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DNA methylation plays crucial roles in responses to environmental stimuli. Modification
of DNA methylation during development and abiotic stress responses has been
confirmed in increasing numbers of plants, mainly annual plants. However, the
epigenetic regulation mechanism underlying the immune response to pathogens
remains largely unknown in plants, especially trees. To investigate whether DNA
methylation is involved in the response to infection process or is related to the
resistance differences among poplars, we performed comprehensive whole-genome
bisulfite sequencing of the infected stem of the susceptible type Populus x euramerican
‘74/76’ and resistant type Populus tomentosa ‘henan’ upon Lonsdalea populi infection.
The results revealed that DNA methylation changed dynamically in poplars during
the infection process with a remarkable decrease seen in the DNA methylation
ratio. Intriguingly, the resistant P tomentosa ‘henan’ had a much lower basal DNA
methylation ratio than the susceptible P x euramerican ‘74/76’. Compared to mock-
inoculation, both poplar types underwent post-inoculation CHH hypomethylation;
however, significant decreases in mC and mCHH proportions were found in resistant
poplar. In addition, most differentially CHH-hypomethylated regions were distributed in
repeat and promoter regions. Based on comparison of DNA methylation modification
with the expression profiles of genes, DNA methylation occurred in resistance genes,
pathogenesis-related genes, and phytohormone genes in poplars during pathogen
infection. Additionally, transcript levels of genes encoding methylation-related enzymes
changed during pathogen infection. Interestingly, small-regulator miRNAs were subject
to DNA methylation in poplars experiencing pathogen infection. This investigation
highlights the critical role of DNA methylation in the poplar immune response to
pathogen infection and provides new insights into epigenetic regulation in perennial
plants in response to biotic stress.
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INTRODUCTION

Epigenetic mechanisms, especially DNA methylation, are
conserved and associated with gene silencing, chromatin
remodeling, histone modification, and epigenetic variations
induced by the environment (Law and Jacobsen, 2010;
Shipony et al., 2014; Tirnaz and Batley, 2019). Moreover,
DNA methylation occurs throughout the whole life of the
plant, playing a role in adaptation to stress conditions, genome
management, and developmental regulation (Sherman and
Talbert, 2002; Meng et al., 2003; Feng et al., 2014; Elhamamsy,
2016). In Arabidopsis, research results support a model
whereby DNA methylation imparts persistent control over
some defense genes under non-stressful conditions, but can
shift dynamically to modulate gene expression in response to
environmental stimuli (Dowen et al., 2012). In plants, all three
types of cytosine DNA methylation (CG, CHG, and CHH) are
catalyzed by DOMAINS REARRANGED METHYLTRA
NSFERASE2 (DRM2), but with differing maintenance
pathways. Symmetrical CG and CHG DNA methylation
grouping is maintained by METHYLTRANSFER ASE1 (MET1)
and CHROMOMETHYLASE3 (CMT3), respectively, while
asymmetric CHH methylation is maintained by DRM2 (Law and
Jacobsen, 2010; Zhang et al., 2018).

DNA methylation in plants changes in response to diverse
abiotic stress conditions, including heat, cold, drought, high
salinity, osmotic stress, ultraviolet radiation, soil nutrient
deficiency, laser irradiation, metal stress, anoxia and re-
oxygenation, pesticides, and climate change. These changes
have been investigated thoroughly in a wide range of plants
including Arabidopsis, cotton, winter wheat, rice, Brassica rapa,
Isoetes sinensis Palmer, Camellia sinensis, and poplar (Sherman
and Talbert, 2002; Song et al, 2016; Liu et al., 2017; Zheng
et al, 2017; Zhang et al., 2018, 2019; Ding et al, 2019; Van
Dooren et al,, 2020; Zhu et al, 2020). Recently, reports of
DNA methylation modification in plants in response to biotic
stressors have increased. Biotic stressors include the effects of
bacteria, fungi, and viruses that impact the normal growth and
development of plants. DNA methylation has been reported to
play a crucial role in plant resistance to biotic stress (Hewezi et al.,
2017). For example, the level of DNA methylation in tobacco
changed in response to external tobacco mosaic virus (TMV)
infection, and this change was closely related to the activation
of stress-responsive genes (Wada et al.,, 2004). Dynamic DNA
methylation had been suggested to represent a regulatory layer
in the complex mechanism of plant immunity, which may be
exploited to improve disease resistance in common wheat (Geng
et al, 2019). Additionally, DNA demethylation was presumed
to be involved in the immune activity of Arabidopsis against
microbial pathogens (Pavet et al., 2006). Together, these reports
demonstrate that changes in DNA methylation in response to
various biotic stressors are common in plants. However, these
response patterns may differ among plant species, or in response
to infection with different pathogens. In grape berries, melatonin
treatment increased plant disease resistance and flavonoid
biosynthesis by decreasing the methylation levels (MLs) of gene
promoters (Gao et al.,, 2020). Stable methylation was observed
in Populus simonii under cold, osmotic, heat, and salt stress,

based on analysis of the methylome and gene expression (Song
et al, 2016). Single-base-resolution methylomes of Populus
trichocarpa showed a significant increase in cytosine methylation
after drought treatment (Liang et al., 2014). These investigations
demonstrated that DNA methylation plays important roles in
perennial plant responses to abiotic stress. However, whether
stable global DNA methylation is involved in the immune
response to biotic stress in poplar, a model woody perennial plant,
remains unknown.

Lonsdalea canker, caused by Lonsdalea populi, was first
observed in poplars of Populus x euramericana ‘74/76 and
P. x euramericana “Zhonglin 46’ in both Henan and Shandong
provinces of China in 2006 (Li et al., 2014). Large numbers
of poplars in China and Hungary had been affected by
Lonsdalea canker (Li and He, 2019). Several studies of this
disease have been conducted on poplars and have identified
the pathogen types, molecular basis of the pathogenesis of L.
populi, tolerance/resistance of different poplar species, salicylic
acid and jasmonic acid signal transduction pathways, and
transcriptomic analysis of poplars infected with L. populi (Li
et al,, 2014; Liu Z. et al, 2015; Hou et al., 2016; Yang et al,
2018). Previous research has focused primarily on the bacterium
itself, or on the plant immune response or poplar transcriptomes.
Poplar species differing in survivability to L. populi infection
have been investigated and validated, making it possible and
necessary to explore the molecular mechanism of resistant
and susceptible poplars showing different defense responses to
L. populi. However, few reports have addressed whether the
molecular mechanism of DNA methylation plays an important
role in the immune responses of various poplar species.

Given increasing evidences for the involvement of DNA
methylation in plant responses to biotic stress, as well as of
a role of DNA methylation in regulating gene expression and
genomic stability (Tirnaz and Batley, 2019), we hypothesized
that DNA methylation changed in poplars during pathogen
infection and may have important effects on the expression of
biotic-stress-responsive genes. Here, the role of DNA methylation
in the modification between two poplar species with different
resistance levels and L. populi was comprehensively investigated
at the genome-wide level. We found that DNA methylation
changed dynamically during the inoculation process and showed
similar change trends between the susceptible and resistant
poplar types investigated, albeit with different DNA MLs.
Additionally, the DNA methylation changes might be involved
in differential expression of resistance (R) genes, pathogenesis-
related (PR) genes, and phytohormone genes in poplar species.
This investigation provides a new insight into the role of DNA
methylation in the immune response upon infection of trees with
bacterial pathogens, which could be potentially used in endowing
resistance of perennial plants to pathogen infection.

MATERIALS AND METHODS
Plant Growth and Treatment

Two-year-old P. x euramericana ‘74/76 and Populus tomentosa
‘henan’ plantlets were grown under normal field conditions in
the nursery of the Puyang Academy of Forestry (114° 87’ E, 35°
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81’ N) in Henan Province, China. The plantlets were inoculated
with L. populi strain N-5-1 (provided by Laboratory of Forest
Pathology, Beijing Forestry University) or sterile water as a mock
inoculation, as described previously (Hou et al., 2016).

Bark, including cambium, of the inoculated and mock
inoculated poplar stems was sampled at 6 days post-inoculation
(dpi) for both poplar types, which differed in resistance levels,
and P. x euramericana trees were further sampled at 2 and 4 dpi
for exploration of the dynamic response to infection of L. populi.
Three biological replicates were conducted for each condition.
Samples were immediately frozen in liquid nitrogen and stored
at —80°C.

DNA Extraction, Whole-Genome Bisulfite
Sequencing and Library Preparation

Genomic DNA was extracted using a combination of
cetyltrimethylammonium bromide (CTAB) and sodium dodecyl
sulfate (SDS; Zhao et al., 2016). DNA purity and concentration
were checked using the Nano Photometer® spectrophotometer
(Implen, Westlake Village, CA, United States). Genomic
DNA degradation and contamination were monitored using
1% agarose gels.

The genomic and lambda DNA were fragmented via
sonication to 200-300 bp with a Covaris S220 sonicator,
followed by end repair and adenylation. Cytosine-methylated
barcodes were ligated to the sonicated DNA. Then, these DNA
fragments were treated with bisulfite using Accel-NGS® Methyl-
Seq DNA Library Kit in accordance with the manufacturer’s
instructions. Library concentration was quantified with a Qubit®
2.0 flurometer (Life Technologies, Carlsbad, CA, United States)
and quantitative PCR, and the insert size was assessed
with the Bioanalyzer 2100 system (Agilent, Santa Clara, CA,
United States). The libraries were sequenced on a NovaSeq6000
sequencer (Novogene Co., Ltd., Beijing, China).

Bioinformatic Mapping of Reads to the

Reference Genome
Bismark software (v.0.16.3) (Krueger and Andrews, 2011) was
used for alignment of bisulfite-treated reads to poplar genome
v3.0" with parameters set as —-score_min L, 0, -0.2, -X 700 -
dovetail. The reference genome was first transformed into
a bisulfite-converted version (C-to-T and G-to-A) and then
indexed using bowtie2 (v.2.2.5) (Langmead and Salzberg, 2012).
Sequence reads were transformed into fully bisulfite-
converted versions before alignment to similarly converted
versions of the genome in a directional manner. Sequence
reads that produced a unique best hit from the two alignment
processes (original top and bottom strand) were compared to
the normal genomic sequence, and the methylation state of all
cytosine positions in the read was inferred. Reads aligned to
the same regions of the genome were regarded as duplicates.
The sequencing depth and coverage were summarized using
deduplicated reads.

Uhttps://phytozome.jgi.doe.gov/pz/portal.html#linfo?alias=Org_Ptrichocarpa

Estimation of Methylation Level

To identify methylation sites, we summed the methylated
cytokines (mC) as a binomial (Bin) random variable with a
methylation rate (r), which was calculated as follows: mC ~ Bln
(mC + umC*r). The sum of methylated and unmethylated read
counts in each window was calculated. Bisulphite conversion
efficiency was calculated based on lambda DNA genome. The
reliability of methylation site level data was evaluated with a
binomial distribution test, and thresholds were set to precisely
determine the methylation sites, as follows: the sequencing depth
>5; Q-value < 0.01; and conversion rate >99%. The ML for
each window or C site indicated the fraction of methylated Cs,
and was defined as: ML (C) = reads (mC)/reads (mC + umC).
This was corrected based on the bisulfite non-conversion rate
reported previously (Lister et al., 2013). The corrected ML was
then estimated as follows: ML cosrefated) = (ML - 1)/(1 - 1).

Differentially Methylated Region Analysis
Differentially methylated regions (DMRs) were identified using
DSS software (v.2.12.0) (Wu et al., 2015; Park and Wu, 2016)
with the parameters including smoothing.span = 200, delta = 0,
p-threshold = le-05, minlen = 50, minCG = 3, dis.merge = 100,
pct.sig = 0.5. Based on the distribution of DMRs throughout the
genome, genes were defined as DMR-related, if the genebody
region (from the transcription start site, TSS, to the transcription
end site, TES) or promoter region (2 kb upstream from the TSS)
had overlaps with DMRs. GraphPad Prism software (ver. 8.0.1;
GraphPad Software Inc., La Jolla, CA, United States) was used for
the statistical analysis.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Enrichment
Analysis of DMR-Related Genes

Gene Ontology (GO)* enrichment analysis of genes related to
DMRs was conducted using the GOseq R package to correct
for gene length bias (Young et al., 2010). GO terms with
corrected P-values < 0.05 were considered significantly enriched.
Kyoto Encyclopedia of Genes and Genomes (KEGG)® pathway
enrichment analysis was conducted based on P-values < 0.05.
KOBAS (v.3.0) software was used to test for enrichment of DMR-
related genes in KEGG pathways (Mao et al., 2005; Kanehisa et al.,
2008).

Joint Analysis Between DNA Methylation

and Gene Expression

Joint analysis was conducted between DNA methylation and gene
expression, comparing resistant and susceptible poplar samples
infected with the pathogen (6 dpi) to samples subjected to
mock inoculation. The types of genes encoding methylation-
related enzymes were analyzed based on previous research (Song
et al,, 2016). The DNA MLs of R, PR, and phytohormone genes
were identified, with overlapping differentially expressed genes
(DEGs) and DMRs considered to be associated with each other.

Zhttp://www.Geneontology.org/
3http://www.genome.jp/kegg/
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Prediction of Potential Regulatory
Pathway

miRNAs corresponding to target gene were predicted using
psRNATarget* and screened according to the following
conditions: the gene appeared in combined analysis of
DMRs and DEGs, and exhibited CHH hypomethylation in
5’ flanking region.

RESULTS

Pathogen Infection and Methylation
Profiles in Populus tomentosa and

Populus x euramericana

Lonsdalea populi strain N-5-1, a Gram-negative, rod-shaped
bacterium, causes a lethal disease known as bark canker in some
poplars. Based on our previous reports, 6 dpi was selected as the
time point for investigating lesions (Li et al., 2014; Hou et al,,
2016). In this investigation, mock-inoculated and inoculated
susceptible P. x euramericana and resistant P. tomentosa poplars
were observed at 6 dpi. In P. x euramericana, the bark had
a canker with white, odorous, and exudates dripping from
the inoculation point and expanding lesions relative to mock-
inoculation group (Supplementary Figures 1A,B,E,F). These
symptoms were typical of L. populi infection (Li et al., 2014)
but did not appear in the resistant P. tomentosa (Supplementary
Figures 1C,D,G,H).

To investigate whether DNA methylation is involved in
the poplar response to L. populi infection, whole-genome
bisulfite sequencing (WGBS) of poplar bark from the mock-
inoculation and inoculation groups was performed. In total, 19-
26 million unique mapping clean reads on average were obtained
for further analysis (Supplementary Table 1A). The bisulfite
conversation rates of all samples were over 99% (Supplementary
Table 1B). After methylation site calling, 3,911,428 and 3,702,079
mC on average were identified in P. tomentosa libraries by
mock inoculation and at 6 dpi, accounting for 2.74 and
2.59% of all reads, respectively. In total, 7,896,041, 8,707,359,
6,821,148, and 6,332,367 mC on average were identified in
P. x euramericana libraries by mock-inoculation, and at 2,
4, and 6 dpi, respectively, accounting for 4.43-6.09% of all
reads (Supplementary Table 1C). To ensure the repeatability
of the analysis, the correlations of MLs between samples
were determined through Pearson correlation analysis. After
inoculation, DNA methylation similarity to the control was
higher for CG and CHG than CHH, in both poplar types. In
addition, the R? values of all samples were greater than 0.90
(Supplementary Figure 2).

Dynamic Changes of DNA Methylation in

Poplar During the Infection Process

Four successive disease development stages have been described
for L. populi infection: the contact, penetration, incubation,
and symptom appearance periods (Liu M. et al, 2015). The

“http://plantgrn.noble.org/psRNATarget/

incubation period lasted approximately 3 days after the bacteria
were inoculated onto the poplar stems (Shang et al., 2014). To
explore the changes in DNA methylation among periods of L.
populi infection, detection of DNA methylation variations in
susceptible P. x euramericana was performed. After inoculation
with L. populi, the methylation ratio of total cytosine was 6.09,
4.77, and 4.73% at 2, 4, and 6 dpi in P. X euramericana,
respectively. Compared to the cytosine methylation ratio of the
mock-inoculated group (5.53%), DNA methylation increased
slightly at 2 dpi, while continuously decreased from 2 to 6 dpi.
The result demonstrated that the proportion of total cytosine
methylation differed among infection periods, indicating that
gene expression in poplars was modulated in response to L. populi
infection. This finding was consistent with previous reports that
DNA methylation regulated plant gene expression in response
to pathogen infection (Hewezi et al., 2017). The CG, CHG,
and CHH methylation ratios increased slightly at 2 dpi and
then decreased continuously, similar to the change trend of
total cytosines and previous reports that DNA hypomethylation
affected plant defense against nematodes (Figure 1; Atighi et al,,
2020). In addition, the variation of CHH methylation was similar
to that of total cytosines, with a sharp decline from 2 to 4 dpi
and gradual decrease from 4 to 6 dpi. Meanwhile, the variation of
CG and CHG methylation gradually decreased from 2 to 6 dpi.
More importantly, compared to the mock-inoculation group, the
decrease in methylation ratio was greatest for CHH. Overall, the
level of DNA methylation initially increased, and then decreased,
during the infection process in P. x euramericana.

To elucidate how CHH methylation changed with the
extension of infection course, we further analyzed CHH ML
in genebody regions in P. x euramericana. Through pairwise
analysis (Oin2_vs_Ock, Oin4_vs_Oin2 and Oin6_vs_Oin4),
CHH methylation was compared among the different stages
of disease development. DNA methylation region occurred
mainly in the repeat region followed by the promoter region.
Methylation was low in the intron, exon, 5 untranslated
region (UTR), and 3" UTR (Figures 2A-C). This pattern
was seen when comparing all infection conditions against the
mock treatment (Figure 2A and Supplementary Figures 3A,B).
Although the level of CHH methylation was lowest at 4 dpi,
it still occurred mainly in the repeat and promoter regions
(Figures 2B,C). Compared to mock inoculation, hyper and
hypo CHH DMR genes had a roughly equal number at
2 dpi (Figure 2D). Interestingly, a large number of DMR
genes exhibited CHH hypomethylation from 2 to 4 dpi
(Figure 2E). In contrast, numerous DMR genes exhibited CHH
hypermethylation from 4 to 6 dpi (Figure 2F). Relative to
the control, the difference between hypo- and hypermethylated
CHH DMR genes was most apparent at 4 dpi (Figures 2D,
5B, and Supplementary Figure 3C). Together, these results
indicated that DNA methylation was lowest at 4 dpi, and
that CHH DMRs were mainly in repeat and promoter regions
in P. x euramericana. Additionally, we randomly chosen
200 random regions (RRs) from each of 19 chromosomes of
poplar with each RR 150 bp in length to explore DMRs in
RRs. The RRs were defined and chosen as candidates if they
had overlapping hits with identified DMRs. Based on these
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FIGURE 1 | DNA methylation dynamic change tendency of

Populus x euramericana “74/76” in response to Lonsdalea populi infection at
different contexts. The mC percent (A), mCpG percent (B), mCHG percent
(C), and mCHH percent (D) of P. x euramericana in response to L. populi
infection at different infection time points. The data were plotted as the

mean + SEM. Regular triangle, inverted triangle, diamond, and circle ring
indicate the mean value of different infection time points. Oin/Ock means
inoculation/mock-inoculation in P. x euramericana, and the Arabic numerals
indicate the specific inoculation days.

3,800 RRs results (Supplementary Table 2A), the number of
DMRs for expectation in different categories of Figures 2D-
F was further in silico predicted. It showed that the number
of DMRs for observation differed from that for expectation
identified based on the RRs in genome, especially DMRs in
repeat regions were more, compared to the expectation values
(Supplementary Table 2B).

Furthermore, CHH DMRs were annotated within the
genebody and promoter regions to explore conserved and specific
DMRs annotated genes of P. x euramericana under different
conditions. A total of 70 conserved DMR-annotated genes were
found in the genebody region during different infection periods,
while 153 in gene promoter region (Oin2_vs_Ock, Oin4_vs_Ock,
and Oin6_vs_Ock, Supplementary Figures 4A,C). Additionally,
334, 186, and 243 specific genes were found in the genebody
region in pairwise comparisons (Oin2_vs_Ock, Oin4_vs_Oin2,
and Oin6_vs_Oin4), respectively (Supplementary Figure 4B).
There were 1,598, 981, and 1,059 specific genes in gene promoter
region in Oin2_vs_Ock, Oin4_vs_Oin2, and Oin6_vs_Oin4
comparisons, respectively (Supplementary Figure 4D).
Interestingly, conserved and specific DMR-annotated genes
were more abundant in gene promoter region than that in
genebody region, which was similar to our finding of more CHH
DMRs in gene promoter region than that in genebody region.

DNA Methylation in Two Poplar Types
With Different Levels of Resistance to

Lonsdalea populi Infection

To further explore the role of DNA methylation involved in the
different resistances of poplars, susceptible P. x euramericana
and resistant P. tomentosa were inoculated with L. populi. For
mock-inoculation, the DNA ML of resistant type was much
lower than that of susceptible type, suggesting the basal DNA
methylation difference might be related to differences in the
immune response. Interestingly, a sharp decrease in methylation
occurred in P. tomentosa infected with L. populi, and significant
decreases were observed in the percentages of both mC and
mCHH (Figure 3), but not in mCHG. DNA methylation also
decreased, although not significantly, for mCHH, mCHG, and
mCG in P. x euramericana at 6 dpi (Figure 3). DNA methylation
percentages were lower for the resistant than susceptible type
in all three sequences, and with both mock inoculation and
inoculation. The result showed that DNA methylation decreased
significantly in P. tomentosa infected with L. populi, but not
in P. x euramericana. CHH methylation plays an important
role in disease resistance against pathogens (Geng et al., 2019).
To further identify the methylation characteristics of various
sequences in the genebody, the percent of mCpG, mCHG, and
mCHH were analyzed. The decreasing trend of CHH methylation
was consistent with the general trend of DNA hypomethylation
(Figure 3), suggesting that CHH methylation was an important
component of DNA methylation in the poplar response to
pathogen infection, as observed in other plants.

Global DNA Methylation Activated in
Poplars in Response to Lonsdalea populi
Infection
To identify DMRs, we analyzed differential DNA
hypomethylation and hypermethylation regions in CG,
CHG, and CHH in two poplar types at 6 dpi. The numbers
of differential hypomethylation regions of CG, CHG, and CHH
in P. tomentosa were 1,183, 1,243, and 5,899, respectively, while
the differential hypomethylation regions in P. X euramericana
numbered 284, 653, and 5,594, respectively. Meanwhile, the
numbers of differential hypermethylation regions of CG, CHG,
and CHH in P. tomentosa were 921, 1,211 and 1,829, respectively,
and the corresponding counts in P. X euramericana were
227, 460, and 3,700. Although CG and CHG hypomethylation
occurred at nearly equal levels, regions of CHH hypomethylation
were much more common in both poplars than regions of
CHH hypermethylation. Interestingly, the number of differential
CHH hypermethylation regions in P. X euramericana was
approximately double that in P. tomentosa (Figures 4A,B). These
data demonstrated that the infection suppressed the methylation
of CHH and suggested that CHH hypomethylation could play a
role in genetic regulation in plants, including poplar in response
to pathogen infection.

To further examine the genetic changes that occurred in
poplar during L. populi infection, the expression of genes
encoding methylation-related enzymes was analyzed. In most
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FIGURE 2 | Changes in CHH methylation of Populus x euramericana ‘74/76’. Difference in CHH methylation level of P. x euramericana 2 dpi (Oin2) compared with
mock-inoculation (Ock) (A), 4 dpi (Oin4) compared with 2 dpi (B), and 6 dpi (Oin6) compared with 4 dpi (C); distribution of differentially methylated genes in
P. x euramericana 2 dpi compared with mock-inoculation (D), 4 dpi compared with 2 dpi (E), and 6 dpi compared with 4 dpi (F).

plants, four classes of DNA methyltransferases participate in the
establishment and maintenance of DNA methylation, and two
classes of DNA glycosylases are responsible for demethylation.
In this investigation, we analyzed the expression of 14 DNA
methyltransferase- and glycosylase-related genes in resistant
and susceptible poplars at 6 dpi under L. populi infection
(Supplementary Table 3). The transcript levels of methylation-
related genes increased, including METHYLTRANSFERASE
1.1 (METI1.I) and DECREASE IN DNA METHYLATION
(DDM1), excepting that expression of MET1.2 slightly decreased.
Demethylation-related genes including REPRESSOR OF
SILENCING 1 (ROS1) and DEMETER (DME) were repressed
in both poplars, although the expression of DME4 increased in
P. x euramericana. Intriguingly, in P. tomentosa, genes related
to the establishment and maintenance of DNA methylation
were induced, including CMT3.1, CMT3.2, METI.l, and
DNMT2; the corresponding genes induced in P. x euramericana
were CMT3.1, METI.1, DNMT2, and DME4. Therefore, L.
populi infection induced different patterns of methylation-
related enzyme gene activation in P. X euramericana and P.
tomentosa (Figure 4C). Differential expression of genes encoding
methylation-related enzymes supported the occurrence of DNA

methylation changes in poplar upon pathogen infection, which
gave an impetus for poplar response to biotic stress.

Gene Ontology Functional Classification
and Kyoto Encyclopedia of Genes and
Genomes Pathway Enrichment Analysis

In this investigation, GO annotation was used to classify
the functions of CHH DMR genes. Based on WGBS data,
genes showing DNA methylation were classified into three
categories, “molecular function,” “biological process, and
“cellular component” (Supplementary Figure 5). In P.
tomentosa (Min6_vs_Mck), 78 DMR genes were significantly
enriched in the “biological process” category (Supplementary
Table 4A). However, only 21 DMR genes in P. X euramericana
(Oin6_vs_Ock) were significantly classified into “molecular
function” group (Supplementary Table 4B), and no DMR
genes were significantly enriched in “biological process.” These
GO significant enrichment results indicate differing responses
between resistant and susceptible poplar types.

To further explore the biological functions of poplar genes
involved in the response to L. populi infection, the CHH DMRs
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FIGURE 3 | Lonsdalea populi infection induced methylation decline in different
poplars. The mC percent (A), mCpG percent (B), mCHG percent (C), and
mCHH percent (D) of P. tomentosa and P. x euramericana before and after
pathogen infection. The data are plotted as mean + SEM. For statistical
analysis of differentially expressed genes, unpaired t-test was performed.

**P < 0.001, *P < 0.01. Min/Oin means inoculation of P. tomentosa or

P. x euramericana, Mck/Ock means mock-inoculation of P. tomentosa or

P. x euramericana, and the Arabic numerals indicated the specific inoculation
days.

were mapped to reference pathways in the KEGG database. In
P. tomentosa (Min6_vs_Mck), 275 CHH DMRs were assigned
to 79 pathways, including four genes significantly enriched
in monoterpenoid biosynthesis pathway (Supplementary
Table 5A). In P. x euramericana (Oin6_vs_Ock), 205 CHH
DMRs were enriched in 71 pathways, including six genes
significantly enriched in alpha-linolenic acid metabolism
and 31 significantly enriched in biosynthesis of secondary
metabolites (Supplementary Table 5B). Taken together, the
significant enrichment of CHH DMR genes in monoterpenoid
biosynthesis pathway supported the occurrence of systemic
acquired resistance (SAR) in plants, suggesting that the
resistant type might ward off pathogens via CHH DNA
methylation modification of monoterpenoid biosynthesis genes
(RiedImeier et al., 2017).

CHH Hypomethylation and
Hypermethylation Are Concentrated in
the Promoter and Repeat Regions of
Both Poplar Types

Cytosine methylation mostly resided in repetitive sequences
in plants, mammals, and fungi (Goll and Bestor, 2005). To
further analyze the methylation distribution among regions of
gene bodies, we annotated DNA methylation differences in

diverse parts of genes. Considering genotype-specific differences
in methylation, CHH DMR gene region distribution of mock-
inoculated samples was compared in two types of poplars (Ock
vs. Mck) (Supplementary Figure 6). In the repeat region, 1,832
hypo DMRs and 1,959 hyper DMRs were found. The promoter
region contained 1,372 hypo DMRs and 993 hyper DMRs.
Together, these results showed no apparent difference in repeat
or promoter region between resistant and susceptible poplars.
We found that the most abundant CHH hypomethylation
region in P. tomentosa (Min6 vs. Mck) was the repeat region
(3,905 DMRs), followed by promoter region (1,208 DMRs).
The same pattern was observed in P. x euramericana (Oin6
vs. Ock), with 3,567 hypo DMRs in repeat region and 1,252
in promoter region (Figure 5). In contrast, CHH methylation
in exon, intron, or other regions in both poplars was much
lower than that of repeat or promoter regions. These data
demonstrated that a large number of promoter and repeat gene
regions were CHH hypomethylated in both poplars, implying
that CHH hypomethylation might be involved in poplar response
to pathogen. Additionally, 1,133 DMRs were found in the
repeat region, and 302 in the promoter region, in the analysis
of CHH hypermethylation in P. tomentosa. Meanwhile, CHH
hypermethylation in the P. x euramericana repeat and promoter
regions included 2,376 and 830 DMRs, respectively. Nevertheless,
the level of CHH hypermethylation in the promoter and repeat
regions of P. X euramericana was approximately double that of P.
tomentosa, further suggesting that CHH hypermethylation might
be related to the difference in resistance between these poplars
other than CHH hypomethylation.

Correlation Analysis Between DNA

Methylation and Gene Expression

DNA methylation plays an important role in regulating the
expression of genes (Wang et al., 2015; Gao et al, 2020).
To assess whether DNA methylation is associated with gene
activity, the correlations between DNA methylation and gene
expression were analyzed. The relationship between the ML
of DMR regions and the levels of associated DEGs was
visualized as a scatter diagram (Supplementary Figures 7A,B).
Intergroup comparison showed more genes of P. x euramericana
in each quadrant than that of P. fomentosa. Furthermore,
most of the interconnected genes showed hypomethylation
compared to the control, in both poplars. To explore the CHH
methylation distribution in more depth, we analyzed promoter
DNA hypomethylation. The relationship between methylation
and DMR-related gene expression was illustrated using scatter
and box plots (Supplementary Figures 7C,D). In resistant type
poplar, CHH hypomethylation level in the promoter region was
negatively correlated with the expression level of DMR-related
genes (Min6 vs. Mck). This correlation was relatively weak in the
susceptible poplar.

Although promoter DNA methylation promoted gene
transcription in some cases, it usually negatively regulated gene
transcription (Zemach et al., 2010; Wang et al., 2015; Zhang et al.,
2018). Promoter methylation has a negative correlation with
gene expression levels (Xin et al., 2021). Therefore, we conducted
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FIGURE 4 | Distribution and significance of differential methylation regions (DMRs) in genome in three sequence contexts (CG/CHG/CHH) of two poplar types by
Circos map. Display of three sequence contexts DMRs overall Circos of P. tomentosa (Min6_vs_Mck) (A), P. x euramericana (Oin6_vs_Ock) (B). Heatmap of
hierarchical clustering for expression of DNA methylation- and demethylation-related genes in poplar under Lonsdalea populi infection (C). In panels (A,B), from the
outside to the inside means: (a) Chromosomes. (b) Hyper differentially methylated regions (DMRs) statistical value log5 (| area stat|); the higher the outward dot, the
more significant the position difference. (c) TE, the proportion of repeat elements. (d) Gene density. (e) Hypo DMR statistical value log5 (| area stat|); the higher the
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combined analysis of DNA CHH hypo-DMRs in the promoter
region (Min6 vs. Mck) and upregulated DEG transcriptome
profiles in poplars generated under the same inoculation
conditions. Five genes overlapping between the presence of
DMRs and DEGs were found in P. tomentosa (Table 1). Through
analysis of those five genes using the KEGG database, we found
that two genes were enriched in the plant-pathogen interaction
pathway (Supplementary Figure 8) and Vitamin B6 (VitB6)
metabolism pathway (Supplementary Figure 9), respectively
(Figure 6A). Functional annotations of Potri.007G127000 and
Potri.001G182100 were obtained from Phytozome, indicating
that these genes encode CALCIUM-DEPENDENT PROTEIN

KINASE 24 (CDPK24) and pyridoxin biosynthesis PDX1-like
protein 2, respectively. The correlation between DMRs and
DEGs indicated that CDPK24, a protein kinase gene regulated
by calcium ions in the plant pathogen interaction pathway, and
PDX1.2, a VitB6 metabolism related gene, might enhance plant
disease resistance.

In P. x euramericana (Oin6 vs. Ock), we found that 93
genes with DNA CHH hypo-DMRs in the promoter region
were upregulated. Through comparison of these 93 genes against
the KEGG enrichment database (Supplementary Table 6), we
found that the two most abundant pathways were biosynthesis
of secondary metabolites and metabolic pathways (Figure 6B).
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FIGURE 5 | Number of CHH DMRs distributed in gene regions. Distribution of differentially methylated genes in P. tomentosa (A) and P. x euramericana (B) at 6 dpi
compared with mock-inoculation. The abscissa represents the category of each area, and the ordinate represents the number of DMRs of Hyper/Hypo DMR in each

TABLE 1 | Transcriptional up-regulated expression genes with downregulated CHH methylation in the promoter region of Populus tomentosa ‘henan’.

Gene ID Gene name Differential methylation log>Fold Change P value Swiss prot annotation

Potri.001G182100 PDX12 -0.16 1.27 0.00 Pyridoxal biosynthesis protein
PDX1.2

Potri.001G324500 CPD -0.19 1.09 0.00 Cyclic phosphodiesterase

Potri.005G 146400 NPY2 -0.17 1.33 0.00 BTB/POZ domain-containing
protein NPY2

Potri.007G127000 CDPKO -0.07 1.53 0.00 Calcium-dependent protein
kinase 24

Potri.012G110600 -0.14 1.51 0.00

These genes and pathways in P. x euramericana differed
markedly from those identified in P. tomentosa, which might be
due to the abnormal metabolism of P. x euramericana under the
influence of pathogen infection at 6 dpi (Figure 6).

DNA Methylation Changes of Resistance,
Pathogenesis-Related, and

Phytohormone Genes

Phytohormone genes, R genes, and PR genes are critical to
plant defenses against pathogen infections (Derksen et al., 2013;
Verma et al,, 2016; Wang et al,, 2018; Zou et al., 2018; Yang
et al., 2021). To explore the DNA methylation characteristics
of these genes, combined analysis of DMRs and DEGs was
performed. In this analysis, 15 phytohormone-related DEGs,
including one R gene in P. tomentosa, were found to be associated
with differential DNA methylation, and the majority of these
DEGs exhibited DNA hypomethylation, suggesting that they
contributed to poplar defense against the pathogen infection
(Figure 7A). In P. x euramericana, 214 phytohormone-related
DEGs (Supplementary Table 7) including one R and two PR
genes (Figure 7B) were involved in poplar response to biotic
stress. Of these DEGs, 121 exhibited DNA hypomethylation

and upregulated expression, while the others showed DNA
hypermethylation and downregulated expression. These results
implied that differentially expressed R, PR, and phytohormone
genes might be modified by DNA methylation.

miRNA Methylation in Poplars With
Different Resistance Levels

Considering the important roles of miRNAs in biotic stress
responses, the 5 flanking region, genebody, and 3’ flanking
region of miRNA were analyzed to identify whether there were
regulation of DNA methylation on miRNAs in poplar. We
analyzed miRNA methylation in different regions under CG,
CHG, and CHH contexts in both P. tomentosa (Mck, Min6) and
P. x euramericana (Ock, Oin6). Intriguingly, the results showed
that the pathogen infection induced miRNA hypomethylation
of all regions in P. x euramericana. However, apparent miRNA
CHH hypomethylation was detected only in the 5 flanking
regions in P. fomentosa, and no changes were apparent in other
regions under different contexts (Figure 8). Overall, pathogen
infection reduced the number of CHH-methylated miRNAs
in the 5 flanking region of P. tomentosa, and the number
of methylated miRNAs in P. X euramericana, indicating that
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miRNA methylation might be involved in regulating the response  few annual plants (Zhang et al, 2018). For example, global

to L. populi infection in poplars.

DISCUSSION
DNA Methylation Is Involved in the

Defense of Poplar to Pathogen Infection
Plants undergo genome-wide DNA methylation changes during to Heterodera glycines infection, the susceptible soybean line
infection with pathogens, which has been described in a exhibited reduced global methylation of both protein-coding

DNA hypomethylation was suggested to be part of the
basal pattern-triggered immunity response in rice and tomato
treated with different nematode species or flag22 (Atighi
et al., 2020). Similarly, DNA hypomethylation was associated
with resistance of P. tomentosa to L. populi, suggesting
that pathogen-induced DNA methylation may involve similar
mechanisms between annual and perennial plants. In response
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genes and transposable elements, whereas the resistant line
showed the opposite response, with increased global MLs
(Rambani et al., 2020). When a resistant near-isogenic line of
wheat was compared to a susceptible line, more hypermethylated
and fewer hypomethylated genes were found in the former line
at both 0 and at 96 h post-inoculation with Puccinia triticina
(Saripalli et al., 2020). Those results suggest that regulation
of DNA methylation is of great significance for plants facing
biotic stress. In this investigation, DNA methylation changes
associated with pathogen infection between two poplar types
with different resistance levels were investigated through WGBS.
Interestingly, both resistant and susceptible poplars showed
DNA hypomethylation; the previously reported contrasting
DNA methylation patterns were not observed here (Figure 3;
Rambani et al., 2020; Saripalli et al., 2020). Intriguingly, the
resistant type P. tomentosa showed significantly reduced DNA
hypomethylation under pathogen stress, which differed from

the DNA hypermethylation patterns observed in resistant plants
in previous studies. These results suggested that the DNA
methylation patterns of susceptible and resistant types may
differ, making it necessary to explore the subtle differences in
epigenetic regulation between annual and perennial plants during
pathogen infection.

Cyst nematode parasitism induced dynamic changes
in the Arabidopsis root epigenome, evidenced by a clear
distinction between two infection time points, with increased
CG hypermethylation seen at 10 dpi relative to 5 dpi, specifically
in protein-coding genes (Hewezi et al,, 2017). Similarly, this
investigation indicated dynamic changes in DNA methylation of
poplars, which were associated with different courses of pathogen
infection (Figure 1). Interestingly, our results differed from the
DNA methylation changes observed in Arabidopsis, which
were largely similar between 3 and 5 dpi after infection with
Pseudomonas syringae (Dowen et al., 2012). DNA methylation
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decreased with prolongation of infection time in poplar
(Figure 1), in contrast to the trend reported in the Arabidopsis
root epigenome (Hewezi et al., 2017). The change trend of
DNA methylation in this investigation could be elucidated more
thoroughly using four rather than two infection time points
(Dowen et al., 2012; Hewezi et al, 2017). Comprehensively,
there might be a specific relationship between the pathogen
infection period and global changes in DNA methylation may
differ among plant species and stressors.

The methylation maintenance mode and structure of CHH
differed from the other two sequence contexts, indicating that
the regulation process of CHH methylation in plants might
be different with that of CG and CHG. Our results provided
compelling evidence that CHH methylation might be the
main type of DNA methylation occurring in poplars under
biotic stress, and it changed dynamically among infection time
points (Figure 1). This was consistent with previous reports
that CHH hypomethylation played key roles in plant immune
responses (Geng et al, 2019; Sun et al,, 2019; Atighi et al,
2020). In this investigation, the number of differential CHH
hypermethylation sited in P. x euramericana was roughly
double that in P. tomentosa (Figure 5). Moreover, a more
significant difference in CHH methylation occurred in P.
tomentosa (Figure 3). Together, these results reflected dynamic
variation of CHH hypomethylation between different poplar
species, demonstrating the key role of CHH hypomethylation
in the poplar immune response to pathogen affection. Further
annotation of DMR regions revealed that the level of CHH
hypomethylation in susceptible and resistant poplars was
overwhelmingly higher in repeat regions, followed by promoter
regions, which was different with the previous finding that CHH
hypomethylation occurred predominantly in gene promoters
during the rice immune response to Meloidogyne graminicola
infection (Atighi et al, 2020). Similarly, in wheat inoculated
with P. triticina, ML was generally abundant in intergenic
regions, followed by promoter regions, transcription termination
sites, and exons/introns (Saripalli et al., 2020). Overall, these
investigations supported the conclusion that the promoter is a
crucial region for DNA methylation mediated plant responses
to biotic stressors, even though the promoter region may not
accumulate the highest level of DNA methylation.

Methylation of Genes Encoding CDPK
and PDX Is Involved in the Regulation of
the Poplar Defense Response

Previous reports have suggested that many CDPKs were
associated with plant defense mechanisms against abiotic attacks.
CDPK genes and the CDPK-related protein kinases (CRKs)
played pivotal roles in the biological processes underlying
Arabidopsis immunity to bacteria, fungi, insects, and viruses
(Yip Delormel and Boudsocq, 2019). CDPK and CRK genes,
which were dramatically induced during Ralstonia solanacearum
infection, may act in a coordinated manner to mediate the
immune response of pepper plants (Cai et al., 2015). Many
rice CDPK genes had been demonstrated to respond to various
stresses, including rice blast and chitin stress (Wan et al., 2007).

Furthermore, a few CDPK genes were differentially expressed in
P. trichocarpa during fungal infection, according to genome-wide
analysis of the CDPK gene family (Zuo et al., 2013). The present
investigation suggested a crucial role of CDPK24 in the defense
response of poplars to pathogen infection, based on analysis of
whole-genome DNA methylation and transcriptomic profiles.
We found that CHH hypomethylation stimulated the expression
of CDPK24, which was involved in the immune response of
the resistant poplar to pathogen infection, thereby providing
the first insight into the crucial role of DNA methylation in
modifying CDPK24 in the poplar response to biotic stress.
Considering that CDPKs were related to immune responses
in diverse plants, the regulatory roles of CDPKs in plant
responses to pathogen infection may be conserved. However,
the detailed functions of CDPKs in pathogen resistance remain
to be confirmed.

Vitamins are essential nutrients and key enzyme cofactors
that regulate cellular metabolism and activate the immune
system. Recently, B vitamins have been shown to play roles
in the development, stress tolerance, and pathogen resistance
of plants (Suzuki et al, 2020). Other studies have obtained
evidence through expression profiling of genes involved in
VitB6 biosynthesis, showing their involvement in plant disease
resistance. Bacillus subtilis CBR05 was reported to induce VitB6
biosynthesis in tomato plants through a de novo pathway,
contributing to resistance against Xanthomonas campestris
infection (Chandrasekaran et al., 2019). Moreover, Vitamin
B6 contributed to disease resistance against Pseudomonas
syringae and Botrytis cinerea in Arabidopsis (Zhang et al,
2015; Chandrasekaran et al., 2019). Transcriptome sequencing
indicated that the VitB6 biosynthesis pathway was involved in
the response of Lilium pumilum to Fusarium oxysporum (He
et al., 2019). Two protein families, PDX1s and PDX2, were
required for the de novo biosynthesis of VitB6 (Tambasco-
Studart et al., 2007). In this investigation, the VitB6 metabolism
pathway was found to contribute to the resistance of poplars
to pathogen infection. Specifically, this investigation unraveled
that DNA methylation modification of PDX was involved in the
poplar response to pathogen infection, providing new insights
into the connection between the VitB6 metabolism pathway and
pathogen resistance in poplars.

Furthermore, miRNAs targeting CDPK24 were
further predicted, namely, ptr-miR477d and ptr-miR169n
(Supplementary Table 8). MiR477d-5p was downregulated in
P. tomentosa upon pathogen infection, which was consistent
with expectation that it showed CHH hypomethylation in the
5’ flanking regions. Previous reports revealed that miR477 was
related to plant resistance to pathogen (Hu et al., 2020; Wang
et al,, 2020). Thus, infection with L. populi in P. x euramericana
and P. tomentosa should trigger a battery of plant immune
responses. We further postulated that CHH hypomethylation
might trigger the suppression of ptc-miR477d-5p, thereby
stimulating the induction of CDPK24 and indicating that ptc-
miR477d-5p and its target, CDPK24, enhanced the plant immune
response to pathogen infection in poplars. Additionally, PDX1.2
was involved in the defense of poplar plants to against biotic
stress (Supplementary Figure 10).

two
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DNA Methylation Affects Poplar
Responses to Biotic Stress Through
Multiple Pathways

Phytohormones had been confirmed to function as regulators
of plant immune responses to biotic stress through exogenous
hormone treatment (Robert-Seilaniantz et al., 2011). R and PR
genes were responsible for plant resistance to multiple diseases
(Tyr and Rebecca, 2016). In this investigation, nearly half of the
plant hormone genes were associated with DMRs and DEGs, and
a negative correlation was found between DNA hypomethylation
and differential gene expression (Figure 7 and Supplementary
Table 7). In addition, all R and PR genes associated with DEGs
and DMRs exhibited DNA hypomethylation and upregulated
expression. These R and PR genes and phytohormone related
DEGs participated in the immune response through DNA
methylation modification, suggesting that DNA methylation
modulated poplar defense against pathogen infection through
modification of R, PR, and phytohormone genes. In grape berries,
melatonin treatment enhanced disease resistance and flavonoid
biosynthesis by decreasing the MLs of the promoters of the
corresponding genes (Gao et al., 2020). Heterologous expression
of the lycopene B-cyclase (Icb) gene in flax was reported to
silence its endogenous counterpart due to changes in gene-
body methylation and the abscisic acid homeostasis mechanism,
thereby increasing plant resistance to fungal pathogens (Boba
et al., 2018). Combined together, these results indicated that
DNA methylation effectively functioned in plant disease defense
through modification of R, PR, and phytohormone genes, thus
helping to modulate the molecular epigenetic mechanism.

To systematically understand the crosstalk of DNA
methylation and poplar response to biotic stress, we further
postulated a putative regulation model (Figure 9). Biotic
stress triggered DNA methylation changes, which was followed
by a wide range of response activities. The plant-pathogen
interaction pathway was activated by CDPK. Similarly, the VitB6
metabolism pathway was activated by PDX. CDPK and PDX may
regulate a burst of reactive oxygen species (ROS), leading to the
hypersensitive response (HR) (Tambasco-Studart et al., 2007).
Appropriate activation of HR by pathogens may cause, or have
an association with, plant disease resistance (Balint-Kurti, 2019).
Enrichment of the monoterpenoid biosynthesis pathway in the
KEGG results indicated SAR through ROS and AZELAIC ACID
INDUCED1 (AZI1), which likely functioned as infochemicals
in plant-to-plant signaling, thereby allowing defense signals
to propagate between neighboring plants (Riedlmeier et al,
2017). Effector-triggered immunity (ETI) is triggered by the
activation of R genes, resulting in halting further colonization
and attenuating disease resistance (Jones and Dangl, 2006).
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