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Klebsiella species cause infections at multiple sites, including lung, urinary tract, 
bloodstream, wound or surgical site, and brain. These infections are more likely to occur 
in people with preexisting health conditions. Klebsiella pneumoniae (K. pneumoniae) has 
emerged as a major pathogen of international concern due to the increasing incidences 
of hypervirulent and carbapenem-resistant strains. It is imperative to understand risk 
factors, prevention strategies, and therapeutic avenues to treat multidrug-resistant 
Klebsiella infections. Here, we highlight the epidemiology, risk factors, and control strategies 
against K. pneumoniae infections to highlight the grave risk posed by this pathogen and 
currently available options to treat Klebsiella-associated diseases.
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INTRODUCTION

Klebsiella pneumoniae is a Gram-negative, encapsulated, non-motile, facultatively anaerobic 
bacteria (Ray and Ryan, 2004). It was first isolated from the airways of a patient dying of 
pneumonia by Edwin Klebs in 1875 and later described by Carl Friedländer in 1882, leading 
it to be  called Friedlander’s bacillus for some time (Köhler and Mochmann, 1987). Klebsiella 
species include Klebsiella ozaenae, Klebsiella rhinoscleroma, and K. pneumoniae, the last of 
which is an important opportunistic and iatrogenic infectious pathogen with major clinical 
implications (Bagley, 1985). In humans, Klebsiella often colonizes the nasal and digestive tract 
without causing any symptomatic disease. However, the colonization can turn into an infection 
when the host immunity fails to control the pathogen growth, examples of which include 
patients with diabetes, on glucocorticoid therapy, and those who have received organ transplantation. 
This mini-review will discuss critical aspects of K. pneumoniae biology related to its pathogenesis 
and control strategies.
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CLINICAL EPIDEMIOLOGY

Colonization and Infection
Klebsiella species are present abundantly in nature and 
commonly found in soil, water, and other surfaces (Martin 
and Bachman, 2018). In humans, K. pneumoniae often colonizes 
at various mucosal surfaces, including the upper respiratory 
tract and the gut, where colonization rates vary widely among 
individuals based on their habitat and exposures (Bagley, 
1985; Podschun et  al., 2001; Martin and Bachman, 2018). 
Recent studies showed that the prevalence of Klebsiella 
colonization ranges from 18.8 to 87.7% in Asia and 5 to 
35% in Western countries (Lin et  al., 2012; Russo and Marr, 
2019). In the non-hospital settings, the carrier rate of Klebsiella 
in fecal samples ranges from 5 to 38%, while the carrier 
rates in the nasopharynx range from 1 to 6% (Fuxench-López 
and Ramírez-Ronda, 1978; Podschun and Ullmann, 1998). 
The presentation of Klebsiella involving the skin is rare, which 
is considered transient rather than persistent (Kloos and 
Musselwhite, 1975). In hospitalized patients, colonization rates 
in the nasopharynx rise to 19%, while it can be  as high as 
77% in the gastrointestinal tract (Pollack et al., 1972; Podschun 
and Ullmann, 1998). Due to its extensive presence in humans, 
gastrointestinal colonization serves as a major reservoir for 
transmission and infection to other sites (Martin et  al., 2016; 
Dorman and Short, 2017). The experimental evidence of 
gastrointestinal sources of infection came from a study by 
Selden et  al. (1971), which demonstrated that  
K. pneumoniae infections often show similar serotypes as 
colonizing bacteria in the intestinal tract. More recent studies 
have confirmed the relationship between colonizing strains 
of K. pneumoniae and strains obtained from the infection 
sites (Martin et  al., 2016; Dorman and Short, 2017). A 
longitudinal study confirmed these studies where investigators 
determined the colonization of Klebsiella in the gastrointestinal 
tract of a cohort of 1765 patients and followed this cohort 
for 3 months to assess the respiratory tract, urinary tract, or 
blood infections. The results demonstrated that 21 of 406 
patients (5.2%) had colonization developed a subsequent 
infection compared to only 1.3% of the subjects without 
colonization. Genetic sequencing revealed that most of the 
Klebsiella infections originated from the colonization sites in 
the same patient.

Similarly, Gorrie et al. (2017) analyzed the relationship between 
colonization and susceptibility to infection by K. pneumoniae 
in 498 ICU patients. They found that 16% of the patients 
colonized with K. pneumoniae were found to be  infected, 
compared to only 3% in the non-carriers (Gorrie et  al., 2017). 
Whole-genome sequencing revealed that the patients were infected 
with the same strain they carried in the form of colonization. 
From a genomic perspective, these studies demonstrated that 
gastrointestinal microbiota is a prominent source of nosocomial 
K. pneumoniae infections, 80% of which are caused by self-
colonizing strains. The transition from colonization to infection 
is primarily due to the impairment of host defense contributed 
by underlying diseases or immunomodulatory therapies (Tsay 
et  al., 2002; Meatherall et  al., 2009). To support this notion, 

a study by Lee et  al. (1994) observed 101 patients diagnosed 
with Klebsiella bacteremia and found that 36% of patients had 
diabetes, and 26% had malignant tumors (Tsai et  al., 2010).

Discriminating between colonization and infection has always 
been a puzzle for clinicians and researchers, making it difficult 
for subsequent intervention strategies. However, several factors 
can be  considered to distinguish colonization from infection. 
These factors include:

 1. Detection of Klebsiella in the bloodstream indicates an active 
infection. Circulating blood remains sterile, unlike the 
respiratory, urinary, and digestive tracts, which harbor 
colonizing K. pneumoniae.

 2. The patient’s symptoms, clinical signs, laboratory examination, 
and imaging data should be  employed to differentiate 
colonization from infection. For example, respiratory infection 
with Klebsiella is diagnosed if the patient has a fever, cough, 
sputum production, high WBC, and imaging evidence of 
pneumonia in the lung.

 3. When patients have underlying diseases such as COPD, 
diabetes, heart disease, organ transplantation, or a recent 
history of steroid use or antimicrobial drugs, the infection 
of Klebsiella should be  considered when positive cultures 
are obtained. In summary, infections by K. pneumoniae often 
derive from the colonizing bacteria within the host, and 
both clinical and bacteriological factors should be considered 
to distinguish active infection from colonization.

Hypervirulent K. pneumoniae
Hypervirulent K. pneumoniae (hvKp) indicates a K. pneumoniae 
strain that can cause infections in relatively healthy subjects, 
often in community settings. The infection is often manifested 
in multiple organs (Struve et al., 2015). HvKp was first reported 
in 1986  in Taiwan, which caused pneumonia complicated 
with liver abscess, meningitis, and endophthalmitis (Liu et al., 
1986). This strain causing liver abscess was also known as 
hypermucoviscous K. pneumoniae due to its hypermucoviscous 
phenotype (string test >5 mm), as described by Fang et  al. 
(2004). Unique sequences on the plasmid can distinguish 
hvKp from classic K. pneumoniae strains (Russo et  al., 2018). 
The high virulence of these strains is recapitulated in animal 
models as demonstrated by a 50% lethal dose (LD50) being 
as low as 103 colony forming units (Nassif and Sansonetti, 
1986). The hypermucoviscous phenotype is contributed by a 
unique plasmid in some of these strains (Nassif et  al., 1989; 
Nassrf et  al., 1989). In this regard, the first strain isolated 
by Friedlander in 1882 was considered as hvKp because it 
was highly pathogenic and could infect multiple sites in the 
body (Russo and Marr, 2019). However, the subsequent studies 
demonstrated that not all hvKp have hypermucoviscous 
phenotype, and some common K. pneumoniae strains were 
hypermucoviscous, indicating that hypermucoviscous phenotype 
can be  present in non-hypervirulent strains of Klebsiella 
(Catalán-Nájera et  al., 2017; Russo et  al., 2018). At present, 
cases of hvKp have already been reported from Europe, Asia, 
and the United  States (Russo and Marr, 2019).
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The first case of hvKp infection in North America was a 
38-year-old African American man with headache and fever 
diagnosed with a liver abscess caused by hvKp and complicated 
by endophthalmitis and meningitis (Saccente, 1999; Table  1). 
In a retrospective study of 56 cases of liver abscess at Elmhurst 
Hospital in New  York City, 36 percent of the patients were 
caused by hvKp using imaging and culture of blood or liver 
aspiration (Pastagia and Arumugam, 2008). Subsequently, more 
and more hvKp infections were reported (Pastagia and 
Arumugam, 2008; Mccabe et  al., 2010; Fierer et  al., 2011; Vila 
et  al., 2011). Increasing reports of the multiorgan clinical 
manifestation associated with K. pneumoniae such as liver 
abscess, bacteremia, meningitis, endophthalmitis, and necrotizing 
fasciitis indicate a high prevalence hvKp, which has become 
a global disease that requires immediate attention. The earliest 
clinical clues for hvKp include the presence of liver abscess 
and bacteremia in patients with a positive culture. Due to 
high lethality, early diagnosis and intervention play a key role 
in limiting the disease severity and death due to hvKp.

Carbapenem-Resistant K. pneumoniae
Pathogens employ multiple mechanisms to develop antibiotic 
resistance, including the production of beta-lactamase, loss of 
susceptible outer membrane proteins, change of target, biofilm 
formation, efflux pump, and integron (Thomson and Bonomo, 
2005). Exposure to antibiotics at sublethal concentrations may 
lead to the development of resistance among exposed pathogens. 
In addition to the clinical misuse of antimicrobial agents, the 
human population is often exposed to a wide range of 
non-iatrogenic antibacterial drugs in daily life, including antibiotic 
exposures to the livestock in the meat industry, which leads 
to increased drug resistance in pathogens. Increased use of 
antibiotics in both clinical and non-clinical settings is associated 
with an increased number of clinically isolated drug-resistant 
strains, including carbapenem-resistant K. pneumoniae (CRKP; 
Fair and Tor, 2014; Li and Webster, 2018).

In recent years, the extensive use of carbapenems in clinical 
practice increased carbapenem resistance in K. pneumoniae. 
Since its emergence in the 1990s, it has gradually become 
prevalent worldwide with high mortality (Table 2). The presence 
of carbapenem-resistance in the infecting pathogens is an 
independent risk factor of mortality among patients with 
nosocomial infection. There are several mechanisms responsible 
for carbapenem resistance among K. pneumoniae. The primary 
mechanism is the production of a carbapenemase classified 
into the Ambler class A (K. pneumoniae carbapenemase, KPC), 

B (the metalloenzymes NDM, VIM, and IMP), and D (oxacillin 
enzyme, OXA; Spagnolo et al., 2014; Logan and Weinstein, 2017).

The coding gene of KPC is blaKPC, which can be transferred 
by the plasmid among K. pneumoniae strains through Tn3-based 
transposon Tn4401 (Spagnolo et al., 2014; Logan and Weinstein, 
2017). The blaKPC gene can also be  transmitted to other 
bacteria like Enterobacter and Pseudomonas aeruginosa (Virgincar 
et  al., 2011). The blaKPC-K. pneumoniae strains have been 
isolated across the globe in recent years, indicating their global 
presence. The first reported blaKPC-K. pneumoniae strain was 
isolated in a hospital located in North Carolina in 1996 and 
submitted to the Centers for Disease Control and Prevention 
(CDC) through the intensive care antimicrobial resistance 
epidemiology program (ICARE; Yigit et  al., 2001). Naas et  al. 
(2005) reported the first French case of CRKP in 2005, an 
80-year-old man with prostate cancer and metastasis. These 
cases demonstrated the transmission of blaKPC-K. pneumoniae 
among different continents.

New Delhi Metallo-beta-lactamase 1 (NDM-1) K. pneumoniae 
is a newly emerged highly resistant bacteria that can produce 
NDM-1 capable of breaking down beta-lactam antibiotics, 
belonging to Ambler class B carbapenemase (Kumarasamy 
et  al., 2010). The bacteria with NDM-1 genes were considered 
“superbugs” due to their lack of susceptibility to almost all 
available antibiotics (Moellering, 2010). The resistance gene 
was located not only in the bacterial genome but also in 
plasmids. Thus, the strains that are initially susceptible to 
antibiotics may quickly become resistant through horizontal 
gene transfer. The first NDM-1 K. pneumoniae was reported 
in a 59-year-old Indian male with type II diabetes and multiple 
strokes. The patient was a resident of Sweden with multiple 
visits to India (Yong et  al., 2009). The strain was isolated from 
the urine sample on January 9, 2008, when the patient had 
no apparent urinary tract infection symptoms. To date, NDM-1 
K. pneumoniae has also been reported across the world including 
in China, Australia, the United  States, Canada, Europe, and 
Africa (Dhainaut et al., 2005; Burgner et al., 2006; Vered et al., 
2014; Hammer et  al., 2018).

OXA-48 is an Ambler class D carbapenemase encoded by 
the blaOXA-48 gene, which has been reported increasingly among 
the Enterobacteriaceae family of bacteria in recent years. Although 
this enzyme has relatively weak β-lactamase activity, it can 
hydrolyze penicillin and cannot be  inhibited by β-lactamase 
inhibitors. It can spread widely among bacteria through the 
Tn199-based plasmid containing the blaOXA-48 gene flanked 
with the IS1999 sequence (Pfeifer et  al., 2012). OXA-48 was 

TABLE 1 | The first case of hypervirulent K. pneumoniae (hvKp) in each continent.

Continent Country Year Disease Culture origin Reference

Asia Taiwan, China 1986 Liver abscess; septic endophthalmitis Blood Liu et al., 1986
North America Arkansas, United States 1999 Liver abscess, endophthalmitis, and meningitis CSF Saccente, 1999
South America Mendoza, Argentina 2011 Liver abscess Blood and abscess Vila et al., 2011
Europe Granada, Spain 1999 Liver abscess Blood Cobo et al., 1999
Africa Johannesburg, South Africa 2007 Liver abscess and meningitis Blood Meents and Boyles, 2010
Australia Sydney, Australia 1997 Liver abscess metastatic septic endophthalmitis Urine and blood Lindstrom et al., 1997
Antarctica None
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first identified in Turkey in a K. pneumoniae in 2001, which 
was resistant to almost all beta-lactams, including penicillin, 
cephalosporins, monocyclic lactams, and carbapenems (Poirel 
et  al., 2004). Further analysis revealed that SHV-2a, TEM-1, 
and OXA-47 were expressed, and antibiotic susceptible extracellular 
membrane proteins were absent, leading to their resistance to 
various antibiotics. In subsequent years, outbreaks of the OXA-48 
strains occurred in various regions of Turkey. In addition to 
Turkey, OXA-48 has been reported in other European countries, 
America, Asia, Oceania, and Africa (Nordmann et  al., 2011; 
Espedido et  al., 2013; Van Duin and Doi, 2017). Notably, the 
incidence of the OXA-48-expressing strains may be underestimated 
because it is difficult to recognize the presence of OXA-48-like 
enzymes due to their low levels of carbapenem resistance.

It has been reported that overexpression of efflux pumps, 
decreased permeability of outer membrane proteins, and 
production of the β-lactamase enzymes are also important 
reasons for CRKP (Zhang et al., 2014; Hamzaoui et al., 2018). 
Carbapenems are described as our last line of defense against 
drug-resistant bacteria. Most frightening of all, CRKP can 
pass on its resistance to other bacteria through horizontal 
gene transfer by various methods, including bacterial 
conjugation, leading to drug resistance. In particular, the 
emergence of highly virulent CRKP strains named ST11 
CR-HvKp, which are highly virulent and resistant to 
carbapenems, poses a major challenge to our ability to control 
Klebsiella infections (Yao et  al., 2018). The ST11 CR-HvKp 
strain infects the lungs and causes pneumonia, and invades 
the blood and other organs, potentially resulting in incurable 
and fatal infections in relatively healthy individuals.

RISK FACTORS

Susceptibility to K. pneumoniae infection is determined by 
pathogen variables (such as virulence factors and antibiotics 
resistance), host intrinsic (such as genetics, age, and immune 
status), and extrinsic factors (such as antibiotic use, environmental 
exposure, nutrition, and alcoholism), among others (Jong et al., 
1995; Paczosa and Mecsas, 2016; Martin and Bachman, 2018; 
Liu and Guo, 2019).

Various virulence factors have been demonstrated to aid in 
the infectivity of K. pneumoniae. These virulence factors include 
capsule, lipopolysaccharide, adhesin, and siderophores, which 
are more frequent in CRKP/hvKp, leading to various immune 
responses and related phenotypes observed in the hvKp strains 
(Paczosa and Mecsas, 2016; Gomez-Simmonds and Uhlemann, 
2017; Martin and Bachman, 2018).

The host provides nutrition and shelter to the bacteria. At 
the same time, the effective immune system controls bacterial 
replication to prevent infection. Host factors associated with 
increased host susceptibility include heredity, age, and underlying 
diseases (Dhainaut et  al., 2005; Burgner et  al., 2006; Hammer 
et al., 2018). Vered et al. (2014) studied the host’s susceptibility 
to K. pneumoniae using quantitative trait locus (QTL) mapping 
and collaborative cross (CC) mice. They identified host candidate 
genes for K. pneumoniae infection, including Ctnnal1, Actl7a, 
Actl7b, and Bag4 (Vered et  al., 2014). Newborns, especially 
those born prematurely or in intensive care units, are at increased 
risk due to underdeveloped immune systems and immature 
mucosal barriers of the gastrointestinal tract. On the other 
end of the spectrum, the elderly subjects have the highest risk 
of death from K. pneumoniae. It is estimated that a mortality 
rate of 30% in older subjects following hospitalization due to 
K. pneumoniae infection is mainly caused by aspiration of 
oropharyngeal flora (Afroza, 2006; Collado et al., 2015). Studies 
on patients whose mean ages were more than 60 years showed 
that 17.2% of all CAPs and 6.5–11.6% of all HAPs were caused 
by K. pneumoniae (Teramoto et  al., 2015). Moreover, diabetes, 
malignancy, liver and gallbladder disease, chronic obstructive 
pulmonary disease, renal failure, and nutritional status are 
additional risk factors, often associated with aging, toward 
increased susceptibility (Paczosa and Mecsas, 2016).

External factors include antibiotics and glucocorticoids, 
chemotherapy, transplantation, dialysis, hospital and ICU stays, 
personal habits, invasive medical procedures such as an 
endoscope, hypodermic injection, percutaneous surgery, and 
implantation (Tietjen et  al., 2003; Li et  al., 2019). Many of 
these procedures can either contribute to the disruption of the 
mucosal barrier at the colonization site and allow the pathogen 
to escape the colonizing site to establish infections, or they 
directly give the pathogens access to body sites such as intubation.

CONTROL STRATEGIES

Source Control
Identifying and eliminating the source of K. pneumoniae can 
effectively avoid the infection by these bacteria. However, major 
challenges remain in the identification and elimination of the 
source of infection. Specimen culture is still the primary method 
for most hospitals to screen for presence of K. pneumoniae 
(Podschun and Ullmann, 1998; Lolans et al., 2010). Some molecular 
approaches have been reported to identify chromosomal genes 
such as blaSHV, blaLEN, blaOKP, and their side-chain genes 
(deoR) by multiplex polymerase chain reaction (Fonseca et al., 2017). 

TABLE 2 | The first report of representative carbapenem-resistant K. pneumoniae (CRKP).

Strain Year Country Ambler structural 
class

Molecular epidemiology Reference

KPC-1-KP (1534) 1996 United States A Tn4401 Yigit et al., 2001
NDM-1-KP (05-506) 2008 India B N plasmids Yong et al., 2009
OXA-48-KP (11978) 2001 Turkey D Tn1999 Poirel et al., 2004

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Chang et al.   Klebsiella pneumoniae Infection

Frontiers in Microbiology | www.frontiersin.org 5 December 2021 | Volume 12 | Article 750662

It is critical to control the sources of hvKp and CRKP. The 
Carb NP test and molecular identification have been used to 
screen Enterobacteriaceae producing carbohydrase, especially for 
CRKP in asymptomatic carriers (Dortet et  al., 2014).

Extensive screening, identification, education, and 
multifactorial intervention are essential to control the spread 
of K. pneumoniae from the source (Spagnolo et  al., 2014; 
Figure 1). Exposure prevention should be conducted by timely 
identifying the infected individuals and following standard 
precautions including the use of personal protective equipment 
such as gowns, gloves, and masks. Contact tracing should 
be  employed whenever possible to minimize further exposure 
to uninfected subjects, both in hospital and community settings. 
Education on hand hygiene is also vital for medical workers 
(Akova et  al., 2012; Shobowale et  al., 2016; Kang et  al., 2019).

The use of antibiotics should be  regulated strictly under the 
guidelines and principles, especially for initial empirical treatment 
(Guven and Uzun, 2003; Kollef and Micek, 2005). The treatment 
of hvKp and CRKP should follow their specific treatment guidelines 
(Calfee, 2017). Rational and standardized use of antibiotics, 
which includes particular indications, adequate dose, sufficient 
duration of treatment, cautious change of antibiotics, and other 
interventions such as surgical drainage and removal of implants, 
whenever possible, should be  followed (Weichman et  al., 2013). 
Moreover, abuse of antibiotics should be minimized, which occurs 
in the medical setting and during livestock breeding (Levy and 
Marshall, 2004). Controlling antibiotic use in non-human 
environments can contribute to limiting the source of CRKP.

Prevention of Transmission/Block of the 
Transmission Route
As mentioned above, hand washing is considered the most 
critical and practical measure to prevent the spread of pathogens 
(Pittet, 2001; WHO, 2009). Microbes found on healthcare 
workers include Klebsiella, Staphylococcus aureus, Clostridium 

difficile, and other Gram-negative bacteria (Haque et al., 2018). 
Healthcare workers’ hands can be contaminated by direct contact 
with patients or touching contaminated surfaces in the 
hospital setting.

The use of invasive surgeries and indwelling devices, including 
central venous catheters, endotracheal catheters, should 
be avoided and limited whenever possible or used for a minimum 
possible duration (O’Grady et  al., 2002; Trautner and 
Darouiche, 2004).

For patients with indwelling devices, specimens should 
be screened for the presence of bacterial pathogens from relevant 
sites, such as skin, urine, sputum, and wound secretions (Baron 
et  al., 2013). The transmission among patients can be  blocked 
by monitoring the compliance of contact precautions and 
specimen culture results, which should be  communicated with 
the healthcare workers to make appropriate and timely decisions 
in situations, where unexpected transmission is observed. Contact 
precautions should be  taken for the CRKP/HvKp, especially 
in a population with a high risk of transmission or those who 
come in contact with infected individuals (Magiorakos et  al., 
2017). High-risk patients should be  screened at admission and 
periodically afterward for CRKP/HvKp during their hospital 
stay. Standard contact precautions should be  taken for patients 
with a low risk of transmission and people who have an 
epidemiological connection with unrecognized or infected or 
colonized CRKP/HvKp patients. Pre-emptive contact precautions 
can be  taken, while admission monitoring test results are 
pending, especially for patients admitted from other hospitals 
known to have HvKp/CRE (Spagnolo et  al., 2014).

Host Defense and Protection of the 
Susceptible Population
Klebsiella pneumoniae is covered with polysaccharides, including 
the capsule and lipopolysaccharides, which are ideal candidate 
antigens that can be  targeted by vaccine or host immunity 

FIGURE 1 | Risk factors and prevention strategies.
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(Podschun and Ullmann, 1998). The antibodies and vaccines 
against capsular polysaccharides are being developed but facing 
difficulties due to a total of 77 different capsules and nine 
different kinds of LPS serotypes present in the K. pneumoniae 
(Ahmad et  al., 2012; Diago-Navarro et  al., 2017, 2018; Hegerle 
et  al., 2018). It is crucial to identify highly conserved antigens 
of K. pneumoniae strains to develop antibodies or vaccines 
with comprehensive coverage and extensive protection across 
strains (Lundberg et  al., 2013).

Other methods to improve immunity include maintaining 
a healthy lifestyle, including regular exercise, ensuring enough 
sleep, smoking cessation, healthy diets, including fruits and 
vegetables (Monye and Adelowo, 2020). Due to high resistance 
against a wide range of antibiotics, alternative therapies 
should be explored. Bacteriophage therapy is a new therapeutic 
method that can replace or supplement traditional antibiotics 
(Matsuzaki et  al., 2005; Hung et  al., 2011; Gu et  al., 2012). 
Phase therapy has demonstrated many advantages, including 
its specificity, high efficiency, fewer side effects, and lower  
cost.

The antibiotic treatment regimen against K. pneumoniae is 
usually determined by bacterial culture and subsequent antibiotic 
sensitivity tests (Giuliano et al., 2019). For patients with gangrene, 
abscess, and empyema, surgery or interventional treatment should 
be performed. For community-acquired pneumonia, the empirical 
antimicrobial therapy should provide adequate coverage for 
potential Gram-negative pathogens. Third-generation cephalosporin 
or quinolones should be  used for at least 2 weeks, either alone 
or with aminoglycosides (Metlay et  al., 2019). For patients with 
hospital-acquired K. pneumonia, appropriate antibiotic regimens 
should be used either alone or in combination for at least 14 days, 
including imipenem, third-generation cephalosporin, quinolones, 
or aminoglycosides (Qureshi, 2015). Quinolones could 
be  administered intravenously if patients respond rapidly. 

Carbapenems should be considered the treatment of choice against 
Extended-Spectrum Beta-Lactamase (ESBL)-producer stains, 
colistin, tigecycline, and intravenous fosfomycin should be chosen 
for the strains producing carbapenems (Yu and Chuang, 2015).

In summary, K. pneumoniae is an important pathogen for 
respiratory tract infections, often leading to severe pneumonia 
and multiorgan infections. It can also cause urinary tract 
infection, meningitis, sepsis, and biliary tract infection in 
hospitalized patients, entering the human body through the 
contaminated respirator, atomizer, or catheters in addition to 
the self-contamination from the colonized bacteria. In recent 
years, the emergence of HvKp and CRKP strains has become 
a major challenge in clinical practice. Further studies on 
virulence and resistance determinants, genetic lineage 
information, dissemination mechanisms, effective diagnosis 
methods, potential antibacterial targets, and prevention measures 
are needed to help reduce the occurrence and spread of the 
K. pneumoniae infection and associated morbidity and mortality.
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