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The ongoing COVID-19 pandemic, caused by SARS-CoV-2, constitutes a tremendous
global health issue. Continuous monitoring of the virus has become a cornerstone to
make rational decisions on implementing societal and sanitary measures to curtail the
virus spread. Additionally, emerging SARS-CoV-2 variants have increased the need for
genomic surveillance to detect particular strains because of their potentially increased
transmissibility, pathogenicity and immune escape. Targeted SARS-CoV-2 sequencing
of diagnostic and wastewater samples has been explored as an epidemiological
surveillance method for the competent authorities. Currently, only the consensus
genome sequence of the most abundant strain is taken into consideration for analysis,
but multiple variant strains are now circulating in the population. Consequently, in
diagnostic samples, potential co-infection(s) by several different variants can occur or
quasispecies can develop during an infection in an individual. In wastewater samples,
multiple variant strains will often be simultaneously present. Currently, quality criteria are
mainly available for constructing the consensus genome sequence, and some guidelines
exist for the detection of co-infections and quasispecies in diagnostic samples. The
performance of detection and quantification of low-frequency variants using whole
genome sequencing (WGS) of SARS-CoV-2 remains largely unknown. Here, we
evaluated the detection and quantification of mutations present at low abundances
using the mutations defining the SARS-CoV-2 lineage B.1.1.7 (alpha variant) as a
case study. Real sequencing data were in silico modified by introducing mutations of
interest into raw wild-type sequencing data, or by mixing wild-type and mutant raw
sequencing data, to construct mixed samples subjected to WGS using a tiling amplicon-
based targeted metagenomics approach and Illumina sequencing. As anticipated,
higher variation and lower sensitivity were observed at lower coverages and allelic
frequencies. We found that detection of all low-frequency variants at an abundance
of 10, 5, 3, and 1%, requires at least a sequencing coverage of 250, 500, 1500, and
10,000×, respectively. Although increasing variability of estimated allelic frequencies at
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decreasing coverages and lower allelic frequencies was observed, its impact on reliable
quantification was limited. This study provides a highly sensitive low-frequency variant
detection approach, which is publicly available at https://galaxy.sciensano.be, and
specific recommendations for minimum sequencing coverages to detect clade-defining
mutations at certain allelic frequencies. This approach will be useful to detect and
quantify low-frequency variants in both diagnostic (e.g., co-infections and quasispecies)
and wastewater [e.g., multiple variants of concern (VOCs)] samples.

Keywords: wastewater surveillance, SARS-CoV-2, Illumina, NGS, variant of concern, co-infection, quasispecies

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) is the causative agent of the ongoing COVID-19 pandemic
(Kim et al., 2020). To limit the spread of disease, governments
were forced to take drastic measures due to the high potential
for human-to-human transmission and the lack of immunity
in the population (Leclerc et al., 2020). SARS-CoV-2 spreads
very easily during close person-to-person contact (Azuma
et al., 2020). Consequently, the individual diagnostic testing for
SARS-CoV-2 on respiratory samples using reverse transcription
quantitative polymerase chain reaction (RT-qPCR) is essential
for the diagnosis of patients presenting COVID-19 symptoms
for appropriate clinical treatment and isolation, as well as for
tracing potential contact transmissions, including asymptomatic
individuals. Systematic individual SARS-CoV-2 diagnostics are
also used to test certain population cohorts, such as primary
caregivers, to avoid transmission of the virus to vulnerable people,
such as the elderly (Bayle et al., 2021).

Data from individual diagnostics are also collected and
analyzed for surveillance by National Reference Centres to
assist governments to monitor the epidemiological situation.
The efficiency of this strategy for epidemiological monitoring
depends greatly on the extent of testing the complete population.
Additionally, it may be biased by the willingness of individuals,
covering all population ages, to get tested, whether individuals
are aware of being infected, and visitors to a certain country
not always being included in the testing strategy. Moreover,
despite having a relatively low per-sample cost, the high volume
of required tests incurs substantial costs for public health
systems for which testing capacities can be exceeded during
periods of intense circulation of the virus (Contreras et al.,
2021). The detection of newly emerging SARS-CoV-2 strains
may be delayed by the lack of testing during such periods.
As SARS-CoV-2 viral particles and mRNA have been isolated
from feces of COVID-19 patients (Wu et al., 2020b; Zhang
et al., 2020), monitoring of wastewater for SARS-CoV-2 has
been explored as a complementary and independent alternative
for epidemiological surveillance for the competent authorities
(European Commission, 2021). Various studies have observed an
association between an increase in reported COVID-19 cases and
an increase of SARS-CoV-2 RNA concentrations in wastewater
(Ahmed et al., 2020; Medema et al., 2020; Wu et al., 2020a).
Wastewater-based monitoring could therefore be a cost-effective,
non-invasive, easy to collect, and unbiased approach to track

circulating virus strains in a community (Thompson et al., 2020).
Compared to clinical surveillance, wastewater surveillance could
also provide opportunities to estimate the prevalence of the
virus and assess its geographic distribution and genetic diversity
(Sinclair et al., 2008; Xagoraraki and O’Brien, 2020), and can be
used as a non-invasive early-warning system for alerting public
health authorities to the potential (re-)emergence of COVID-
19 infections (Panchal et al., 2021). Alternatively, the absence
of the virus in wastewater surveillance could indicate that an
area can be considered at low risk for SARS-CoV-2 infections
(European Commission, 2021).

Although the mutation rate of SARS-CoV-2 is estimated as
being low compared to other RNA viruses (Duchene et al.,
2020), several new variants carrying multiple mutations have
already emerged. Some of these variants are characterized by
a potential enhanced transmissibility, and can cause more
severe infections and/or potential vaccine escape (SAGE-
EMG, SPI-B, Tranmission Group, 2020; Davies et al., 2021;
GOV.UK - Scientific Advisory Group for Emergencies, 2021;
Greaney et al., 2021; Hoffmann et al., 2021). Consequently,
monitoring current and potential future variants is crucial
to control the epidemic by taking timely measures because
these variants can affect epidemiological dynamics, vaccine
effectiveness and disease burden.

To monitor SARS-CoV-2 variants, RT-qPCR methods were
designed to detect a selection of the mutations that define specific
variants of concern (VOCs). VOCs are, however, defined by a
combination of multiple mutations and only few mutations can
be targeted by RT-qPCR assays. This approach is not sustainable
because it is likely that the ongoing vaccination and increased
herd immunity will result in the selection of new mutations
and emergence of new VOCs (Gómez et al., 2021), as has been
observed with other viruses (Boni, 2008; Shao et al., 2017). Since
only a few mutations can be targeted by a RT-qPCR assay, an
additional step of whole genome sequencing (WGS) is required
to fully confirm the variant’s sequence (Bal et al., 2021).

Whole genome sequencing has been used to understand
the viral evolution, epidemiology and impact of SARS-CoV-
2 resulting in, as of July 2021, more than 2,000,000 publicly
available SARS-CoV-2 genome sequences, mainly derived from
respiratory samples that are frequently submitted to the Global
Initiative on Sharing Avian Influenza Data (GISAID) database
(Shu and McCauley, 2017). Most of these sequences were
obtained using amplicon sequencing in combination with the
Illumina or Nanopore technology, with Illumina still being
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the most commonly used method (Shu and McCauley, 2017;
Charre et al., 2020). This large amount of genomes allows
reliable detection of variants based on the consensus genome
sequence in patient samples (van Dorp et al., 2020; Firestone
et al., 2021; Hartley et al., 2021; Lin et al., 2021). The
European Centre for Disease Prevention and Control (ECDC)
has defined several quality criteria for diagnostic samples
depending on the application. For most genomic surveillance
objectives, a consensus sequence of the (near-)complete genome
is sufficient and a minimal read length of 100 bp and minimal
coverage of 10× across more than 95% of the genome is
recommended. To reliably trace direct transmission and/or
reinfection, a higher sequencing coverage of 500× across more
than 95% of the genome is recommended for determining low-
frequency variants (LFV) that can significantly contribute to the
evidence for reinfection or direct transmission. In-depth genome
analysis, including recombination, rearrangement, haplotype
reconstruction and large insertions and deletions (indel)
detection, should be investigated using long-read sequencing
technologies with a recommended read length of minimally
1000 bp and a sequencing coverage of 500× across more than
95% of the genome (ECDC, 2021). A few studies evaluated
quasispecies in diagnostic samples by only evaluating positions
with a minimum depth of 100× (Lythgoe et al., 2021), by
employing a minimum AF of 2% and a minimum depth of
500× (Siqueira et al., 2021) or by using Lofreq with a false
discovery rate cut-off of 1%, minimum coverage of 10×, dynamic
Bonferroni correction for variant quality and strand bias filtering
(Karim et al., 2021). Due to the high cost of sequencing large
quantities of samples from individual patients, samples that
tested positive for a selection of mutations related to VOCs using
RT-qPCR and have a sufficiently high viral load are typically
sequenced. Consequently, only a subset of all circulating variants
is detected during routine clinical surveillance. Since wastewater
samples contain both SARS-CoV-2 RNA from symptomatic
and asymptomatic individuals, sequencing wastewater samples
can provide a more comprehensive picture of the genomic
diversity of SARS-CoV-2 circulating in the population compared
to individual diagnostic testing and sequencing. Wastewater
surveillance of SARS-CoV-2 may therefore be of considerable
added value for SARS-CoV-2 genomic surveillance by providing
a cost-effective, rapid, and reliable source of information on the
spread of SARS-CoV-2 variants in the population.

Sequencing of wastewater samples is, however, currently
mainly used to reconstruct the consensus genome sequence of
the most prevalent SARS-CoV-2 strain in the sample and LFV are
often not investigated (Nemudryi et al., 2020; Bar-Or et al., 2021;
Crits-Christoph et al., 2021; Sharif et al., 2021). This consensus
sequence can be useful to demonstrate that the detected strain
in wastewater corresponds to the dominant strain that circulates
in individuals within the same community (Crits-Christoph
et al., 2021). However, similarly to diagnostic samples, only
limited quality criteria are in place when sequencing wastewater
samples and those available often only apply for consensus
sequence construction. The EU recommends the generation
of one million reads per sample and a read length of more
than 100 bp (European Commission, 2021). A few studies

evaluated LFV in wastewater samples, by using local haplotype
reconstruction with ShoRAH (Jahn et al., 2021) or iVar and
setting up a minimum coverage of 50×, Phred score of ≥30 and
a minimal allelic frequency (AF) of 10% (Izquierdo-Lara et al.,
2021) or a minimum base quality filter of 20 with a minimum
coverage of 100× (Rios et al., 2021). However, none of these
studies evaluated their approach on well-defined populations
nor determined detection thresholds for retaining LFV. Since
multiple VOCs may co-circulate in a given population, their
relative abundance is expected to vary and potentially be very
low in wastewater samples. While genome consensus variant
calling workflows can only identify mutations present at high
AFs, LFV calling methods have been specifically designed to
call mutations at lower-than-consensus AFs, and are required to
detect VOCs in wastewater samples that are present at an AF
below 50%. Appropriate tools and statistical approaches should
be provided to ensure reliable and comparable collection and
analysis of data, because the detection of LFV is challenging due
to the drop in confidence of called mutations at low AFs and
sequencing coverages (Macalalad et al., 2012; Wilm et al., 2012;
Isakov et al., 2015). High-quality sequencing reads are required
to ensure that single nucleotide variants (SNVs) and indels can
be reliably called and quantified. Most LFV calling algorithms
therefore consider multiple sequencing characteristics such as
strand bias, base quality, mapping quality, sequence context,
and AF (McCrone et al., 2016) to delineate true variants from
sequencing errors. Although the viral diversity in multiple WGS-
based studies has been explored using several variant calling
methods (Kundu et al., 2013; Rogers et al., 2015; Simon et al.,
2019), they are often not benchmarked against defined viral
populations, rendering the feasibility of using these methods for
detecting SARS-CoV-2 VOCs in mixed samples for wastewater
surveillance largely unknown.

In this study, we evaluate the performance of LFV detection
and quantification based on targeted SARS-CoV-2 sequencing
for mutations present at low abundances via the Illumina
technology. We used mutations that define the B.1.1.7 lineage
as a proof-of-concept. Using two real sequencing datasets that
were in silico modified by either introducing mutations of
interest into raw wild-type sequencing datasets or mixing wild-
type and mutant raw sequencing data, we provide guidelines
for minimum sequencing coverages to detect clade-defining
mutations at specific AFs. This approach can be used to detect
and quantify LFV in diagnostic samples (e.g., to detect co-
infections and quasispecies) and wastewater samples (e.g., to
detect multiple strains circulating in the population).

MATERIALS AND METHODS

Employed Sequencing Data and
Generation of Consensus Genome
Sequences
SARS-CoV-2 raw sequencing data from 316 samples was
downloaded from the Sequence Read Archive (SRA) (Leinonen
et al., 2011). A random selection of samples was done on the
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27th of January 2021 from the COVID-19 Genomics UK (COG-
UK) consortium (PRJEB37886) including only samples with
a submission date in January 2021, sequenced with Illumina
Novaseq 6000 and using an amplicon-based enrichment strategy
(Supplementary File 1).

To ensure correct pairing of fastq files, all samples were
re-paired using BBMap v38.89 repair.sh with default settings
(Bushnell and BBMap, 2021) (Figure 1: Step 1). The consensus
genome sequences were generated for all these samples
(Figure 1: Step 2). The workflow was built using the
Snakemake workflow management system using python 3.6.9
(Mölder et al., 2021). Next, the re-paired paired-end reads
were trimmed using Trimmomatic v0.38 (Bolger et al., 2014)
setting the following options: “LEADING:10”, “TRAILING:10”,
“SLIDINGWINDOW:4:20” and “MINLEN:40”. As reference
genome for read mapping of the SRA samples, the sequence
with GISAID accession number EPI_ISL_837246 was used for
the wild-type samples, while EPI_ISL_747518 was used for the
mutant samples. Both references were chosen based on the
fact that they should have a complete genome according to
GISAID. Additionally, these were chosen to be as close to the
SRA data as possible based on their location of sampling (i.e.,
United Kingdom), sampling date that was in the same period as
the data obtained from SRA (i.e., December 2020–January 2021),
and whether or not it was classified as belonging to the B.1.1.7
lineage. These reference genomes were indexed using Bowtie2-
build v2.3.4.3 (Langmead and Salzberg, 2012). Trimmed reads
were aligned to their respective reference genomes using Bowtie2
v2.3.4.3 using default parameters. The resulting SAM files were
converted to BAM files using Samtools view v1.9 (Danecek
et al., 2021) and sorted and indexed using the default settings
of respectively Samtools sort and Samtools index v1.9. Using
the sorted BAM file, a pileup file was generated with Samtools
mpileup v1.9 using the options “--count-orphans” and “--VCF.”
Next, the variants were called with bcftools call v1.9 using the
options “-O z”, “--consensus-caller”, “--variants-only” and “--
ploidy 1”, and converted and indexed to uncompressed VCF files
with respectively bcftools view v1.9 using the options “--output-
type v” and bcftools index v1.9 using the option “--force.” Lastly,
a temporary consensus sequence was generated using bcftools
consensus v1.9 with default settings, providing the reference
genome and produced VCF file as inputs. Afterward, the previous
steps were repeated once with the same options using the
generated temporary consensus sequence as fasta reference to
generate the final consensus sequence. These sequences were
used to confirm either the presence or absence of the clade-
defining mutations of the B.1.1.7 mutant for both the mutant
and wild-type samples respectively (Table 1). To extract the
sequencing coverage for each position and subsequently calculate
the median coverage for each sample, Samtools depth v1.9 was
used on the BAM files. Additionally, bamreadcount v0.8.01 was
run on all samples using the BAM files to determine the coverage
at each position.

From the initial 316 samples, ten mutant samples were selected
that presented similar coverage depths at the positions of interest

1https://github.com/genome/bam-readcount

after normalization (see below). These samples contained the
mutations assigned to the B.1.1.7 variant. Ten wild-type samples
were also chosen that did not contain any of these mutations
(Tables 1, 2) and also presented similar coverage depth at the
positions of interest after normalization. Lineage B.1.1.7, termed
Variant of Concern (VOC) 202012/01 by Public Health England
(PHE) (Public Health England, 2021), 20I/501Y.V1 by Nextstrain
(Centers for Disease Control and Prevention [CDC], 2021) and
alpha variant by the World Health Organization (WHO, 2021),
was first reported in the United Kingdom but became the
dominant strain in many European countries until the emergence
of the delta variant since mid-April 2021 (Mishra et al., 2021). The
B.1.1.7 variant was found to be more transmissible (Davies et al.,
2021) and may cause more severe infections (SAGE-EMG, SPI-B,
Tranmission Group, 2020; GOV.UK - Scientific Advisory Group
for Emergencies, 2021). Lineage B.1.1.7 is defined by multiple
spike protein changes, including deletion 69-70 and deletion 144
in the N-terminal domain, amino changes N501Y in the receptor-
binding domain, and amino acid changes A570D, P681H,
T716I, S982A, D1118H, as well as mutations in other genomic
regions (Rambaut et al., 2021). More recently PHE has reported
B.1.1.7 cases with an additional mutation, E484K (Public Health
England, 2021). Median coverages of the selected samples were
consistently high (minimum 13,848×; maximum 36,255×) and
median read lengths were always 221 and 201 for the forward and
reverse reads respectively (Table 2). Additionally, as suggested by
ECDC, more than 95% of the genome was covered by reads with
a minimal coverage of 500× (ECDC, 2021).

Low-Frequency Variants Detection
The absence of pre-existing wild-type and mutant LFV at the
positions defining lineage B.1.1.7 (Table 1) was verified in
both the mutant and wild-type samples (Figure 1: Step 3),
respectively, by calling all LFV in these samples and subsequently
checking the positions of interest. Python 3.6.9 was used with
the packages pysam 0.16.0.1 (Li et al., 2009) and numpy 1.19.5
(Harris et al., 2020). Each generated (final) consensus FASTA
file for each sample coming from SRA was used as reference
for its respective sample and indexed using Samtools faidx
v1.9 and Bowtie2-build v2.3.4.3. Bowtie2 v2.3.4.3 was then used
to align the reads of each sample to its reference sequence,
producing a SAM file that was converted into BAM using
Samtools view v1.9. Next, reads were sorted using Picard SortSam
v2.18.142 with the option “SORT_ORDER = coordinate” and
Picard CreateSequenceDictionary v2.18.14 (Broad Institute)3

was used to generate a dictionary of the reference FASTA
file. Picard AddOrReplaceReadGroups v2.18.14 (Broad Institute)
(see footnote 3) was afterward run on the reads with
the flags “LB”, “PL”, “PU”, and “SM” set to the arbitrary
placeholder value “test.” The resulting BAM files were indexed
using Samtools index v1.9 and used as input for GATK
RealignerTargetCreator 3.7 (McKenna et al., 2010), which was
followed by indel realignment using GATK IndelRealigner v3.7

2https://github.com/broadinstitute/picard
3Broad Institute Picard (2021). Available online at: http://broadinstitute.github.io/
picard/ [Accessed March 26, 2021]
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FIGURE 1 | Schematic representation of the workflow.

(McKenna et al., 2010). Next, generated BAM files were indexed
using Samtools index v1.9. The call function of the LoFreq
v2.1.3.1 package (Wilm et al., 2012) was used to call LFV in

the BAM files and generate a VCF file using the options “-
-call-indels” and “--no-default-filter” and using the consensus
sequence as reference to call LFV. Next, the unfiltered VCF
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TABLE 1 | Mutations linked to SARS-CoV-2 lineage B.1.1.7
(Rambaut et al., 2021).

Gene Nucleotide-level
mutation

Amino Acid-level
mutation

Number of amplicons
covering the position?

ORF1ab C913T Synonymous 1

C3267T T1001I 1

C5388A A1708D 1

C5986T Synonymous 1

T6954C I2230T 1

11288–11296
deletion

SGF 3675–3677 deletion 1

C14676T Synonymous 1

C15279T Synonymous 1

C16176T Synonymous 2

S 21765–21770
deletion

HV 69-70 deletion 1

21991–21993
deletion

Y144 deletion 2

A23063T N501Y 1

C23271A A570D 1

C23604A P681H 1

C23709T T716I 1

T24506G S982A 1

G24914C D1118H 2

M G26801C* Synonymous 1

Orf8 C27972T Q27stop WT: 2; B.1.1.7: 1**

G28048T R52I 1

A28111G Y73C 2

N G28280C,
A28281T,
T28282A

D3L 2

C28977T S235F 1

The first, second, and third columns present respectively the gene name, cDNA-
level mutation and protein-level mutation. The last column describes whether
the position is covered by one or two amplicons from the enrichment panel
(Supplementary Table 1). (*) One adaptation was observed for position 26 801.
In the wild-type strains a G was observed in contrast to Rambaut et al. (2021)
where a T was observed. (**) Due to the tiled amplicon approach used to amplify
the samples prior to sequencing, the regions where amplicons overlapped resulted
in a double coverage. Mutation C27972T was positioned in such an overlap in the
wild-type, but not in the mutant. WT, wild-type.

file was filtered using the filter function of the LoFreq v2.1.3.1
package, setting the strand bias threshold for reporting a
variant to the maximum allowed value by using the option
“--sb-thresh 2147483647” to allow highly strand-biased variants
to be retained, to account for the non-random distribution of
reads due to the design of the amplification panel. All employed
scripts are available in Supplementary File 2. Additionally, the
workflow is also available at the public Galaxy instance of our
institute at https://galaxy.sciensano.be as a free resource for
academic and non-profit usage. The presence of the nucleotides
assigned to the B.1.1.7 lineage or the wild-type (Table 1) was
verified for the mutant and wild-type samples, respectively.
Additionally, it was checked that there were no LFV at these
positions, so that the wild-type nucleotide or mutant nucleotide
was always present at 100% for the retained 10 WT and
10 mutant samples.

Dataset 1: In silico Insertion of Mutations of Interest
Into Raw Sequencing Datasets
For the first dataset (Figure 1: Step 4), all low-frequency single
nucleotide polymorphisms (SNPs) were removed from the raw
sequencing data of all samples. SNPs were removed using Jvarkit
employing biostar404363 (Lindenbaum, 2015) by converting all
nucleotides to the consensus fasta sequence. Next, all ten WT
samples were down-sampled using “seqtk sample” with argument
“-s100”4 to 14 different (median) coverages (100, 250, 500,
750, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, and
10,000×). The 22 SNP mutations characteristic for the B.1.1.7
lineage (Table 1) were introduced at 26 different AF (mutant: 0,
0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5,
10, 20, 30, 40, 50, and 100%) at the various coverages mentioned
above employing biostar404363. This resulted in 10 samples at
364 conditions (i.e., combination of coverage and AF). Next, all
reads containing indels were removed from these samples using
samtools view v1.9. Finally, the three deletions associated with
the B.1.1.7 lineage were introduced at the 26 AF mentioned above
using BAMSurgeon 1.2 (Ewing et al., 2015), which was adapted to
decrease runtime, with the options “-p 10”, “--force”, “-d 0”, “--
ignorepileup”, “--mindepth 1”, “--minmutreads 1”, “--maxdepth
1000000”, “--aligner mem”, and “--tagreads”. A minority of reads
that were lacking a mate in the targeted regions were removed
by using an in-house script making use of Python 3.6.9 and
the package pysam 0.16.0.1. Samples in BAM format were then
converted back to FASTQ format using bedtools bamtofastq

4https://github.com/lh3/seqtk

TABLE 2 | List of SRA accession numbers used for employed wild-type and
lineage B.1.1.7 samples in this study.

Sample WT/lineage B.1.1.7 Median coverage

ERR5058968 Lineage B.1.1.7 13,848

ERR5059033 Lineage B.1.1.7 21,874

ERR5059072 Lineage B.1.1.7 14,628

ERR5059092 Lineage B.1.1.7 16,106

ERR5059123 Lineage B.1.1.7 17,349

ERR5059204 Lineage B.1.1.7 18,149

ERR5059226 Lineage B.1.1.7 22,194

ERR5059238 Lineage B.1.1.7 27,681

ERR5059260 Lineage B.1.1.7 23,975

ERR5059282 Lineage B.1.1.7 27,349

ERR5039162 WT 20,071

ERR5040499 WT 24,440

ERR5059083 WT 18,220

ERR5059114 WT 14,580

ERR5059133 WT 19,866

ERR5059154 WT 28,295

ERR5059253 WT 23,798

ERR5059257 WT 25,894

ERR5059283 WT 36,255

ERR5059286 WT 29,847

Sample IDs, categorized as WT or mutant and the median coverage calculated
using Samtools depth v1.9 (Danecek et al., 2021). WT, wild-type.
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v2.27.1 (Quinlan and Hall, 2010). Finally the LFV detection
workflow (Figure 1: Step 3) described in section “Low-Frequency
Variants Detection” was used on these 10 samples for all 364
conditions using the FASTA file that was generated for the wild-
type samples from SRA as reference with LoFreq.

Dataset 2: Introduction of Mutations of Interest by
Mixing Wild-Type and Mutant Raw Sequencing Read
Datasets
For the second dataset (Figure 1: Step 5), the coverage of all
20 samples (Table 2) was normalized to 5000× using BBMap
v38.89 bbnorm.sh (Bushnell and BBMap, 2021) with the options
“target = 5000”, “mindepth = 5”, “fixspikes = f”, “passes = 3”
and “uselowerdepth = t”. However, due to the tiled amplicon
approach used to amplify these samples prior to sequencing,
regions where amplicons overlapped subsequently had double
coverage resulting in two coverages, i.e., 5000 and 10,000×,
after normalization (Supplementary Table 1). In silico datasets
were then generated by mixing the appropriate number of reads
for every combination of the ten wild-type and ten mutant
samples, resulting in a total of 100 mixed samples, which were
down-sampled using “seqtk sample” (with option “–s100”) to
the appropriate fractions for the required combination of 13
final coverages (100, 250, 500, 750, 1000, 1500, 2000, 2500,
3000, 3500, 4000, 4500, and 5000×) and 26 AF (mutant:
0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5,
8, 8.5, 9, 9.5, 10, 20, 30, 40, 50, and 100%). This resulted
in 100 mixed samples at 338 conditions (i.e., combination
of coverage and AF). Finally, the LFV detection workflow
(Figure 1: Step 3) described in section “Low-Frequency Variants
Detection” was used on these samples for all conditions using
the FASTA file that was generated for the wild-type samples
from SRA as reference, except for samples with 100% AF for
the mutant positions where the FASTA file of the mutant
sample was used.

Although the second dataset was normalized for total coverage
at every genomic position, the tiled amplicon approach resulted
in some genomic positions being covered by two overlapping
amplicons. Two groups of mutations were therefore obtained
for every coverage (Table 2), i.e., for a targeted coverage of
5000×, 17 mutations were present at ∼5000× (C913T, C3267T,
C5388A, C5986T, T6954C, 11288-11296 deletion, C14676T,
C15279T, 21765-21770 deletion, A23063T, C23271A, C23604A,
C23709T, T24056G, G26801C, G28048T, and C28977T) and
7 mutations were present at ∼10,000× (T16176C, 21991-
21993 deletion, G24914C, A28111G, G28280C, A28281T, and
T28282A). Mutation C27972T was excluded from further
analysis, because this position in the wild-type samples was
located in a region where amplicons overlapped resulting
in a coverage of approximately 10,000×, while in mutant
samples it was in a region with no overlap and where a
coverage of 5000× was therefore observed (Supplementary
Table 1). For further analysis, the results were pooled
together per theoretical coverage resulting in 24 mutations
per coverage but only 17 and 7 mutations at the lowest
(i.e., 100×) and highest (i.e., 10,000×) coverage, respectively
(Supplementary Table 2). The actual median coverage was

calculated per theoretical targeted coverage using the output
of bamreadcount v0.8.0 of each sample. Using this output,
the coverage of each position of interest was extracted
(Supplementary Table 2).

Qualitative Evaluation of Detection of
B.1.1.7 at Different Abundances
Since samples of Dataset 1 were normalized for the total
median coverage, different individual positions of interest could
exhibit deviating coverages. For the qualitative evaluation of
LFV detection (i.e., can mutant positions of interest be correctly
detected?), the number of false negatives was counted per
condition (i.e., combination of AF and coverage) and divided
by the total number of observations [i.e., the number of
samples (n = 10) and number of mutations considered for that
condition (n = 25)]. A mutant position of interest was considered
as correctly detected as soon as it was detected by LoFreq,
irrespective of its estimated AF.

Dataset 2 was subjected to the same qualitative evaluation
as described for Dataset 1. The number of false negatives per
condition was divided by the number of observations (i.e.,
the number of samples (n = 100) and number of mutations
considered for that condition [either n = 7, 17, or 24)].

The visualization of the qualitative evaluation was performed
using a contour plot from the R package plotly (RStudio 1.0.153;
R3.6.1) (Sievert, 2020). The false negative (FN) proportion in
the qualitative evaluation plots ranged from 0 to 1 with a
step size of 0.1.

Quantitative Evaluation of Detection of
B.1.1.7 at Different Abundances
For the quantitative evaluation of LFV detection (i.e., is the
estimated AF of correctly detected mutant positions of interest
close to the true AF?) of both datasets, FN values were considered
as ‘below the quantification limit’ with the quantification limit
equal to the lowest recorded value for that condition (i.e.,
combination of AF and coverage). Outliers were identified for
each condition using the Grubbs test that was sequentially applied
by first searching for two outliers at the same side, followed by a
search for exactly one outlier. If the p-value of the Grubbs test
was below 0.05, outliers were excluded. The standard deviation
(SD) and mean value of AF for every condition were estimated by
a maximum likelihood model based on the normal distribution
that took the FN into account as censor data. Data were modeled
according to a normal distribution. If the percentage of FN results
was above 75%, the condition was, however, excluded from
quantitative evaluation. Finally, a performance metric describing
closeness to the true AF was calculated for each targeted AF
individually by dividing each pooled squared SD by the maximal
pooled squared SD. This metric will range between 0, relatively
the closest to the targeted AF, and 1, relatively the furthest from
the targeted AF.

As described for the qualitative evaluation, contour plots from
the R package plotly (RStudio 1.0.153; R3.6.1) were used for
the visualization of the quantitative evaluation. The performance
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metric in the quantitative evaluation plots ranged from 0 to 1 with
a step size of 0.1.

RESULTS

Qualitative Evaluation Demonstrates
That B.1.1.7 Clade-Defining Mutations
Can Be Reliably Detected at Low Allelic
Frequency When Sequencing Coverage
Is Adequately High
To construct samples using targeted SARS-CoV-2 sequencing
with a VOC present at low abundances in the viral population,
B.1.1.7 clade-defining mutations were first in silico introduced
at well-defined AFs and coverages in real sequencing data
(“Dataset 1”) of ten wild-type samples, without, however, using
any coverage normalization so that individual mutations could
be present at higher or lower coverages compared to the total
median genomic coverage due to unevenness of coverage. To
assess whether introduced mutations were correctly detected, or
alternatively missed as FN, samples of this dataset were analyzed
using a LFV calling workflow based on LoFreq.

Figure 2A depicts the proportion of FN observations, and
corresponding values are presented in Table 3, for all evaluated
coverages and targeted AFs until 20%. Results for all targeted
AFs (including higher values) are presented in Supplementary
Figure 1 and Supplementary Table 3. All LFV could be detected
at an AF of 1% at a median coverage of 10,000×. As the coverage
decreased, the AF threshold at which no single FN occurred (i.e.,
perfect sensitivity) increased to 1.5% at 5000×, 3% at 1000×,
5% at 500×, 9.5% at 250×, and 20% at 100×. When allowing a
maximum of 10% FN (i.e., sensitivity of 90%), the AF thresholds
decreased substantially to 1% at 5000×, 1.5% at 1000×, 2.5%
at 500×, 4% at 250×, and 7.5% at 100×. No false positive
mutations related to the mutant and wild-type were observed at,
respectively, 0 and 100% AF.

A second approach was also considered for constructing
samples using targeted SARS-CoV-2 virus sequencing with a
VOC present at low abundances, by in silico mixing real raw
sequencing reads from ten B.1.1.7 samples into ten wild-type
samples (“Dataset 2”) for a total of 100 mixes at well-defined
AFs and coverages, while applying coverage normalization so
that individual mutations were present at approximately similar
coverages for all B.1.1.7 clade-defining positions.

Figure 2B depicts the proportion of FN observations, and
actual values are presented in Table 4, for all evaluated coverages
and targeted AF until 20%. Results for higher targeted AF
are presented in Supplementary Figure 2 and Supplementary
Table 4. All LFV could be detected at an AF of 1% at a median
coverage of 9792×. As the coverage decreased, the AF thresholds
at which no single FN occurred (i.e., perfect sensitivity) increased
to 1.5% at 4851×, 3.5% at 969×, 4% at 482×, 7% at 237×, and
20% at 97×. However, when allowing a maximum of 10% FN
(i.e., reducing the sensitivity to 90%), the AF thresholds decreased
substantially to 1% at 4851×, 2% at 969×, 3% at 482×, 4% at
237×, and 7% at 97×. No false positive mutations related to the

mutant and wild-type were observed at 0 and 100%, respectively.
Overall, the results for Dataset 1, using the median coverages, and
Dataset 2, using the coverages at the positions of interest, were
qualitatively similar.

Quantitative Evaluation Demonstrates
That the Resulting Allelic Frequencies for
B.1.1.7 Clade-Defining Mutations Are
Close to Their Target Values
To evaluate the possibility of quantifying LFV in both
datasets, the SDs of available observations were first evaluated
for each condition (i.e., combination of AF and coverage).
This provisional analysis indicated that for both Dataset 1
(Supplementary File 3) and Dataset 2 (Supplementary File 4),
the SD systematically decreased per target AF as coverage
increased. This provisional analysis also indicated that for both
datasets, irrespective of coverage, the SD generally increased
between a targeted AF of 1 to 10%, after which it plateaued for
targeted AFs above 20%. We therefore employed the squared
SD per AF divided by the maximal squared SD per target
AF to describe closeness of observed AF to the true AF, for
which results are presented in Figure 3A for Dataset 1. As
expected, the variation in AF estimates fluctuates in function of
the median coverage and targeted AF, with variation decreasing
per target AF as coverage increased, but also variation being
generally more pronounced at low AFs irrespective of coverage.
Notwithstanding, even for regions in Figure 3A exhibiting high
variation, the variability overall remained small (Supplementary
File 3). The interquartile range (IQR) (Supplementary File 3D)
of the observed AF was still limited at the various targeted AF
ranging from 0.62–6.26% at an AF of 50%, 0.36–3.49% at an AF
of 10% and 0.27–2.07% at an AF of 5% with the highest IQR
observed at lower coverages.

Results for the quantitative evaluation of Dataset 2 are
presented in Figure 3B, and are in accordance with the trends
observed for Dataset 1 with the variation decreasing per target
AF as coverage increased, and lower target AFs exhibiting
increasing variation irrespective of coverage. Notwithstanding,
similarly to Dataset 1, the observed total variation remained small
(Supplementary File 4). The IQR (Supplementary File 4D) of
the observed AF was limited at the various targeted AF ranging
from 0.73–3.93% at an AF of 50%, 0.41–3.93% at an AF of 10%
and 0.29–2.27% at an AF of 5% with the highest IQR observed at
lower coverages.

DISCUSSION

Whole genome sequencing is a more powerful approach than
RT-qPCR to track both existing and newly emerging SARS-
CoV-2 variants. WGS is currently, however, mainly used
to construct the consensus genome sequence and determine
the most prevalent strain in communities, but interest exists
in its potential for detecting LFV both within diagnostic
samples to detect co-infections and quasispecies, and wastewater
samples to determine all circulating variants in a population
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FIGURE 2 | Qualitative evaluation of Dataset 1 (A) and Dataset 2 (B) based on false negative proportions per condition until a targeted mutant AF of 20%. Orange
and red dots represent conditions with a FN proportion between 0 and 0.1, and between 0.1 and 1, respectively. The percentage of FN is colored ranging from 0
(dark) to 1 (light) in intervals of 0.1 as extrapolated using a contour plot in the R package plotly (Sievert, 2020) (actual FN proportions are presented in Table 3 for
Dataset 1 and Table 4 for Dataset 2). Results for targeted mutant AF values > 20% are presented in Supplementary Figure 1 for Dataset 1 and Supplementary
Figure 2 for Dataset 2. Both the X- and Y-axis follow a logarithmic scale.

(European Commission, 2021). To evaluate the potential of
targeted amplicon-based SARS-CoV-2 WGS to detect and
quantify LFVs at low abundances, we assessed the performance
of a workflow designed for LFV detection in WGS data.
Mutations defining lineage B.1.1.7 were employed as a proof-
of-concept using an approach based on in silico modifying real
sequencing data to construct two datasets with the Illumina

technology. These two datasets comprise in total 35,100 different
samples, which results in a thorough in silico analysis requiring
a considerable amount of computational calculation hours to
validate this approach. For the first dataset, lineage B.1.1.7-
defining mutations were introduced in silico into raw wild-
type sequencing datasets. For the second dataset, the same
mutations were introduced by mixing wild-type and B.1.1.7 raw
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sequencing datasets. In Dataset 1, the coverage profiles of samples
corresponded to a typical real dataset including large fluctuations
in sequencing coverage at certain positions. In Dataset 2,
sequencing coverages were normalized, which allowed evaluating
with high precision how reliable AF detection is at specific
coverages. Afterward, the ability to both detect and quantify LFV
was evaluated. Results demonstrated that WGS enabled detecting
LFV with very high performance. As expected, lower coverages
and AFs resulted in lower sensitivity and higher variability of
estimated AFs. We found, employing the most conservative
thresholds from either Datasets 1 or 2, that a sequencing coverage
of 250, 500, 1500, and 10,000× is required to detect all LFV
at an AF of 10, 5, 3, and 1%, respectively (Tables 3, 4). For
quantification of variants, the variability remained overall small
for all conditions respecting the thresholds above, resulting
in reliable abundance estimations, despite the variability of
estimated AF increasing at lower coverages and AF. Of note, it
was observed that the profile of the genome coverage differed at
some positions between wild-type and mutant samples indicating
that the amplicon-based enrichment approach could possibly
introduce a bias. Consequently, this should be considered when
examining and quantifying the proportion of mutants in samples.
Our results can serve as a reference for the scientific community
to select appropriate thresholds for the AF and coverage. These
could also be context-specific as a smaller or larger degree of
false negatives might be warranted for specific applications, and
can also be used as a baseline for determining the number
of samples that can be multiplexed per run to optimize cost-
efficiency of WGS.

With respect to diagnostic samples, this study illustrates
it is feasible to use targeted amplicon-based metagenomic
approaches to detect co-infections and quasispecies in diagnostic
samples. There are currently only limited guidelines available
regarding the coverage and AF for such samples and those
criteria were not assessed using predefined populations. ECDC
has provided limited quality criteria regarding the sequencing
coverage, namely 500× across 95% of the genome to detect
LFV, but has not indicated the corresponding AF thresholds this
corresponds to for reliable LFV detection (ECDC, 2021). Based
on the results obtained in this study, a coverage of 500× allowed
to detect LFV until an AF of 5% with perfect sensitivity and would
therefore be less suited to detect LFV at lower AFs. Lythgoe et al.
(2021) recommended a depth of at least 100 reads with an AF
of at least 3% to detect the LFV in diagnostic samples with high
viral loads (50,000 uniquely mapped reads), while Siqueira et al.
(2021) used an AF threshold of 2% and a minimal depth coverage
of 500 reads and Karim et al. (2021) adopted an AF of 1% and a
minimal depth coverage of 10×. Based on the results in this study,
these recommendations appear not sufficiently strict, since we
observed that an AF of 1, 2, and 3%, requires at least a sequencing
coverage of 10,000, 2500, and 1500× to detect all LFV or 3500,
1000, and 500× to detect 90% of LFV, respectively. However, our
study is limited to in silico modified data from real diagnostic
samples, so these results will need to be validated using real
samples with well-established existing LFV in future research.

With respect to wastewater samples, our findings also
corroborate the feasibility of using targeted amplicon-based

metagenomics approaches for wastewater surveillance, as such
samples comprise a collection of different strains, among which
the dominant strain will define the consensus sequence of the
sample and the detected LFV will represent the circulating strains
present at lower frequencies. Only very limited recommendations
regarding wastewater sequencing are available by the competent
authorities. The EU has recommended the generation of one
million reads per sample with a read length of minimum
100 bp which corresponds to a minimum coverage of 3333×

using the Lander/Waterman equation (European Commission,
2021). Based on the results obtained in this study, a coverage
of 3000 and 3500× allowed to detect LFV until an AF of 2
and 1.5% respectively with perfect sensitivity. Other studies
that investigated LFV in wastewater have provided limited
quality criteria regarding the coverage and AF. Furthermore,
the quality criteria in those studies were not evaluated using
a defined population (Izquierdo-Lara et al., 2020; Jahn et al.,
2021). Izquierdo-Lara used a minimum depth coverage of 50×

and minimum AF of 10% (Izquierdo-Lara et al., 2021), while
Rios et al. (2021) adopted a minimum depth coverage of 100×

without indicating an AF threshold. Based on the results in
this study, these recommendations appear not sufficiently strict
as a sequencing coverage of 100× and 250× at an AF of
20 and 10% respectively was required to observe all LFV.
Obtaining high-quality sequencing reads for wastewater samples
may, however, be challenging under real-world conditions. In
contrast to diagnostic samples in which viral loads are typically
high, ranging from 104 to 107 copies/mL (Pan et al., 2020),
viral RNA loads in wastewater samples are often low, ranging
from 10−1 to 103.5 copies/mL (Saawarn and Hait, 2021). This
renders it more challenging to sequence samples with a low
viral load in addition to the RNA degradation that occurs in
wastewater samples. Additionally, variants circulating at low
frequencies in a community are expected to be present at a low
AF in wastewater samples. Nevertheless, employing the most
conservative thresholds from either Datasets 1 or 2, 90% of LFV
present at an AF of 10, 5, 3, and 1% were still detected at a
sequencing coverage of 100, 250, 500, and 2500×, respectively
(Tables 3, 4).

This study focused on the sensitivity of LFV detection and
did not explore the false positive rates (i.e., specificity). Although
our recommendations for AFs and coverages ensure high
sensitivity, often an inverse relationship exists between sensitivity
and specificity and we can therefore not exclude that false
positives occur for AF and coverage combinations considered
as providing qualitative results in this study. A false positive
detection is, however, typically less problematic compared to
a false negative result as the former can still be discovered in
follow-up investigation in contrast to the latter. Additionally,
false positive observations typically occur randomly over the
genome (McCrone et al., 2016) and it is unlikely that all VOC-
defining mutations would be simultaneously falsely detected,
even at low AFs and coverages. The issue of low viral loads,
low expected AF and potential false positives could be mitigated
by sequencing samples in duplicate when necessary. Possible
false positive results could be investigated using RT-qPCR or
RT-ddPCR assays that target those specific positions.
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TABLE 3 | Qualitative evaluation of Dataset 1 based on false negative proportions per condition until a targeted mutant AF of 20%.

Coverage→
AF%↓

100× 250× 500× 750× 1000× 1500× 2000× 2500× 3000× 3500× 4000× 4500× 5000× 10,000×

20.00% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.00% 5 0 0 0 0 0 0 0 0 0 0 0 0 0

9.50% 4 0 0 0 0 0 0 0 0 0 0 0 0 0

9.00% 7 1 0 0 0 0 0 0 0 0 0 0 0 0

8.50% 4 0 0 0 0 0 0 0 0 0 0 0 0 0

8.00% 9 2 0 0 0 0 0 0 0 0 0 0 0 0

7.50% 8 0 0 0 0 0 0 0 0 0 0 0 0 0

7.00% 10 1 0 0 0 0 0 0 0 0 0 0 0 0

6.50% 15 2 0 0 0 0 0 0 0 0 0 0 0 0

6.00% 15 1 0 0 0 0 0 0 0 0 0 0 0 0

5.50% 19 3 0 0 0 0 0 0 0 0 0 0 0 0

5.00% 22 3 0 0 0 0 0 0 0 0 0 0 0 0

4.50% 26 4 2 0 0 0 0 0 0 0 0 0 0 0

4.00% 31 6 1 0 0 0 0 0 0 0 0 0 0 0

3.50% 45 12 4 0 0 0 0 0 0 0 0 0 0 0

3.00% 47 18 4 1 0 0 0 0 0 0 0 0 0 0

2.50% 62 21 7 2 2 0 0 0 0 0 0 0 0 0

2.00% 70 32 14 7 3 0 0 0 0 0 0 0 0 0

1.50% 84 52 24 16 9 5 1 2 0 0 0 0 0 0

1.00% 96 77 54 35 28 15 8 6 6 3 2 2 2 0

0.50% 98 95 85 77 70 57 46 41 33 29 22 22 16 7

0.00% 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The percentage of FN is colored ranging from 0 (dark) to 1 (light) according to the gradient depicted in Figure 2A.

TABLE 4 | Qualitative evaluation of Dataset 2 based on false negative proportions per condition until a targeted mutant AF of 20%.

Coverage→
AF (%)↓

97× 201× 237× 482× 728× 969× 1454× 1937× 2413× 2904× 3383× 3872× 4358× 4851× 5855× 6834× 7801× 8790× 9792×

20.00% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.00% 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9.50% 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9.00% 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8.50% 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8.00% 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.50% 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.00% 9 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6.50% 18 35 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6.00% 28 38 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.50% 31 47 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.00% 35 56 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.50% 43 57 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.00% 51 59 6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3.50% 58 63 18 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3.00% 68 73 23 8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2.50% 77 82 40 21 4 3 1 0 0 0 0 0 0 0 0 0 0 0 0

2.00% 81 84 55 33 11 6 4 1 0 0 0 0 0 0 0 0 0 0 0

1.50% 89 86 69 53 24 21 12 8 4 2 1 0 0 0 0 0 0 0 0

1.00% 92 86 91 80 57 52 34 22 8 15 6 7 6 4 0 0 0 0 0

0.50% 100 98 98 92 92 89 80 70 55 62 34 41 24 35 62 55 46 35 28

0.00% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The percentage of FN is colored ranging from 0 (dark) to 1 (light) according to the gradient depicted in Figure 2B.
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FIGURE 3 | Quantitative evaluation of Dataset 1 (A) and Dataset 2 (B) using the squared SD divided by the maximal squared SD per targeted AF. The figure is
colored ranging from 0 (dark) to 1 (light) in intervals of 0.1 as extrapolated using a contour plot in the R package plotly (Sievert, 2020) (actual values are presented in
Supplementary File 3 for Dataset 1 and Supplementary File 4 for Dataset 2). Both the X- and Y-axis follow a logarithmic scale. Conditions with a FN proportion
higher than 75% were excluded and correspond to the white plane in the lower left corner.

In this study, the B.1.1.7 variant and a WT (i.e., non-VOC)
background of the same time period and location were used
as a proof-of-concept, but can be considered to also apply to
other combinations (e.g., two VOCs), since additional VOCs
in the sample material will translate into more VOC-defining
mutations in the background genomic material that will be
independently identified by the variant calling engine. In the
presence of multiple VOCs, the VOCs can be identified by

composing all possibly existing combinations of LFV as a
conservative strategy, although multiple VOCs in one sample will
also make the estimation of the relative abundance of each VOC
more complicated. If multiple VOCs with partially overlapping
defining mutations would be present in a wastewater sample,
some mutations of interest would consequently be present at
different AFs. Haplotype reconstruction methods could be used
in such situations to delineate VOCs. However, most haplotype
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reconstruction programs perform poorly under higher levels of
diversity, and haplotype populations with rare haplotypes are
often not recovered (Eliseev et al., 2020). Although haplotype
reconstruction has been described for short reads, Nanopore
sequencing might offer a substantial advantage for such cases due
to its longer reads, despite their higher error rate, to perform
haplotype estimation to delineate actual VOCs.

CONCLUSION

There exists a pressing need for recommendations for detecting
LFV for both diagnostic samples and wastewater surveillance.
Further investigation will be required to investigate the specificity
and possibility to detect VOCs instead of just mutations,
including for other existing and employed methodologies such
as probe-based capture, other amplicon-based methods, and
Nanopore sequencing. Nevertheless, using in silico modified
data derived from WGS of real diagnostic samples, this study
demonstrates the feasibility of a targeted metagenomics approach
for highly sensitive LFV detection with acceptable relative
abundance estimations using a tiled-amplicon enrichment based
on the Illumina technology. This approach enables the detection
of mutations associated with specific VOCs. Our approach
could be used to evaluate the potential occurrence of co-
infections with other SARS-CoV-2 variants with different strains
in diagnostic samples. It can also be employed to detect
multiple strains for wastewater surveillance, although several
additional challenges exist for wastewater samples such as
low viral load and potential RNA degradation. Since in this
study, high-quality data from diagnostic samples was used and
modified in silico to construct datasets to provide guidelines
for sequencing wastewater and diagnostic samples with co-
infections, future work will need to consider data coming from
samples that are closer to real data from actual diagnostic and
wastewater surveillance. In light of the pandemic urgency, and
the multiple SARS-CoV-2 wastewater surveillance initiatives that

are being established and also being integrated into overarching
coordination and preparedness initiatives such as the recently
announced European Health Emergency Preparedness and
Response Authority (European Commission, 2021), we hope that
our results will help establishing guidance and recommendations
for wastewater surveillance and other relevant applications.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

NR, KV, and XS: conceptualization. NR: project administration.
LV: data curation, investigation, and visualization. LV, TD, WC,
SD, NR, and KV: methodology. LV, TD, and WC: software
and formal analysis. LV and TD: validation. LV, TD, NR, and
KV: writing – original draft preparation. NR and PH: funding
acquisition. NR and KV: supervision. All authors: writing –
review and editing.

FUNDING

This study was financed by Sciensano through COVID-19
special funding.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2021.747458/full#supplementary-material

REFERENCES
Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O’Brien, J. W., et al.

(2020). First confirmed detection of SARS-CoV-2 in untreated wastewater in
Australia: A proof of concept for the wastewater surveillance of COVID-19 in
the community. Sci. Total Environ. 728, 138764. doi: 10.1016/j.scitotenv.2020.
138764

Azuma, K., Yanagi, U., Kagi, N., Kim, H., Ogata, M., and Hayashi, M. (2020).
Environmental factors involved in SARS-CoV-2 transmission: effect and role of
indoor environmental quality in the strategy for COVID-19 infection control.
Environ. Health Preven. Med. 25:66. doi: 10.1186/s12199-020-00904-2

Bal, A., Destras, G., Gaymard, A., Stefic, K., Marlet, J., Eymieux, S., et al. (2021).
Two-step strategy for the identification of SARS-CoV-2 variant of concern
202012/01 and other variants with spike deletion H69–V70, France, August to
December 2020. Eurosurveillance 26, 1–5. doi: 10.2807/1560-7917.ES.2021.26.
3.2100008

Bar-Or, I., Weil, M., Indenbaum, V., Bucris, E., Bar-Ilan, D., Elul, M., et al.
(2021). Detection of SARS-CoV-2 variants by genomic analysis of wastewater
samples in Israel. Sci. Total Environ. 789:148002. doi: 10.1016/j.scitotenv.2021.
148002

Bayle, C., Cantin, D., Vidal, J. S., Sourdeau, E., Slama, L., Dumesges, N., et al. (2021).
Asymptomatic SARS COV-2 carriers among nursing home staff: A source of

contamination for residents? Infect. Dis. Now 51, 197–200. doi: 10.1016/j.idnow.
2020.11.008

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.
1093/bioinformatics/btu170

Boni, M. F. (2008). Vaccination and antigenic drift in influenza. Vaccine 26,
C8–C14. doi: 10.1016/j.vaccine.2008.04.011

Bushnell, B., and BBMap (2021). Available online at: https://sourceforge.net/
projects/bbmap/ [Accessed March 29, 2021].

Centers for Disease Control and Prevention [CDC]. (2021). SARS-CoV-2
Variants. Available online at: https://www.cdc.gov/coronavirus/2019-ncov/
cases-updates/variant-surveillance/variant-info.html [accessed March 4, 2021]

Charre, C., Ginevra, C., Sabatier, M., Regue, H., Destras, G., Brun, S., et al.
(2020). Evaluation of NGS-based approaches for SARS-CoV-2 whole genome
characterisation. Virus Evol. 6:75. doi: 10.1093/ve/veaa075

Contreras, S., Dehning, J., Loidolt, M., Zierenberg, J., Spitzner, F. P., Urrea-
Quintero, J. H., et al. (2021). The challenges of containing SARS-CoV-2
via test-trace-and-isolate. Nat. Commun. 12:378. doi: 10.1038/s41467-020-20
699-8

Crits-Christoph, A., Kantor, R. S., Olm, M. R., Whitney, O. N., Al-Shayeb, B., Lou,
Y. C., et al. (2021). Genome sequencing of sewage detects regionally prevalent
SARS-CoV-2 Variants. mBio 12:20. doi: 10.1128/mBio.02703-20

Frontiers in Microbiology | www.frontiersin.org 13 October 2021 | Volume 12 | Article 747458

https://www.frontiersin.org/articles/10.3389/fmicb.2021.747458/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2021.747458/full#supplementary-material
https://doi.org/10.1016/j.scitotenv.2020.138764
https://doi.org/10.1016/j.scitotenv.2020.138764
https://doi.org/10.1186/s12199-020-00904-2
https://doi.org/10.2807/1560-7917.ES.2021.26.3.2100008
https://doi.org/10.2807/1560-7917.ES.2021.26.3.2100008
https://doi.org/10.1016/j.scitotenv.2021.148002
https://doi.org/10.1016/j.scitotenv.2021.148002
https://doi.org/10.1016/j.idnow.2020.11.008
https://doi.org/10.1016/j.idnow.2020.11.008
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1016/j.vaccine.2008.04.011
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
https://doi.org/10.1093/ve/veaa075
https://doi.org/10.1038/s41467-020-20699-8
https://doi.org/10.1038/s41467-020-20699-8
https://doi.org/10.1128/mBio.02703-20
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-747458 October 7, 2021 Time: 19:53 # 14

Van Poelvoorde et al. Recommendations for SARS-CoV-2 Low-Frequency Variant Detection

Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O.,
et al. (2021). Twelve years of SAMtools and BCFtools. GigaScience 10:8. doi:
10.1093/gigascience/giab008

Davies, N. G., Abbott, S., Barnard, R. C., Jarvis, C. I., Kucharski, A. J., Munday,
J., et al. (2021). Estimated transmissibility and severity of novel SARS-CoV-
2 Variant of Concern 202012/01 in England. medRxiv 2020:20248822. doi:
10.1101/2020.12.24.20248822

Duchene, S., Featherstone, L., HaritopoulouSinanidou, M., Rambaut, A., Lemey,
P., and Baele, G. (2020). Temporal signal and the phylodynamic threshold of
SARS-CoV-2. Virus Evol. 6, 1–8. doi: 10.1093/ve/veaa061

ECDC. (2021). Sequencing of SARS-CoV-2: first update (18 January 2021).Solna
Municipality: ECDC.

Eliseev, A., Gibson, K. M., Avdeyev, P., Novik, D., Bendall, M. L., PerezLosada, M.,
et al. (2020). Evaluation of haplotype callers for next-generation sequencing of
viruses. Infect. Genet. Evol. 82:104277. doi: 10.1016/j.meegid.2020.104277

European Commission. (2021). Commission Recommendation of 17.3.2021 on a
common approach to establish a systematic surveillance of SARS-CoV-2 and its
variants in wastewaters in the EU. Brussels: European Commission.

Ewing, A. D., Houlahan, K. E., Hu, Y., Ellrott, K., Caloian, C., Yamaguchi,
T. N., et al. (2015). Combining tumor genome simulation with crowdsourcing
to benchmark somatic single-nucleotide-variant detection. Nat. Methods 12,
623–630. doi: 10.1038/nmeth.3407

Firestone, M. J., Lorentz, A. J., Meyer, S., Wang, X., Como-Sabetti, K., Vetter,
S., et al. (2021). First Identified Cases of SARS-CoV-2 Variant P.1 in the
United States — Minnesota, January 2021. MMWR. Morb. Mortal. Week. Rep.
70, 346–347. doi: 10.15585/mmwr.mm7010e1

Gómez, C. E., Perdiguero, B., and Esteban, M. (2021). Emerging SARS-CoV-2
Variants and Impact in Global Vaccination Programs against SARS-CoV-
2/COVID-19. Vaccines 9:243. doi: 10.3390/vaccines9030243

GOV.UK - Scientific Advisory Group for Emergencies. (2021). NERVTAG: Update
note on B.1.1.7 severity. Available online at: https://assets.publishing.service.
gov.uk/government/uploads/system/uploads/attachment_data/file/961042/
S1095_NERVTAG_update_note_on_B.1.1.7_severity_20210211.pdf [accessed
March 4, 2021].

Greaney, A. J., Starr, T. N., Gilchuk, P., Zost, S. J., Binshtein, E., Loes, A. N., et al.
(2021). Complete Mapping of Mutations to the SARS-CoV-2 spike receptor-
binding domain that escape antibody recognition. Cell Host Microbe 29, 44–57.
doi: 10.1016/j.chom.2020.11.007

Harris, C. R., Millman, K. J., vanderWalt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585,
357–362. doi: 10.1038/s41586-020-2649-2

Hartley, P. D., Tillett, R. L., AuCoin, D. P., Sevinsky, J. R., Xu, Y., Gorzalski, A., et al.
(2021). Genomic surveillance of Nevada patients revealed prevalence of unique
SARS-CoV-2 variants bearing mutations in the RdRp gene. J. Genet. Genomics
2021:4. doi: 10.1016/j.jgg.2021.01.004

Hoffmann, M., Arora, P., GroB, R., Seidel, A., Hornich, B. F., Hahn, A. S.,
et al. (2021). SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing
antibodies. Cell 2021:36. doi: 10.1016/j.cell.2021.03.036

Isakov, O., Borderia, A. V., Golan, D., Hamenahem, A., Celniker, G., Yoffe, L.,
et al. (2015). Deep sequencing analysis of viral infection and evolution allows
rapid and detailed characterization of viral mutant spectrum. Bioinformatics 31,
2141–2150. doi: 10.1093/bioinformatics/btv101

Izquierdo-Lara, R., Elsinga, G., Heijnen, L., Munnink, B. B. O., Schapendonk,
C. M. E., Nieuwenhuijse, D., et al. (2021). Monitoring SARS-CoV-2 Circulation
and Diversity through Community Wastewater Sequencing, the Netherlands
and Belgium. Emerg. Infect. Dis. 27, 1405–1415. doi: 10.3201/eid2705.204410

Izquierdo-Lara, R., Elsinga, G., Heijnen, L., Oude Munnink, B. B., Schapendonk,
C. M. E., Nieuwenhuijse, D., et al. (2020). Monitoring SARS-CoV-2
circulation and diversity through community wastewater sequencing. medRxiv
2020:20198838. doi: 10.1101/2020.09.21.20198838

Jahn, K., Dreifuss, D., Topolsky, I., Kull, A., Ganesanandamoorthy, P., Fernandez-
Cassi, X., et al. (2021). Detection of SARS-CoV-2 variants in Switzerland by
genomic analysis of wastewater samples. medRxiv 2021:21249379. doi: 10.1101/
2021.01.08.21249379

Karim, F., Moosa, M. Y. S., Gosnell, B. I., Cele, S., Giandhari, J., Pillay, S.,
et al. (2021). Persistent SARS-CoV-2 infection and intra-host evolution in
association with advanced HIV infection. medRxiv 2021:21258228. doi: 10.
1101/2021.06.03.21258228

Kim, D., Lee, J. Y., Yang, J. S., Kim, J. W., Kim, V. N., and Chang, H. (2020). The
Architecture of SARS-CoV-2 Transcriptome. Cell 181, 914–921. doi: 10.1016/j.
cell.2020.04.011

Kundu, S., Lockwood, J., Depledge, D. P., Chaudhry, Y., Aston, A., Rao, K., et al.
(2013). Next-Generation whole genome sequencing identifies the direction of
norovirus transmission in linked patients. Clin. Infect. Dis. 57, 407–414. doi:
10.1093/cid/cit287

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie
2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Leclerc, Q. J., Fuller, N. M., Knight, L. E., Funk, S., and Knight, G. M. (2020). What
settings have been linked to SARS-CoV-2 transmission clusters? Wellcome Open
Res. 5:83. doi: 10.12688/wellcomeopenres.15889.2

Leinonen, R., Sugawara, H., and Shumway, M. (2011). The Sequence Read Archive.
Nucleic Acids Res. 39, D19–D21. doi: 10.1093/nar/gkq1019

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009).
The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–
2079. doi: 10.1093/bioinformatics/btp352

Lin, J., Tang, C., Wei, H., Du, B., Chen, C., Wang, M., et al. (2021). Genomic
monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates
type I interferon response. Cell Host Microbe. 29, 489–502. doi: 10.1016/j.chom.
2021.01.015

Lindenbaum, P. (2015). JVarkit: java-based utilities for Bioinformatics. Comp. Sci.
2015:30. doi: 10.6084/M9.FIGSHARE.1425030.V1

Lythgoe, K. A., Hall, M., Ferretti, L., de Cesare, M., MacIntyre-Cockett, G., Trebes,
A., et al. (2021). SARS-CoV-2 within-host diversity and transmission. Science
372:eabg0821. doi: 10.1126/science.abg0821

Macalalad, A. R., Zody, M. C., Charlebois, P., Lennon, N. J., Newman, R. M.,
Malboeuf, C. M., et al. (2012). Highly Sensitive and Specific Detection of Rare
Variants in Mixed Viral Populations from Massively Parallel Sequence Data.
PLoS Comput. Biol. 8:e1002417. doi: 10.1371/journal.pcbi.1002417

McCrone, J. T., Lauring, A. S., and Lauring, S. (2016). Measurements of intrahost
viral diversity are extremely sensitive to systematic errors in variant calling.
J. Virol. 90, 6884–6895. doi: 10.1128/JVI.00667-16

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky,
A., et al. (2010). The Genome Analysis Toolkit: A MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303.
doi: 10.1101/gr.107524.110

Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., and Brouwer, A. (2020).
Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with
Reported COVID-19 prevalence in the early stage of the epidemic in the
netherlands. Environ. Sci. Technol. Lett. 7, 511–516. doi: 10.1021/acs.estlett.
0c00357

Mishra, S., Mindermann, S., Sharma, M., Whittaker, C., Mellan, T. A., Wilton,
T., et al. (2021). Changing composition of SARS-CoV-2 lineages and rise of
Delta variant in England. EClin. Med 39:101064. doi: 10.1016/j.eclinm.2021.10
1064

Mölder, F., Jablonski, K. P., Letcher, B., Hall, M. B., Tomkins-Tinch, C. H., Sochat,
V., et al. (2021). Sustainable data analysis with Snakemake. F1000 Res. 10:33.
doi: 10.12688/f1000research.29032.1

Nemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C.,
et al. (2020). Temporal Detection and Phylogenetic Assessment of SARS-CoV-2
in Municipal Wastewater. Cell Rep. Med. 1, 100098. doi: 10.1016/j.xcrm.2020.
100098

Pan, Y., Zhang, D., Yang, P., Poon, L. L. M., and Wang, Q. (2020). Viral load of
SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 20, 411–412. doi: 10.1016/
S1473-3099(20)30113-4

Panchal, D., Prakash, O., Bobde, P., and Pal, S. (2021). SARS-CoV-2: sewage
surveillance as an early warning system and challenges in developing countries.
Environ. Sci. Poll. Res. 2021:8. doi: 10.1007/s11356-021-13170-8

Public Health England. (2021). Variants of concern or under investigation. Available
online at: https://www.gov.uk/government/publications/covid-19-variants-
genomically-confirmed-case-numbers/variants-distribution-of-cases-data
[accessed March 4, 2021]

Quinlan, A. R., and Hall, I. M. (2010). BEDTools: a flexible suite of utilities
for comparing genomic features. Bioinformatics 26, 841–842. doi: 10.1093/
bioinformatics/btq033

Rambaut, A., Loman, N., Pybus, O., Barcly, W., Barrett, J., Carabelli, A., et al.
(2021). Preliminary genomic characterisation of an emergent SARS-CoV-2

Frontiers in Microbiology | www.frontiersin.org 14 October 2021 | Volume 12 | Article 747458

https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1101/2020.12.24.20248822
https://doi.org/10.1101/2020.12.24.20248822
https://doi.org/10.1093/ve/veaa061
https://doi.org/10.1016/j.meegid.2020.104277
https://doi.org/10.1038/nmeth.3407
https://doi.org/10.15585/mmwr.mm7010e1
https://doi.org/10.3390/vaccines9030243
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/961042/S1095_NERVTAG_update_note_on_B.1.1.7_severity_20210211.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/961042/S1095_NERVTAG_update_note_on_B.1.1.7_severity_20210211.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/961042/S1095_NERVTAG_update_note_on_B.1.1.7_severity_20210211.pdf
https://doi.org/10.1016/j.chom.2020.11.007
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.jgg.2021.01.004
https://doi.org/10.1016/j.cell.2021.03.036
https://doi.org/10.1093/bioinformatics/btv101
https://doi.org/10.3201/eid2705.204410
https://doi.org/10.1101/2020.09.21.20198838
https://doi.org/10.1101/2021.01.08.21249379
https://doi.org/10.1101/2021.01.08.21249379
https://doi.org/10.1101/2021.06.03.21258228
https://doi.org/10.1101/2021.06.03.21258228
https://doi.org/10.1016/j.cell.2020.04.011
https://doi.org/10.1016/j.cell.2020.04.011
https://doi.org/10.1093/cid/cit287
https://doi.org/10.1093/cid/cit287
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.12688/wellcomeopenres.15889.2
https://doi.org/10.1093/nar/gkq1019
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1016/j.chom.2021.01.015
https://doi.org/10.1016/j.chom.2021.01.015
https://doi.org/10.6084/M9.FIGSHARE.1425030.V1
https://doi.org/10.1126/science.abg0821
https://doi.org/10.1371/journal.pcbi.1002417
https://doi.org/10.1128/JVI.00667-16
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1021/acs.estlett.0c00357
https://doi.org/10.1021/acs.estlett.0c00357
https://doi.org/10.1016/j.eclinm.2021.101064
https://doi.org/10.1016/j.eclinm.2021.101064
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.1016/j.xcrm.2020.100098
https://doi.org/10.1016/j.xcrm.2020.100098
https://doi.org/10.1016/S1473-3099(20)30113-4
https://doi.org/10.1016/S1473-3099(20)30113-4
https://doi.org/10.1007/s11356-021-13170-8
https://www.gov.uk/government/publications/covid-19-variants-genomically-confirmed-case-numbers/variants-distribution-of-cases-data
https://www.gov.uk/government/publications/covid-19-variants-genomically-confirmed-case-numbers/variants-distribution-of-cases-data
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-747458 October 7, 2021 Time: 19:53 # 15

Van Poelvoorde et al. Recommendations for SARS-CoV-2 Low-Frequency Variant Detection

lineage in the UK defined by a novel set of spike mutations. Available online
at: https://virological.org/t/preliminary-genomic-characterisation-of-an-
emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-
mutations/563 [accessed March 4, 2021].

Rios, G., Lacoux, C., Leclercq, V., Diamant, A., Lebrigand, K., Lazuka, A., et al.
(2021). Monitoring SARS-CoV-2 variants alterations in Nice neighborhoods by
wastewater nanopore sequencing. medRxiv 2021:21257475. doi: 10.1101/2021.
07.09.21257475

Rogers, M. B., Song, T., Sebra, R., Greenbaum, B. D., Hamelin, M.-E., Fitch, A., et al.
(2015). Intrahost dynamics of antiviral resistance in influenza A virus reflect
complex patterns of segment linkage, reassortment, and natural selection. mBio
6:14. doi: 10.1128/mBio.02464-14

Saawarn, B., and Hait, S. (2021). Occurrence, fate and removal
of SARS-CoV-2 in wastewater: Current knowledge and future
perspectives. J. Environ. Chem. Eng. 9:104870. doi: 10.1016/j.jece.2020.
104870

SAGE-EMG, SPI-B, Tranmission Group. (2020). Mitigations to Reduce
Transmission of the new variant SARS-CoV-2 virus. Available online at:
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/
attachment_data/file/948607/s0995-mitigations-to-reduce-transmission-of-
the-new-variant.pdf [accessed March 4, 2021].

Shao, W., Li, X., Goraya, M. U., Wang, S., and Chen, J.-L. L. (2017). Evolution of
Influenza A Virus by Mutation and Re-Assortment. Int. J. Mol. Sci. 18:1650.
doi: 10.3390/ijms18081650

Sharif, S., Ikram, A., Khurshid, A., Salman, M., Mehmood, N., Arshad, Y.,
et al. (2021). Detection of SARs-CoV-2 in wastewater using the existing
environmental surveillance network: A potential supplementary system for
monitoring COVID-19 transmission. PLoS One 16:e0249568. doi: 10.1371/
journal.pone.0249568

Shu, Y., and McCauley, J. (2017). GISAID: Global initiative on sharing all influenza
data – from vision to reality. Eurosurveillance 22:30494. doi: 10.2807/1560-
7917.ES.2017.22.13.30494

Sievert, C. (2020). Interactive Web-Based Data Visualization with R, plotly, and
shiny. Boca Raton, FL: CRC Press.

Simon, B., Pichon, M., Valette, M., Burfin, G., Richard, M., Lina, B., et al. (2019).
Whole Genome Sequencing of A(H3N2) Influenza Viruses Reveals Variants
Associated with Severity during the 2016–2017 Season. Viruses 11:108. doi:
10.3390/v11020108

Sinclair, R. G., Choi, C. Y., Riley, M. R., and Gerba, C. P. (2008). Pathogen
Surveillance Through Monitoring of Sewer Systems. Adv. Appl. Microbiol. 65,
249–269. doi: 10.1016/S0065-2164(08)00609-6

Siqueira, J. D., Goes, L. R., Alves, B. M., de Carvalho, P. S., Cicala, C., Arthos,
J., et al. (2021). SARS-CoV-2 genomic analyses in cancer patients reveal
elevated intrahost genetic diversity. Virus Evol. 7:veab013. doi: 10.1093/ve/vea
b013

Thompson, J. R., Nancharaiah, Y. V., Gu, X., Lee, W. L., Rajal, V. B., Haines,
M. B., et al. (2020). Making waves: Wastewater surveillance of SARS-CoV-2 for
population-based health management. Water Res. 184:116181. doi: 10.1016/j.
watres.2020.116181

van Dorp, L., Acman, M., Richard, D., Shaw, L. P., Ford, C. E., Ormond, L.,
et al. (2020). Emergence of genomic diversity and recurrent mutations in
SARS-CoV-2. Infect. Genet. Evol. 83:104351. doi: 10.1016/j.meegid.2020.104351

WHO (2021). Tracking SARS-CoV-2 variants. Available online at: https://www.
who.int/en/activities/tracking-SARS-CoV-2-variants/ [accessed June 23, 2021]

Wilm, A., Aw, P. P. K., Bertrand, D., Yeo, G. H. T., Ong, S. H., Wong, C. H.,
et al. (2012). LoFreq: a sequence-quality aware, ultra-sensitive variant caller for
uncovering cell-population heterogeneity from high-throughput sequencing
datasets. Nucleic Acids Res. 40, 11189–11201. doi: 10.1093/nar/gks918

Wu, F., Zhang, J., Xiao, A., Gu, X., Lee, W. L., Armas, F., et al. (2020a). SARS-CoV-
2 Titers in wastewater are higher than expected from clinically confirmed cases.
mSystems 5:61420. doi: 10.1128/mSystems.00614-20

Wu, Y., Guo, C., Tang, L., Hong, Z., Zhou, J., Dong, X., et al. (2020b). Prolonged
presence of SARS-CoV-2 viral RNA in faecal samples. Lancet. Gastroenterol.
Hepatol. 5, 434–435. doi: 10.1016/S2468-1253(20)30083-2

Xagoraraki, I., and O’Brien, E. (2020). “Wastewater-Based Epidemiology for Early
Detection of Viral Outbreaks,” in Women in Engineering and Science, ed. D. J.
O’Bannon (New York, NY: Springer International Publishing), 75–97. doi: 10.
1007/978-3-030-17819-2_5

Zhang, W., Du, R.-H., Li, B., Zheng, X.-S., Yang, X.-L., Hu, B., et al. (2020).
Molecular and serological investigation of 2019-nCoV infected patients:
implication of multiple shedding routes. Emerg. Microbes Infect. 9, 386–389.
doi: 10.1080/22221751.2020.1729071

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Van Poelvoorde, Delcourt, Coucke, Herman, De Keersmaecker,
Saelens, Roosens and Vanneste. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 15 October 2021 | Volume 12 | Article 747458

https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
https://doi.org/10.1101/2021.07.09.21257475
https://doi.org/10.1101/2021.07.09.21257475
https://doi.org/10.1128/mBio.02464-14
https://doi.org/10.1016/j.jece.2020.104870
https://doi.org/10.1016/j.jece.2020.104870
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/948607/s0995-mitigations-to-reduce-transmission-of-the-new-variant.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/948607/s0995-mitigations-to-reduce-transmission-of-the-new-variant.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/948607/s0995-mitigations-to-reduce-transmission-of-the-new-variant.pdf
https://doi.org/10.3390/ijms18081650
https://doi.org/10.1371/journal.pone.0249568
https://doi.org/10.1371/journal.pone.0249568
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
https://doi.org/10.3390/v11020108
https://doi.org/10.3390/v11020108
https://doi.org/10.1016/S0065-2164(08)00609-6
https://doi.org/10.1093/ve/veab013
https://doi.org/10.1093/ve/veab013
https://doi.org/10.1016/j.watres.2020.116181
https://doi.org/10.1016/j.watres.2020.116181
https://doi.org/10.1016/j.meegid.2020.104351
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://doi.org/10.1093/nar/gks918
https://doi.org/10.1128/mSystems.00614-20
https://doi.org/10.1016/S2468-1253(20)30083-2
https://doi.org/10.1007/978-3-030-17819-2_5
https://doi.org/10.1007/978-3-030-17819-2_5
https://doi.org/10.1080/22221751.2020.1729071
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Strategy and Performance Evaluation of Low-Frequency Variant Calling for SARS-CoV-2 Using Targeted Deep Illumina Sequencing
	Introduction
	Materials and Methods
	Employed Sequencing Data and Generation of Consensus Genome Sequences
	Low-Frequency Variants Detection
	Dataset 1: In silico Insertion of Mutations of Interest Into Raw Sequencing Datasets
	Dataset 2: Introduction of Mutations of Interest by Mixing Wild-Type and Mutant Raw Sequencing Read Datasets

	Qualitative Evaluation of Detection of B.1.1.7 at Different Abundances
	Quantitative Evaluation of Detection of B.1.1.7 at Different Abundances

	Results
	Qualitative Evaluation Demonstrates That B.1.1.7 Clade-Defining Mutations Can Be Reliably Detected at Low Allelic Frequency When Sequencing Coverage Is Adequately High
	Quantitative Evaluation Demonstrates That the Resulting Allelic Frequencies for B.1.1.7 Clade-Defining Mutations Are Close to Their Target Values

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References




