) inhibits the 
production of IFN (Qin et  al., 2017), and poly(rC) binding 
protein 2 (PCBP2) recruits the E3 ligase AIP4 (also known 
as ITCH) containing the HECT domain to assist NLRX1 
initiating MAVS ubiquitination and degradation (You et  al., 
2009; Xia et  al., 2015). Further research shows that PCBP1 
and PCBP2 degrade MAVS with the same mechanism. The 
difference is that PCBP1 is stably expressed both in viral and 
resting states, while the basic expression of PCBP2 overlaps, 
but it is rapidly induced after the virus infection (Zhou et  al., 
2012). At the same time, TAX1BP1 has also been reported to 
have a similar effect to PCBP1 and PCBP2 (Choi et  al., 2017). 
Smurf1 and Smurf2 are recruited by Ndfp1, a member of the 
NEDD4 family, and also mediate the K48-linked ubiquitination 
and degradation of MAVS (Wang et al., 2012; Pan et al., 2014), 
whereas OTUD1 inhibits RLR signaling by removing the 
Smurf1-mediated ubiquitination (Heise et al., 2018). Membrane-
associated RING-cysteine-histidine (MARCH) proteins also can 
directly or indirectly regulate the ubiquitination of MAVS 
(Zheng, 2021). MARCH5 mediates K48-linked ubiquitination 

and induces the proteasomal degradation of MAVS by transferring 
the ubiquitin to K7 and K500 of MAVS (Yoo et  al., 2015).

Besides K63-linked and K48-linked ubiquitination, TRIM21 
can catalyze the K27-linked ubiquitination to promote the 
recruitment of TBK1 through the interaction with MAVS, positively 
regulating the antiviral signaling (Xue et al., 2018). After viral 
infection, E3 ubiquitin ligase MARCH8 is recruited by antiviral 
factor Tetherin (BST2/CD317) and mediates K27-linked 
ubiquitination of MAVS at K7. NDP52 induces proteasomal 
degradation after recognizing the K27-linked ubiquitination signal 
(Jin et al., 2017), and NDP52 can also trigger CALCOCO2-directed 
autophagic degradation (Jin and Cui, 2018). NDP52 is the bridge 
that connects the ubiquitinated protein and the autophagy-mediated 
component. Another study has reported that NDP52 recognizes 
the K63-to-K27 linked ubiquitination transition signal mediated 
by RNF34 on the K311 of MAVS, efficiently promoting the 
autophagy degradation of MAVS aggregates (He et  al., 2019).

MAVS Regulation by Phosphorylation
Phosphorylation and dephosphorylation have been reported to 
play a critical role in antiviral innate immunity. c-Abl positively 
regulates RLR signaling by phosphorylating MAVS at Y9, Y30, 
and Y71 (Cheng et  al., 2016). After phosphorylation by the 

FIGURE 1 | The mechanism mediated by mitochondrial antiviral signaling protein (MAVS) during viral infection and homeostasis. After recognizing viral RNA, the 
caspase-recruitment domain (CARD) of retinoic acid-inducible gene I interacts with the N-terminal CARD domain of MAVS and subsequently activates downstream 
antiviral signals. In the resting state, MAVS protein maintains immune homeostasis through self-inhibition and the ubiquitin-proteasome system.
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TABLE 1 | The PTMs of MAVS.

Regulator PTMs Site Function

TRIM31 K63-linked Ubiquitination K10/K311/K461 Promotes the aggregation to positively 
regulate antiviral immunity (Liu et al., 
2017a)

OGT O-linked β-N-acetylglucosamine S366 Positively regulates signaling by 
promoting the TRIM31-mediated K63-
linked ubiquitination (Li et al., 2018; 
Song et al., 2019)

FAF1 K63-linked Ubiquitination NA Negatively regulates the antiviral 
signaling by competing with the 
TRIM31-mediated K63-linked 
polyubiquitination (Dai et al., 2018)

OTUD3 K63-linked Ubiquitination K129 OTUD3 directly hydrolyzes the K63-
linked poly-ubiquitinated MAVS (Zhang 
et al., 2020c)

RNF125 K48-linked ubiquitination NA Interacts with MAVS and initiates 
proteasomal degradation (Arimoto et al., 
2007)

RNF5 K48-linked ubiquitination K362/K461 Interacts with MAVS and initiates 
proteasomal degradation (Zhong et al., 
2010)

OTUD4 K48-linked ubiquitination NA OTUD4 regulates the stability of MAVS 
(Liuyu et al., 2018)

MARCH5 K48-linked ubiquitination K7K500 Interacts with MAVS and initiates 
proteasomal degradation (Yoo et al., 
2015; Park et al., 2020)

pVHL K48-linked ubiquitination K420 Tumor suppressor pVHL targets Lys420 
residue of MAVS and initiates 
proteasomal degradation (Du et al., 
2015)

TRIM25 K48-linked Ubiquitination K7/K10 Interacts with MAVS and initiates 
proteasomal degradation (Castanier 
et al., 2012)

CypA K48-linked Ubiquitination NA Negatively regulates the antiviral 
signaling by competing with the 
TRIM25-mediated K48-linked 
polyubiquitination (Liu et al., 2017b)

AIP4 K48-linked Ubiquitination K371/K420 Initiates proteasomal degradation of 
MAVS (You et al., 2009)

NLRX1 K48-linked Ubiquitination NA Recruits PCBP2 to mediate proteasomal 
degradation (Qin et al., 2017)

PCBP2 K48-linked Ubiquitination NA Recruits AIP4 to degrade MAVS (Xia 
et al., 2015)

PCBP1 K48-linked Ubiquitination NA PCBP1 and PCBP2 degrade MAVS with 
the same mechanism, PCBP1 is stably 
expressed in both viral and resting 
states, while the basic expression of 
PCBP2 overlaps, but it is rapidly induced 
after the virus infection (Zhou et al., 
2012)

TAX1BP1 K48-linked Ubiquitination NA TAX1BP1 has a similar effect to PCBP1/
PCBP2 (Choi et al., 2017)

Ndfp1 K48-linked Ubiquitination NA Recruits Smurf1 and Smurf2 to initiate 
proteasomal degradation of MAVS 
(Wang et al., 2012)

Smurf1/ Smurf2 K48-linked Ubiquitination NA Initiates proteasomal degradation of 
MAVS (Wang et al., 2012; Pan et al., 
2014)

OTUD1 Removal of Smurf1 ubiquitination NA OTUD1 removes the ubiquitination of 
Smurf1 to promote the K48-linked 
ubiquitination of MAVS (Heise et al., 
2018)

TRIM21 K27-linked Ubiquitination K325 TRIM21 catalyzes the K27-linked 
ubiquitination to promote the recruitment 
of TBK1

(Continued)
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kinases TBK1 and IKKs at residue S442, pMAVS binds to IRF3, 
thereby recruiting IRF3, which is phosphorylated and activated 
by TBK1 to activate antiviral response (Liu et  al., 2015). Xia 
et  al. have identified NAC1, a BTB/POZ family member, as a 
bridge between MAVS and TBK1 (Xia et  al., 2019). Conversely, 
dephosphorylation functions as a switch to turn off antiviral 
signaling. PPM1A (also known as PP2Cα), a phosphatase, directly 
dephosphorylates the phosphorylated MAVS induced by TBK1 
and subsequently silences the cytoplasmic RNA sensor signal. 
Similar to PPM1A, PPM1G also dephosphorylates MAVS (Xiang 
et al., 2016). A Nemo-like kinase is reported to phosphorylate 
and induce MAVS degradation by associating with MAVS at 
451 to 500 of the C-terminal region (Li et  al., 2019a). Polo-like 
kinase PLK1 phosphorylates the central T234 residue of MAVS, 
while polo-box domain of the PLK1 phospho-independently 
associates the C terminus of MAVS to destroy the combination 
of MAVS and downstream partners like TRAF3 (Vitour et al., 2009).

Protein succinylation caused by succinyl-CoA is a newly 
discovered novel PTM (Yang and Gibson, 2019). Research 
shows that MAVS is succinylated under viral stimulation. Sirtuin 
5 desuccinylates MAVS at K7 to diminish and antagonize the 
MAVS aggregation and antiviral response (Liu et  al., 2020). 
Although the phosphorylation and ubiquitination of MAVS 
have been extensively studied, further investigations are still 
needed to discover new regulators and mechanisms.

VIRUS IMMUNE EVASION AGAINST 
RIG-I-MAVS

The global outbreak of COVID-19 raised the scientific interest 
in how the virus escapes the host rigorous immune system 

to survive and duplicate. A study found that the Borna disease 
virus (BDV) genome trimming turns triphosphate end into 
monophosphate, effectively preventing recognition by RIG-I 
(Schneider et  al., 2007). Compelling evidence shows that the 
virus has evolved various mechanisms to antagonize the innate 
immune response (Figure 3). The virus immune evasion methods 
in the RIG-I-MAVS signaling pathway can be  roughly divided 
into two categories.

Viral protein directly cleaves or degrades MAVS to avoid 
the activation of immune signal transduction. Hepatitis C virus 
(HCV) and GB virus B serine protease NS3/4A can dislodge 
the N-terminal fragment of MAVS from the mitochondria and 
endogenous cleavage of MAVS at Cys508 (Chen et  al., 2007; 
Xu et  al., 2020). Encephalomyocarditis virus (EMCV) lead 
protease (Lpro) cleaves the RLR signaling proteins MAVS and 
TBK1 (Jackson et al., 2020). Coxsackievirus B3 and Rhinovirus 
C cleaves MAVS at Gln-148 occurred within its proline-rich 
region (Pang et  al., 2017). Enterovirus 71 proteinase 2Apro 
cleaves MAVS at Gly209, Gly251, and Gly265, between the 
proline-rich and transmembrane domains (Coyne et  al., 2013). 
2Apro has the same function as 3Cpro (Feng et  al., 2014). The 
difference is that 2Apro cleaves MDA5 and MAVS, while 3Cpro 
cleaves RIG-I and MAVS. The cleavage site of viral protease 
is different depending on the species. HAV 3ABC protease 
derived from bats cleaves MAVS at Glu463/Gly464, while the 
protease from human cleaves MAVS at Gln427/Val428 (Feng 
et  al., 2019). Besides direct cleavage, some viruses, such as 
ZIKV and HCV, can mediate MAVS degradation through 
ubiquitin-proteasome systems (Wei et al., 2010; Li et al., 2019b). 
Viral factor pU26 of human herpesvirus 6B can affect the 
mitochondrial membrane potential and target MAVS for 
degradation. The rotaviruses (RVs) RNA methyl- and guanylyl 

TABLE 1 | Continued

Regulator PTMs Site Function

MARCH8 K27-linked Ubiquitination K7 Induces MAVS lysosomal autophagy 
with the help of NDP52 (Jin et al., 2017; 
Jin and Cui, 2018)

RNF34 K27-linked Ubiquitination K311 Promotes the autophagy degradation of 
MAVS aggregates (He et al., 2019)

c-Abl Phosphorylation Y9/Y30/Y71 c-Abl positively regulates RLR signaling 
by phosphorylating MAVS (Cheng et al., 
2016)

TBK1 and IKKβ Phosphorylation S442 TBK1 and IKKbβ directly phosphorylate 
MAVS and recruit IRF3 for its 
phosphorylation by TBK1 (Liu et al., 
2015)

NAC1 Phosphorylation NA NAC1 takes bridge effect between 
MAVS and TBK1 (Xia et al., 2019)

Nemo-like kinase (NLK) Phosphorylation S121/S212/S258/S329 NLKs phosphorylate and degrade MAVS 
by associating with MAVS (Li et al., 
2019a)

PPM1A(PPMCα)/PPM1G Dephosphorylation NA PPM1A directly dephosphorylates the 
phosphorylated MAVS induced by TBK1

PLK1 Phosphorylation T234 PLK1 phosphorylates the central T234 
residue of MAVS (Vitour et al., 2009)

Sirtuin 5 (SIRT5) Succinylation K7 SIRT5 desuccinylate MAVS at K7 to 
diminish MAVS aggregation (Liu et al., 
2020)
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FIGURE 2 | Brief conception of ubiquitination and phosphorylation in MAVS regulation. MAVS contains three key motifs and locates on the outer membrane of 
mitochondria. Ubiquitination and phosphorylation are the most common types of post-translational modifications (PTMs) which regulate MAVS in the innate immune 
signaling pathway.

FIGURE 3 | Viral immune evasion mechanism against MAVS. Viruses have evolved multiple immune evasion mechanisms targeting and sequestering MAVS from 
the signaling pathway directly.
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transferase (VP3) proteasomal degrade MAVS by the 
phosphorylation of SPLTSS motif (Ding et  al., 2018b). In 
addition to VP3 of RVs, VP2 of EMCV and the Golgi protein 
73 of HCV can interact with MAVS to induce proteasomal 
degradation (Zhang et  al., 2017; Han et  al., 2021). PB1-F2 
protein of avian influenza A (H7N9) viruses inhibits MAVS 
aggregation, resulting in the accumulation and degradation of 
unaggregated MAVS on the mitochondrial membrane (Cheung 
et  al., 2020).

Another “smart” strategy for viral evasion is to sequester 
MAVS and thus block the antiviral signal transduction through 
the RIG-I-MAVS pathway. Many non-structural proteins of 
the virus, such as NS1 and NS2 of respiratory syncytial virus 
(Ling et  al., 2009), NS4A of dengue virus (He et  al., 2016), 
a non-structural protein of unknown function from Andes 
orthohantavirus (Vera-Otarola et  al., 2020), and NS1, NS2B/3, 
NS4A, NS4B, and NS5, have been shown to block the MAVS 
signaling transduction platform to inhibit INF production (Wu 
et  al., 2017; Ma et  al., 2018; Ding et  al., 2018a; Hu et  al., 
2019; Lundberg et  al., 2019; Schilling et  al., 2020). The ORF33 
of Kaposi’s sarcoma-associated herpesvirus binds to the TM 
domain of MAVS through the dephosphatase PPM1G, not 
only inhibiting the phosphorylation of MAVS but also 
dephosphorylating MAVS to prevent IRF3 recruitment (Yu et 
al., 2020). Human cytomegalovirus glycoprotein US9 induces 
the leakage of MAVS into the cytoplasm/ER by disrupting the 
potential and integrity of the mitochondrial membrane (Choi 
et  al., 2018). Herpes simplex virus 1 tegument protein VP16 
dampens the MAVS-Pex signaling and the expression of the 
immediate-early ISGs (Zheng and Su, 2017). Moreover, tegument 
protein VP1 of foot-and-mouth disease virus and M2-2 protein 
of human metapneumovirus block the specific recruitment of 
TARFs to MAVS (Mossman et al., 2013; Ekanayaka et al., 2020).

SARS-CoV-2 has caused worldwide financial loss and social 
disruption. Like other positive-sense RNA viruses, SARS-CoV-2 
and its counterpart SARS-CoV employ various viral proteins 
to escape host immune surveillance (Gatti et  al., 2020). The 
accessory protein ORF9b from SARS-CoV has been identified 
as an IFN antagonist that targets MAVS and promotes its 
proteasomal degradation, whereas SARS-CoV-2 ORF9b interacts 
with another mitochondrial protein TOM70 to interfere with 
the IFN signaling (Shi et al., 2014; Jiang et al., 2020; Kreimendahl 
and Rassow, 2020; Gordon et al., 2020a,b). Our recent evidence 
shows that SARS-CoV-2 ORF9b can also target the NF-κB 
essential modulator NEMO upon viral infection and inhibits 
its K63-linked ubiquitination, thus disrupting the canonical 
IKKα/β/γ-NF-κB signaling and subsequent IFN production (Wu 
et  al., 2021). Further study found that MAVS activation can 
be  regulated through the interaction of ORF9c and MAVS 
signal negative regulators (NLRX1, NDFIP2) or Nsp13 and 
MAVS effector TBK1 (Gordon et  al., 2020b). The membrane 
glycoprotein M inhibits multiprotein complex formation by 
interacting with RIG-I, MAVS, and TBK1, and its TM1/2 
domains are essential for this inhibitory effect (Zheng et  al., 
2020; Fu et  al., 2021). Another study showed that the Mpro 
shows similar proteasome functionality as the main protease 
of SARS-CoV-2 (Wu et  al., 2020). Recently, a study identified 

that SARS-CoV-2 nucleocapsid protein induces innate immune 
evasion by inhibiting K63-linked poly-ubiquitination and 
aggregation of MAVS (Wang et al., 2021). These works indicate 
MAVS plays an important role in the host against SARS-
Cov-2 infection.

Although many proteins synthesized by viruses to suppress 
host antiviral activity have been recognized, ways for viruses 
to evade the surveillance of the innate immune system remain 
largely unknown. Recently, a study demonstrated that the 
Hepatitis B virus activates glycolysis and promotes lactate 
binding to MAVS to prevent aggregation and mitochondrial 
localization (Zhou et  al., 2021). Another article reported that 
lactate is a natural suppressor of RLR signaling targeting MAVS 
(Zhang et  al., 2019). These data indicated that a new field of 
virus immune evade mechanism may have been discovered.

MAVS IMMUNE HOMEOSTASIS 
MAINTENANCE

RIG-I is wrapped by the CTD and maintains a “self-inhibiting” 
spatial conformation in the resting state. When RIG-I detects 
a foreign invading RNA virus, its CTD specifically binds to 
RNA molecular signals to change the spatial conception to 
release self-inhibition conformation and activates the antiviral 
immune signaling pathway. Accumulating evidence indicates 
that the phosphorylation of IRF3 and the production of IFN-β 
under viral stimulation need MAVS form prion-like aggregates 
under viral stimulation (Hou et  al., 2011). However, MAVS 
will spontaneously accumulate in its natural state to form active 
aggregates without stimulating foreign viruses or other factors 
and activate downstream signaling pathways. The imbalance 
of antiviral immune response may lead to many autoimmune 
diseases, such as systemic lupus erythematosus and psoriasis 
(Pothlichet et  al., 2011; Buskiewicz et  al., 2016; Zhang et  al., 
2016). Therefore, in addition to the negative post-translational 
regulation of MAVS after the viral infection, in the resting 
state, the cell must have a strict regulation mechanism to 
prevent the spontaneous aggregation of MAVS and maintain 
its monomeric form, thereby ensuring the “closed” state of 
the RIG-I-MAVS signaling pathway (Figure  4).

PCBP1 has a certain regulatory effect on MAVS, and it 
persists in resting cells to prevent MAVS from accumulating 
(Zhou et  al., 2012). RNF115 is related to the MAVS protein 
regulation in resting cells. RNF115 can continuously catalyze 
the K48-linked ubiquitination of MAVS and regulate the steady-
state MAVS level in uninfected cells (Zhang et  al., 2020b). 
Shi et  al. revealed a self-inhibition mechanism that regulates 
the activity of MAVS in unstimulated cells (Shi et  al., 2015). 
They identified three MAVS active regions with different 
functions, a region consisting of 401–450 amino acids (region 
III) for TBK1/IRF3 activation and two MAVS regions responsible 
for IKK/NF-κB activation (region I  aa-138-152 and area II 
aa-451-465). Similar to the self-inhibition of RIG-I, the three 
functional areas of MAVS are wrapped by its adjacent regions 
to avoid the auto-activation of MAVS.
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The polycistronic transcript of human MAVS generates 
a full-length MAVS from ORF1. Unlike full-length MAVS, 
its ORF2 can generate an N-terminal 141-amino acid truncated 
isoform that exerts dominant-negative effects on MAVS 
aggregation and its activity (Brubaker et al., 2014; Minassian 
et  al., 2015). N-terminally truncated isoforms cannot form 
aggregates by themselves as the N-terminal CARD domain 
by which MAVS aggregation is mediated. Instead, these 
isoforms interact with full-length MAVS by their TM domain 
homotypic interactions, thus spatially isolating MAVS 
monomer molecules from each other on the outer 
mitochondrial membrane and preventing their spontaneous 
aggregation (Qi et  al., 2017). In addition to the main ORF1 
and ORF2, three short upstream open reading frames (uORFs) 
exist in the 5′ untranslated mRNA regions (5′UTR) of the 
MAVS gene transcript mRNA. The uORF can reduce the 
translation initiation efficiency of downstream genes through 
various regulatory mechanisms and cause ribosome delay 
or trigger mRNA degradation, thereby inhibiting  
protein expression (Xu et al., 2017). Our group demonstrated 
that uORFs are cis-acting elements of MAVS transcripts 
that repress the downstream ORF translation by the  
leaky ribosomal scanning mechanism, limiting MAVS 
expression and preventing its spontaneous aggregation (Shi 
et  al., 2020).

On the other hand, host cells maintain innate homeostasis 
by degrading protein aggregates, damaged organelles, or 
intracellular pathogens through autophagy. Mitophagy is a 
typical selective autophagy process and is mediated when the 
mitochondrial kinase PINK1 and E3 ubiquitin ligase Parkin 
promote mitochondrial outer membrane proteins’ ubiquitination 
(Lazarou et  al., 2015). The formation of MAVS aggregates can 
increase intracellular ROS (Zhao et al., 2012). After recognizing 
this signal in resting cells, the mitochondrial protein Nix can 
directly bind to the ATG8 family member on the phagocytic 
protein to mediate PINK-PARKIN mitophagy and clear MAVS 
aggregates (Randow and Youle, 2014). Our group further 
discovered that in the absence of viral infection, endogenous 
MAVS produced by internal ORF-deleted transcripts could 
spontaneously aggregate and activate the IFN signaling pathway 
(Qi et  al., 2017). Nix-mediated selective autophagy is initiated 
to prevent abnormal protein aggregation and maintain natural 
immune homeostasis (Shi et  al., 2020).

CONCLUSION AND FUTURE 
PERSPECTIVES

As one of the important signaling adaptors, MAVS has attracted 
extensive attention from researchers for its critical role in 

FIGURE 4 | Self-inhibition mechanism of MAVS in resting state. (A) Intramolecular level. Three functional areas of MAVS are wrapped by its adjacent regions to 
maintain immune homeostasis. (B) Intermolecular level. N-terminally truncated isoforms interact with MAVS by their TM domain homotypic interactions to spatially 
isolating MAVS monomer molecules from each other on the outer mitochondrial membrane. (C) Machinery level. Eliminate accumulated MAVS through Nix-
mediated selective autophagy.
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the antiviral signaling pathway. MAVS acts as an adaptor in 
RNA-sensing signaling pathways to induce IFN production 
by forming prion-like aggregates after receiving upstream 
signals from PRRs. This linking role and status determine 
that MAVS is an indispensable ingredient. After viral infection, 
MAVS regulates the immune response and inflammation levels 
in the cells through PTMs, such as phosphorylation and 
ubiquitination. Compelling evidence has shown that viruses 
have developed various strategies to evade the host’s innate 
immune surveillance by targeting MAVS. This phenomenon 
may be  a crisis signal, or it may be  a chance for a new 
field. The mitochondria where MAVS is localized are pivotal 
for energy metabolism and have emerged as vital platforms 
for MAVS-mediated antiviral signaling. O-linked 
β-N-acetylglucosamine mentioned in the previous article has 
proved that glucose metabolism has the MAVS regulation 
function (Li et  al., 2018). Mitochondrial fission factor (Mff) 
can provide energy for MAVS disorganization. Acute antiviral 
immunity is mediated by Mff, which senses mitochondrial 
energy status and regulates the disorganization of MAVS 
clusters (Hanada et  al., 2020). Still, the current research is 
mostly focused on the regulation of MAVS by mitochondrial 
dynamics. Whether the mitochondrial metabolic process might 
contribute to MAVS regulation in host-virus crosstalk is largely 
unknown and imperative to be  elucidated. In summary, 
studying the mechanisms by which viruses counteract the 
MAVS-mediated immune response may provide new insights 
for the therapeutic strategy of viral infections.

As we  know, the cGAS-STING pathway plays an important 
role in anti-tumor immunity. Targeting cGAS-STING has shown 
great progress in cancer therapy. Researches on the relevance 
between the RIG-I-MAVS signaling pathway in tumorigenesis 
and development are also in full swing. Recent reports have 
shown a significant reduction of MAVS expression in several 
human cancers and demonstrate its potential anti-tumor prospect 
(Hou et  al., 2014). MAVS interacts with the tumor suppressor 
P53, maintaining the stability of P53 by inhibiting its 
ubiquitination and the formation of its P53-MDM2 complex, 
thereby inhibiting the development of tumors (Zhang et  al., 

2020a). Otherwise, epigenetic therapy is a novel cancer treatment 
method. This method can induce virus infection phenomenon 
to activate the MAVS signaling pathway and target cancer-
initiating cells, resulting in a “viral mimicry” state with anti-
tumor effects (Roulois et  al., 2015). This work indicated that 
more roles of MAVS in tumorigenesis would be  needed to 
reveal in future work.

Accidental and continuous activation of the immune system 
may lead to chronic inflammation and even autoimmune 
diseases. In recent years, the self-inhibition mechanism of how 
the immune system prevents the spontaneous aggregation of 
MAVS has gradually been clarified. Our knowledge of the 
regulatory mechanisms of immune homeostasis will remarkably 
improve our understanding of the immune system and provide 
new clues to the pathogenesis of chronic inflammation, 
autoimmune diseases, and cancer. Although the current 
investigations on the regulation of MAVS immune homeostasis 
are still limited, the advance of the field will undoubtedly 
benefit innate immunity studies. Based on these breakthroughs, 
this field is still worthy of further investigation.
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