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Mycoplasma pneumoniae, a human pathogenic bacterium, binds to sialylated
oligosaccharides and glides on host cell surfaces via a unique mechanism. Gliding
motility is essential for initiating the infectious process. In the present study, we
measured the stall force of an M. pneumoniae cell carrying a bead that was manipulated
using optical tweezers on two strains. The stall forces of M129 and FH strains were
averaged to be 23.7 and 19.7 pN, respectively, much weaker than those of other
bacterial surface motilities. The binding activity and gliding speed of the M129 strain
on sialylated oligosaccharides were eight and two times higher than those of the
FH strain, respectively, showing that binding activity is not linked to gliding force.
Gliding speed decreased when cell binding was reduced by addition of free sialylated
oligosaccharides, indicating the existence of a drag force during gliding. We detected
stepwise movements, likely caused by a single leg under 0.2-0.3 mM free sialylated
oligosaccharides. A step size of 14-19 nm showed that 25-35 propulsion steps per
second are required to achieve the usual gliding speed. The step size was reduced to
less than half with the load applied using optical tweezers, showing that a 2.5 pN force
from a cell is exerted on a leg. The work performed in this step was 16-30% of the
free energy of the hydrolysis of ATP molecules, suggesting that this step is linked to
the elementary process of M. pneumoniae gliding. We discuss a model to explain the
gliding mechanism, based on the information currently available.

Keywords: motility, optical tweezers, class Mollicutes, infection, sialic acid

INTRODUCTION

Members of the bacterial class Mollicutes, which includes the genus Mycoplasma, are parasitic and
occasionally commensal bacteria that are characterized by small cells and genomes and by the
absence of a peptidoglycan layer (Razin et al., 1998; Razin and Hayflick, 2010). Mycoplasma species
bind to host cell surfaces and exhibit gliding motility to spread the infectious area. Interestingly,
Mycoplasma gliding does not involve flagella or pili and is completely unrelated to other bacterial
motility systems or conventional motor proteins that are common in eukaryotic motility (Miyata
et al., 2020). The gliding motility of Mycoplasma is divided into two types, Mycoplasma pneumoniae
and Mycoplasma mobile, which share no homology in component proteins, indicating independent
mechanisms (Miyata and Hamaguchi, 2016a,b).

Frontiers in Microbiology | www.frontiersin.org 1 September 2021 | Volume 12 | Article 747905

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.747905
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.747905
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.747905&domain=pdf&date_stamp=2021-09-24
https://www.frontiersin.org/articles/10.3389/fmicb.2021.747905/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-747905 September 20, 2021 Time: 13:1 # 2

Mizutani et al. Mycoplasma pneumoniae Gliding

Mycoplasma pneumoniae is a human pathogen that
causes respiratory diseases, including bronchitis and atypical
pneumonia (Saraya, 2017). M. pneumoniae cells bind to human
epithelial surfaces through sialylated oligosaccharides (SOs),
which are major structures of animal cell surfaces related to
cell-cell recognition, and the binding targets of many pathogens
and toxins (Nagai and Miyata, 2006; Varki, 2008; Kasai et al.,
2013; Williams et al., 2018). The cells show unidirectional gliding
motility at a speed of up to 1 µm/s on SO-coated glass surfaces
(Figure 1A; Nakane and Miyata, 2009; Miyata and Hamaguchi,
2016a), which is known to be essential for their infection (Prince
et al., 2014). The gliding machinery, called the “attachment
organelle,” is localized at a cell pole (Seto et al., 2001). The
attachment organelle is divided into two parts: internal and
surface structures. The internal structure is composed of an
internal core complex and a surrounding translucent area.
The internal core comprises three parts: a terminal button,
paired plates, and a bowl complex from the front side of the
cell (Figure 1B; Nakane et al., 2015; Kawamoto et al., 2016;
Miyata and Hamaguchi, 2016a). The major surface structure,
called “P1 adhesin complex” or “genitalium and pneumoniae
cytoadhesin (GPCA),” is composed of P1 adhesin and P40/P90
proteins and aligned around the internal structure, which plays a
dual role as the adhesin to bind to SOs and as the leg for gliding
(Figure 1B; Nakane et al., 2011; Aparicio et al., 2018, 2020;
Vizarraga et al., 2020, 2021). The model for gliding called the
“Inchworm model” or “Double-spring hybrid ratchet model” is
proposed, in which cells repeat the extensions and contractions
of the attachment organelle based on the energy from ATP

FIGURE 1 | Gliding motility of Mycoplasma pneumoniae. (A) Phase-contrast
micrograph of M. pneumoniae cells. The gliding direction of cells are indicated
by white arrows. (B) Illustration of gliding machinery. The gliding machinery is
composed of bowl complex, paired plates, terminal button, and GPCA. The
lengths along the cell axis were summarized from previous studies (Nakane
et al., 2015; Vizarraga et al., 2020). GPCA, working as a leg is anchored to the
cell membrane (CM) and catches sialylated oligosaccharides (SOs) fixed on
solid surfaces.

hydrolysis to enable smooth gliding (Miyata, 2008; Kawamoto
et al., 2016; Seybert et al., 2018; Mizutani and Miyata, 2019).
Generally, the mechanical characteristics and detailed analysis of
movements are essential for creating and completing a detailed
model for the motility mechanism (Schnitzer and Block, 1997;
Veigel et al., 1999; Tanaka et al., 2002; Mallik et al., 2004; Sowa
et al., 2005). However, to date, no information is available about
the force for gliding.

In the present study, we measured the stall forces of the two
strains and discuss the relationship between binding and force.
Furthermore, we succeeded in detecting and measuring stepwise
movements that are likely linked to the elementary process of the
gliding reaction.

MATERIALS AND METHODS

Strains and Cultivation
Mycoplasma pneumoniae M129 (ATCC29342) and FH strains
were grown in SP-4 medium at 37◦C in tissue culture flasks
(TPP Techno Plastic Products AG, Trasadingen, Switzerland), as
described previously (Tully, 1983; Nakane and Miyata, 2009). The
FH strain was kindly provided by Tsuyoshi Kenri at the National
Institute of Infectious Diseases, Tokyo, Japan.

Optical Tweezers System
An inverted microscope (IX71; Olympus, Tokyo, Japan) was
equipped with a Nd:YAG laser (ASF1JE01; Furukawa Electric,
Tokyo, Japan) to construct the optical tweezers. The microscope
stage was replaced by a piezoelectric stage controlled by a stage
controller (MDR14-CA-2.5; SIGMAKOKI, Tokyo, Japan) and a
joystick (JS-300; SIGMAKOKI). The irradiated laser beam was
concentrated as a finite optical system using a plano-convex
lens supported by “optical cage system” (SIGMAKOKI). The
concentrated laser beam was inserted into the microscope and
focused by an objective lens (CFI Apochromat TIRF 100XC Oil;
Nikon, Tokyo, Japan). The actual laser power was measured
using a power meter (FieldMaxII; COHERENT, Santa Clara, CA,
United States) without the objective lens.

Force Measurements
The cell suspension was mixed with 0.5 mM Sulfo-NHS-LC-LC-
biotin (Thermo Fisher Scientific, Waltham, MA, United States)
as the final concentration and incubated for 15 min at room
temperature (RT). The cell suspension was centrifuged at
12,000 × g for 10 min, washed with 10 mM HEPES buffer
(pH 7.4) containing 150 mM NaCl, centrifuged again, washed
with HEPES buffer containing 10% non-heat-inactivated horse
serum (Gibco; Thermo Fisher Scientific) and 20 mM glucose,
passed through a 0.45-µm pore size filter and incubated for
15 min at RT. The cell suspension was inserted into a tunnel
chamber, which was assembled by taping coverslips cleaned
with saturated ethanolic KOH and precoated with 100% non-
heat-inactivated horse serum for 60 min and 10 mg/ml bovine
serum albumin (Sigma-Aldrich, St. Louis, MO, United States)
in HEPES buffer for 60 min at RT. The tunnel chamber was
washed with HEPES buffer containing 20 mM glucose and
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incubated at 37◦C on optical tweezers equipped with a thermo
plate (MATS-OTOR-MV; Tokai Hit, Shizuoka, Japan) and a lens
heater (MATS-LH; Tokai Hit). Avidin-conjugated beads in the
HEPES buffer containing 20 mM glucose and 0.2-0.3 mM of 3′-
N-acetylneuraminyllactose (SL) were sonicated and inserted into
the tunnel chamber. The avidin-conjugated beads were prepared
as previously described (Mizutani and Miyata, 2017). The bead
movements were recorded using a charge-coupled device (CCD)
camera (LRH2500XE-1; DigiMo, Tokyo, Japan) at 30 frames per
second and analyzed by displacement of up to 200 nm from the
trap center (the linear range of the laser trap) using ImageJ 1.43u1

and IGOR Pro 6.33 J and 8.02 J (WaveMetrics, Portland, OR,
United States) (Tanaka et al., 2016; Mizutani and Miyata, 2017;
Mizutani et al., 2018). Measurements were performed using at
least five individual cultures.

Binding and Gliding Analyses
Cultured cells were washed with buffer in a culture flask, and
then washed with HEPES buffer containing 10% non-heat-
inactivated horse serum (Gibco; Thermo Fisher Scientific) and
20 mM glucose. Cultured cells were scraped off the culture flask,
passed through a 0.45-µm pore size filter, and incubated for
15 min at RT. The cell suspension was then inserted into the
tunnel chamber. The tunnel chamber was washed with HEPES
buffer containing 20 mM glucose, incubated at 37◦C on an
inverted microscope (IX83; Olympus) equipped with a thermo
plate and lens heater, observed by phase-contrast microscopy
at 37◦C, and recorded with a CCD camera (DMK 33UX174;
The Imaging Source Asia Co., Ltd., Taipei City, Taiwan). Then,
the tunnel chamber was washed with HEPES buffer containing
20 mM glucose and various concentrations of SL. Video data were
analyzed using ImageJ 1.43u and IGOR Pro 6.33 J. Measurements
were performed using at least three individual cultures.

Genome Sequencing and Variant
Analyses
Frozen stocks of cells were plated on Aluotto medium and
isolated as previously described (Tulum et al., 2014). Genomic
DNA was isolated and sequenced using MiSeq (Illumina, San
Diego, CA, United States), as previously described (Mizutani
et al., 2018). Sequence read mapping and variant detection were
performed using the CLC Genomics Workbench (QIAGEN,
Hilden, Germany).

RESULTS

Differences in Amino Acid Sequences of
Gliding Proteins Between Two Strains
In this study, mainly we focused on a type strain “M129-
B7,” and also another major strain called “FH.” The FH
strain used in this study has not been genomically analyzed.
Therefore, we sequenced the genomes of both strains using MiSeq

1http://rsb.info.nih.gov/ij/

(Supplementary Data Sheet 1) and analyzed the sequences of
14 genes that have been reported to be involved in binding
and gliding (Miyata and Hamaguchi, 2016a). Only one amino
acid was substituted in the M129 strain genome from the
M129-B7 genome (GenBank accession no. CP003913), which
was V196A in the HMW3 protein, which is positioned at
the terminal button in the attachment organelle (Figure 1B).
Our FH strain had 161 and 155 variations from the reported
FH and FH2009 strains, respectively (GenBank accession no.
CP010546 and CP017327), indicating that the FH strain is
distant from the genome strains. The differences between
the two strains analyzed in the present study in terms
of the 14 genes were as follows: (i) P1 adhesin showed
many differences, including 87 single amino acid substitutions,
18 amino acid insertions, and four amino acid deletions,
known differences of FH from M129 strains (Supplementary
Figure 1). (ii) The P40/P90 protein showed 96 single amino
acid substitutions, one amino acid insertion, and 68 amino
acid deletions (Supplementary Figure 2). (iii) The other 12
genes showed 0-5 mutations in each gene, as summarized in
Supplementary Table 1.

Stall Force Measurement Using Optical
Tweezers
Optical tweezers are commonly used to measure the stall force
generated by pili in bacterial motility or motor proteins in
eukaryotic motility (Kojima et al., 1997; Merz et al., 2000;
Takagi et al., 2006; Gennerich et al., 2007). The stall force is
defined as the force needed to stop movements and is equal to
the maximal propulsion force for locomotion. Previously, we
measured the stall force for the gliding motility of M. mobile,
based on a mechanism unrelated to M. pneumoniae gliding, using
optical tweezers (Miyata et al., 2002; Mizutani et al., 2018). In
the present study, we applied this method to M. pneumoniae
gliding. M. pneumoniae cells were biotinylated and inserted into
a tunnel chamber, which was assembled using two glass plates
and double-sided tape (Mizutani and Miyata, 2017). An avidin-
conjugated polystyrene bead was trapped by a highly focused
laser beam and attached to a gliding cell at the back end of
the cell body by exploiting the avidin-biotin interaction. The
cells pulled the bead from the trap center with gliding and then
stalled (Figures 2A,B and Supplementary Video 1). The force
was calculated by measuring the distance between the centers of
the bead and the laser trap, which was multiplied by the trap
stiffness; the force acting on the bead increased linearly with
the displacement from the trap center (Kojima et al., 1997).
Starting from 0 s, the pulling force increased and reached a
plateau in 120 s (Figure 2C). The maximal value of the force
averaged over 1 s was determined as the stall force. The stall
force of M129 strain cells was 23.7 ± 6.3 pN (Figure 2E). We
also measured the stall force of the FH strain. The cells of the FH
strain pulled the bead in a manner similar to that of M129 cells
(Supplementary Video 2). The stall force of the FH strain was
19.7 ± 5.3 pN, significantly weaker than that of the M129 strain
(Figures 2D,E).
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FIGURE 2 | Stall force measurements. (A) Illustrations of experimental design for force measurements. The white arrow indicates the gliding direction. (B) Optical
micrographs of trapped cell. The cell attached with a bead (large black ring with white center) glided in the direction of white arrow from 0 and stalled in 180 s. The
cell image can be observed near the base of arrow. (C) Four representative time courses of force increments for M129 strain. The broken lines indicate the values of
stall force. (D) Four representative time courses of force increments for FH strain. The broken lines indicate the values of stall force. (E) Scatter dot plot of stall force
(n = 92 and 88 in M129 and FH, respectively) shown with averages (thick lines) and standard deviations (thin lines). *p = 2.4 × 10−6 by Student’s t-test.

Effect of Free Sialyllactose on Binding
and Gliding
Mycoplasma pneumoniae cells have hundreds of legs and glide
smoothly on solid surfaces. To trace the behavior of a single
propulsion event, the number of working legs should be reduced
by adding a free form of SO, which is the binding target
for gliding (Kasai et al., 2013; Kinosita et al., 2014; Mizutani
et al., 2018). To quantitatively analyze the effects of free SO
on the binding activity and gliding under our conditions, we
measured the bound ratio of cells and the gliding speed of
the M129 strain under various concentrations of the SO, 3′-N-
acetylneuraminyllactose (SL). M. pneumoniae cells suspended in
the buffer were inserted into a tunnel chamber. Then, the cell
behavior in 0–0.5 mM SL solutions was analyzed. The addition
of free SL slowed down and then stopped gliding or released the
gliding cells from the glass surfaces, but did not release non-
gliding cells, indicating that release requires glass binding by
GPCA with displacements (Figure 3A). The number of gliding
cells and the gliding speed relative to the initial speed were

decreased by 0.1-0.5 mM with SL treatments from 55 ± 11%
to 26 ± 16% and from 0.33 ± 0.06 to 0.19 ± 0.07 µm/s,
respectively (Figures 3B,C). We then decided to use 0.2-0.3 mM
concentrations for further experiments because the binding and
gliding were partially inhibited under these conditions, which
were advantageous for observing single propulsion events caused
by a single leg during gliding.

Stepwise Gliding Movements Observed
Under Free SL
Next, we traced cells under 0.2-0.3 mM free SL conditions as
performed in the stall force measurements. The gliding cells
slowly pulled the beads from the trap center. Half of the tested
cells stalled in 120 s, but the other cells repeated creeping
movements and detachment from the glass surfaces (Figure 4A).
The stall force of the cells that reached a plateau in 120 s was
16.2 ± 4.5 pN (Figure 4B), which was significantly weaker
than that without SL (p = 1.1 × 10−5 by Student’s t-test). In
creeping movements, cells occasionally showed discontinuous
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FIGURE 3 | Effects of SL on binding and gliding. (A) Gliding cells were treated
with free SL. The cell trajectories after SL treatment are presented as a stack
for 20 s, changing color from red to blue. SL concentrations are shown at left
upper of each panel. (B) Number of cells bound to the glass at 5 min after the
treatment are plotted relative to the initial cell number. The averages for gliding
(red triangles) and non-gliding (blue triangles) cells are shown with the
standard deviations (n = 10, 10, 10, 10, 9, 10 for 0, 0.1, 0.2, 0.3, 0.4, 0.5 mM,
respectively). (C) Averaged gliding speeds under various SL concentrations
are plotted with the standard deviations and fitted by a sigmoidal curve
(n = 50, 50, 50, 50, 56, 56 for 0, 0.1, 0.2, 0.3, 0.4, 0.5 mM, respectively).

displacements, which were mostly stepwise (Figures 4C,D).
Individual displacements in a stepwise time course were analyzed
using the pairwise distance function (Kinosita et al., 2014;
Mizutani et al., 2018). The displacements shown in Figure 4D
were uniformly distributed at about 17-, 14-, and 16-nm
intervals under 0.15, 0.20, and 0.17 pN/nm of trap stiffness,
corresponding to 2.55, 2.80, and 2.66 pN of propulsion force,
respectively (Figures 4D,E). Note that force increments are
generally calculated from the trap stiffness × displacement
(Kojima et al., 1997; Mizutani et al., 2018).

Next, to examine the load dependency of step sizes in
detail, we measured step sizes under 0.07–0.26 pN/nm of trap
stiffness. Ninety-seven steps in 36 cell trajectories, including at
least two continuous steps, were detected. The step sizes under
0.13 to 0.26 pN/nm of trap stiffness linearly decreased from
21.0 to 8.0 nm with trap stiffness (Figures 4F,H). In contrast,
the step sizes from 0.07 to 0.12 pN/nm of trap stiffness were
mostly constant and distributed at 14-19 nm with an average of
16.2± 2.7 nm (n = 21) (Figures 4G-I).

From 0.07 to 0.12 pN/nm of trap stiffness, the force increments
increased with the trap stiffness (Figure 4I). In the cases where
the force values increase with trap stiffness, the calculated force
does not reflect the actual force because the load is too small
to influence the movements. Therefore, we focused on the force
increments measured under 0.13–0.26 pN/nm of trap stiffness.
The force exerted in a single propulsion step was concluded to be
2.5± 0.3 pN (n = 76) (Figure 4J).

Binding Activity and Gliding Motility
To discuss about the relationship between the binding activity
and gliding speed, we analyzed them for the M129 and FH

strains. M. pneumoniae cells were suspended in HEPES buffer
containing 20 mM glucose to obtain an optical density at 595 nm
of 0.07, then inserted into tunnel chambers. After incubation for
5–30 min, the tunnel chambers were washed and observed by
phase-contrast microscopy. The number of bound cells in the
M129 strain increased with time from 90 ± 16 to 308 ± 20 cells
in 100 µm × 100 µm area from 5 to 30 min (Figures 5A,B).
These values are consistent with the results of a previous report
(Kasai et al., 2013). In contrast, the number of bound cells in
the FH strain increased from 12 ± 2 to 36 ± 8 cells from 5 to
30 min (Figures 5A,B). The number of bound cells in the FH
strain was 7.2-8.7-fold smaller than that of the M129 strain at all
time points (Figure 5B). When 10× concentrated cell suspension
was examined, the bound cell numbers of the FH strain increased
from 117 ± 10 to 386 ± 24 cells from 5 to 30 min, 1.2-1.3 times
that of M129 at all time points (Figures 5A,B). These results
indicate that the FH strain has approximately eightfold lower
binding activity to SO-coated glass surfaces than the M129 strain.
Considering that the stall force of FH was only 1.2-fold smaller
than that of the M129 strain, the force is unlikely to be linked to
binding activity.

Most of the bound cells showed gliding motility on the SO-
coated glass (Figure 5C and Supplementary Videos 3, 4). To
characterize gliding motility, the proportion of gliding cells and
gliding speed were analyzed. The proportion of gliding cells to
all bound cells was 78.1% (ntotal = 2,284, nglide = 1785) and
60.0% (ntotal = 2,271, nglide = 1,362) in the M129 and FH strains,
respectively (Figure 5C). The gliding speeds averaged for 20 s at
1-s intervals were 0.47 ± 0.08 and 0.21 ± 0.07 µm/s for M129
and FH strains, respectively (Figure 5D). These results suggest
that binding activity is not directly linked to gliding speed.

DISCUSSION

Mycoplasma pneumoniae Has Weak
Stall Force
In the present study, we measured the stall force in
M. pneumoniae gliding using optical tweezers. Previously,
the stall force was measured for some bacterial surface motilities.
Neisseria gonorrhoeae and Myxococcus xanthus show surface
motility driven by the retraction of type IV pili (Pelicic, 2008).
The stall forces of single-pilus retraction in N. gonorrhoeae
and M. xanthus were measured by optical tweezers to be
approximately 80 and 150 pN, respectively (Merz et al., 2000;
Clausen et al., 2009). M. mobile glides up to 4.0 µm/s by a
mechanism unrelated to that of M. pneumoniae. Previously,
we measured the stall force of M. mobile gliding using optical
tweezers to be approximately 113 pN (Mizutani et al., 2018).
The stall forces of M. pneumoniae gliding were 23.7 ± 6.3 and
19.7 ± 5.3 pN in M129 and FH strains, respectively (Figure 2E),
much weaker than those of other bacterial surface motilities.
M. pneumoniae has a streamlined cell body about 0.2 µm in
diameter (Hatchel and Balish, 2008). This shape and cell size may
be beneficial for gliding in human tissues with weak forces.

In liquid culture, M. pneumoniae cells bind to the bottom
surface of the tissue culture flask. This is distinct from the
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FIGURE 4 | Stepwise movements under SL. (A) Representative force traces with time under 0.2–0.3 mM SL are shown for stalled (red) and detached (blue) cells.
The broken line indicates the stall force. The time point of detachment was marked by a triangle. (B) Scatter dot plot of stall force shown with averages (thick line)
and standard deviations (thin lines) (n = 21). (C) Three cell trajectories with stepwise movements are shown in a field. Open arrows indicate the gliding direction.
(D) Displacement and force of cells whose trajectories are shown in panel (C). (E) Histograms of pairwise distance function (PDF) analysis of panel (D) were fitted by
the sum of Gaussian curves. (F) Displacement and force under high trap stiffness. (G) Displacement and force under low trap stiffness. (H) Histograms of PDF
analysis of panels (F,G). (I) Distribution of step size under various trap stiffnesses. Step sizes were plotted as a function of trap stiffness (n = 97). The position at
0.12 pN/nm of trap stiffness was marked by a dotted line. The average of step size under 0.07–0.12 pN/nm of trap stiffness was marked by a triangle. (J) Scatter
dot plot of force increments under 0.13–0.26 pN/nm of trap stiffness shown with averages (thick line) and standard deviations (thin lines) (n = 76).

case of M. mobile, in which most cells float in the medium.
Therefore, M. pneumoniae is expected to have a stronger force for
gliding than M. mobile. However, we found that M. pneumoniae
had a much weaker stall force than M. mobile (Figure 2E).
When comparing the two strains of M. pneumoniae, the FH
strain showed much less active binding than, but a stall force
comparable to, that of M129 (Figures 2E, 3B). These facts
indicate that the binding activity of M. pneumoniae cells is
not determined by the gliding force, which is represented by
the stall force.

Drag Force in Gliding
The gliding speed decreased when cell binding was partially
inhibited by the addition of free SL (Figure 3). This observation
is consistent with previous data; that is, the inhibition of
binding by monoclonal antibodies decreased the gliding speed
of M. pneumoniae (Seto et al., 2005) and the inhibition by SL

decreased the speed ofMycoplasma gallisepticum, coinciding with
the common mechanism with M. pneumoniae (Mizutani and
Miyata, 2019). The decrease in speed was probably caused by
the drag force generated from the substrate surface, because the
friction force exerted from water is estimated to be more than
5,000 times smaller than the stall force of 24 pN (Figure 2E;
Rosengarten et al., 1988; Uenoyama et al., 2004). As the cause
of the drag force, two possibilities are considered: GPCA and
others. If some proportion of GPCA molecules are not involved
in gliding, they are not released from SOs by inhibitory factors,
resulting in speed reduction. Interestingly, these observations
and explanations are similar to the case of M. mobile gliding,
even though they do not share the same structure of machinery
(Uenoyama et al., 2004, 2009; Kasai et al., 2013; Miyata and
Hamaguchi, 2016b; Nishikawa et al., 2019). This scheme may be
advantageous for gliding on SOs based on ATP energy, which is
common in the both gliding mechanisms.
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FIGURE 5 | Binding activity and gliding motility. (A) Phase-contrast micrographs of cells on SO-coated glass surfaces. M129, FH, and 10 × concentrated FH are
shown after 5 and 30 min of incubations. (B) Averaged bound cell numbers in 100 µm × 100 µm plotted with standard deviations (n = 10 in each). M129 (Red open
circle), FH (Blue open circle), and 10 × concentrated FH (Blue open triangle) are presented. (C) Cell trajectories for 20 s, changing color with time from red to blue.
(D) Distributions of gliding speeds averaged for 20 s at 1-s intervals (n = 500 in each). The mean values are marked by black triangles.

Stepwise Movement as Elementary
Process
We succeeded in detecting the stepwise movements of
M. pneumoniae gliding. M. pneumoniae cells glided at a
speed of 0.47 µm/s (Figure 5D), and the step size in the load-free
condition was 14-19 nm (Figure 4I), suggesting 25-35 steps per
second. The step size of M. pneumoniae is shorter than that of
M. mobile around 70 nm (Kinosita et al., 2014, 2018; Mizutani
et al., 2018). This difference is likely related to the lengths of leg
complex, 13 nm in M. pneumoniae (Kenri et al., 2019; Aparicio
et al., 2020; Vizarraga et al., 2021) and 97 nm in M. mobile
(Miyata and Petersen, 2004; Adan-Kubo et al., 2006).

Stepwise movements are well-studied in ATP-driven
eukaryotic motor proteins including myosin, dynein, and kinesin
(Bustamante et al., 2004; Mallik et al., 2004). The force and
displacement of a single step in myosin II, cytoplasmic dynein,
kinesin-1, and myosin V have been reported as 3–5, 7–8, 8, and
2–3 pN and 5.3, 8, 8, and 36 nm, respectively (Kojima et al., 1997;
Schnitzer and Block, 1997; Takagi et al., 2006; Gennerich et al.,
2007; Fujita et al., 2012; Park and Lee, 2013). Stepwise movements
are also present in bacterial motility. A flagellar motor shows
14 degrees of revolution as a step (Sowa et al., 2005; Nakamura
et al., 2010). The gliding of M. mobile shows stepwise movements
of 1.5 pN force and 70 nm length (Kinosita et al., 2014; Mizutani
et al., 2018). Generally, stepwise movements are thought to
correspond to the elementary process of a motility event.

Previously, we showed that M. pneumoniae-type gliding
motility is driven by energy from ATP hydrolysis (Mizutani
and Miyata, 2019). Motilities driven by ATP energy can be
divided into elementary processes that are directly coupled with
ATP hydrolysis, such as stepwise movements. The elementary
processes observed as steps require a smaller amount of work
than the energy produced by ATP hydrolysis, which is ∼80
pN nm (Yasuda et al., 1998). Therefore, we estimated the work
done in the stepwise movements of M. pneumoniae gliding

to determine this possibility. The work was estimated to be
18.2 ± 5.4 pN nm from the equation Wstep = 0.5 × spring
constant × displacement2, under 0.13–0.26 pN/nm of trap
stiffness, where the stiffness is large enough to determine the
force (Supplementary Figure 5; Mizutani et al., 2018). This
value is 16-30% of the free energy of the hydrolysis of ATP
molecules, suggesting that we detected the elementary process
of M. pneumoniae gliding. The energy conversion efficiencies
of stepwise movements are 12-40, 10, and 40-60% for myosin
II, cytoplasmic dynein, and kinesin, respectively (Bustamante
et al., 2004; Mallik et al., 2004). Previously, we estimated it to
be 10-40% for M. mobile gliding (Mizutani et al., 2018). These
facts suggest that the energy efficiency of stepwise movements of
M. pneumoniae is in a similar range of myosin II and M. mobile
gliding, although we should be careful that here we measured
a cell including many leg units, which is different from motor
proteins even if we decreased the working numbers by adding SL.

Load-Dependent Step Size
M. pneumoniae cells showed different step sizes depending on
the load provided by optical tweezers continuously (Figure 4I),
suggesting that the step size of M. pneumoniae is load-dependent.
In the infectious process, M. pneumoniae cells glide to the deep
positions of respiratory systems and experience a large load at
these positions (Prince et al., 2014). The load-dependent stepping
behavior would be useful to glide against large loads because a
load-independent stepping motor, kinesin, shows frequent back
steps under large loads (Carter and Cross, 2006; Toleikis et al.,
2020). Different step sizes under different loads have also been
observed in M. mobile gliding (Kinosita et al., 2014; Mizutani
et al., 2018).

Suggestion for Gliding Mechanism
How can we image the gliding mechanism? The GPCA probably
plays a critical role in M. pneumoniae gliding, because antibodies

Frontiers in Microbiology | www.frontiersin.org 7 September 2021 | Volume 12 | Article 747905

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-747905 September 20, 2021 Time: 13:1 # 8

Mizutani et al. Mycoplasma pneumoniae Gliding

against the P1 adhesin, a component of GPCA, decreased the
gliding speed and ultimately replaced the M. pneumoniae cells on
the glass surface (Seto et al., 2005). Recently, the detailed structure
of GPCA has been solved (Aparicio et al., 2018, 2020; Vizarraga
et al., 2020, 2021). It is a mushroom structure composed of
two P1 adhesins and two P40/P90 molecules. The C-terminal
regions of the four molecules are bundled and anchored to the
cell membrane. P40 and P90 proteins are synthesized as a single
protein and processed into two proteins that are not observed in
M. genitalium. Although P1 adhesin is believed to be the receptor
for SOs, the binding site exists at the distal end of P40/P90. This
complex is thought to undergo conformational changes between
open and closed with respect to the binding pockets, which are
likely involved in the gliding mechanism (Aparicio et al., 2020;
Vizarraga et al., 2021).

The attachment organelle responsible for gliding can be
divided into a surface structure including GPCA and an internal
rod structure (Henderson and Jensen, 2006; Seybert et al.,
2006, 2018; Kawamoto et al., 2016; Krause et al., 2018). Briefly,
the force for gliding is likely generated at the bowl complex
because a few proteins essential for gliding and not binding
are localized there (Hasselbring et al., 2005; Jordan et al.,
2007; Kawakita et al., 2016). The paired plates and elastic
components play a role in force transmission, because the gliding
speed decreases severely in a deletion mutant (Garcia-Morales
et al., 2016). The terminal button likely connects the rod front
to the cell membrane, because an end component, the P30
protein, features transmembrane segments (Chang et al., 2011;
Relich and Balish, 2011).

Here, we focus on the following observations to construct the
working model for the gliding scheme: (1) The force is probably
generated around the bowl complex, transmits through the
internal structures including paired plates, and reaches GPCAs.

(2) Inhibition of cell binding decreases gliding speed. (3) GPCA
has open and closed conformations. (4) Gliding can be divided
into steps because binding and force are not tightly coupled.
(5) The gliding movement can be divided into 14-19 nm steps
with a 2.5 pN force.

Gliding Scheme to Explain Stepwise
Movements
The model is composed of repeated cycle of four stages
(i)-(iv) connected by four steps: “Power stroke,” “Release,”
“Displacement,” and “Catch” (Figure 6). (i) The GPCA in the
open state catches an SO on the glass surface. (ii) Contraction
of the internal structure pulls the cell body with 2.5 pN and
a step size of 14-19 nm. This step is possibly linked to energy
from an ATP molecule. (iii) GPCA switches into a closed state
by triggering the pulling force transmitted from other working
GPCAs, resulting in the release of after-stroke GPCA from the
SO. (iv) The released GPCA returns to the open state and
displaces another SO in the next position by the extension of
the internal structure. (i) The GPCA captures the next SO.
The full cycle was then repeated. This scheme explains the
relationship between the binding and force of different strains,
if we assume that release is enhanced and power stroke and
catch are reduced in FH compared with those in M129, because
force is determined by power stroke. The slow gliding speed
in FH also can be explained by the reduction of catch step.
These differences in the steps may be caused by the structural
differences of the 14 proteins involved in binding and gliding.
The characterization of defined genetic mutants may solve these
problems. The observation that shorter steps occur under load
can be explained if we consider that the power stroke is shortened
by the load (Figure 3I).

FIGURE 6 | Schematic illustration of leg behaviors in stepwise movements. Internal structure presented by blue and red lines is responsible for force transmission. It
repeats contraction and extension cooperatively with the surface structures. Conformational change of internal structure and step size are shown in a right-upper
box. GPCA is presented in pink. Sialylated oligosaccharides are shown by “S.” Force exerted in a step is shown by an arrow in panel (ii). Displacement of cell body
forward is shown by an arrow in panel (iv). The gliding occurs through stages (i)–(iv). See the text for details.
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Previously, our group suggested a working model for
M. pneumoniae gliding, focusing mainly on the information of
the internal structure with regard to the attachment organelle
(Kawamoto et al., 2016; Miyata and Hamaguchi, 2016a). The
previous model suggested “directed detachment of feet” (GPCA),
due to the lack of information about step, force, and foot
structure. In this study, we succeeded in adding new information
and completing an updated model.
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