
fmicb-12-752674 November 11, 2021 Time: 12:32 # 1

ORIGINAL RESEARCH
published: 12 November 2021

doi: 10.3389/fmicb.2021.752674

Edited by:
Antonios Alekos Augustinos,

Hellenic Agricultural Organization
“DEMETER”, Greece

Reviewed by:
Huaxi Yi,

Ocean University of China, China
Ashok Kumar Sharma,

Cedars-Sinai Medical Center,
United States

*Correspondence:
Anastasis Oulas

anastasioso@cing.ac.cy
Alexios Vlamis-Gardikas

avlamis@upatras.gr

Specialty section:
This article was submitted to

Systems Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 03 August 2021
Accepted: 11 October 2021

Published: 12 November 2021

Citation:
Oulas A, Zachariou M,

Chasapis CT, Tomazou M, Ijaz UZ,
Schmartz GP, Spyrou GM and

Vlamis-Gardikas A (2021) Putative
Antimicrobial Peptides Within

Bacterial Proteomes Affect Bacterial
Predominance: A Network Analysis

Perspective.
Front. Microbiol. 12:752674.

doi: 10.3389/fmicb.2021.752674

Putative Antimicrobial Peptides
Within Bacterial Proteomes Affect
Bacterial Predominance: A Network
Analysis Perspective
Anastasis Oulas1,2* , Margarita Zachariou1,2, Christos T. Chasapis3, Marios Tomazou1,2,
Umer Z. Ijaz4, Georges Pierre Schmartz5, George M. Spyrou1,2 and
Alexios Vlamis-Gardikas6*

1 Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2 The Cyprus School
of Molecular Medicine, Nicosia, Cyprus, 3 NMR Center, Instrumental Analysis Laboratory, School of Natural Sciences,
University of Patras, Patras, Greece, 4 School of Engineering, University of Glasgow, Glasgow, United Kingdom, 5 Chair
for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany, 6 Division of Organic Chemistry, Biochemistry
and Natural Products, Department of Chemistry, University of Patras, Patras, Greece

The predominance of bacterial taxa in the gut, was examined in view of the
putative antimicrobial peptide sequences (AMPs) within their proteomes. The working
assumption was that compatible bacteria would share homology and thus immunity to
their putative AMPs, while competing taxa would have dissimilarities in their proteome-
hidden AMPs. A network–based method (“Bacterial Wars”) was developed to handle
sequence similarities of predicted AMPs among UniProt-derived protein sequences
from different bacterial taxa, while a resulting parameter (“Die” score) suggested which
taxa would prevail in a defined microbiome. The working hypothesis was examined
by correlating the calculated Die scores, to the abundance of bacterial taxa from gut
microbiomes from different states of health and disease. Eleven publicly available 16S
rRNA datasets and a dataset from a full shotgun metagenomics served for the analysis.
The overall conclusion was that AMPs encrypted within bacterial proteomes affected
the predominance of bacterial taxa in chemospheres.

Keywords: putative antimicrobial peptides, interbacterial antagonism, network analysis, bioinformatics analysis,
bacterial competition

INTRODUCTION

In terms of species and population, bacterial communities occur in dynamic equilibria related
to environmental factors that drive interspecies competition and coexistence. Different species
may facilitate their survival in a particular environment (e.g., gut and biofilms) by sharing
information on existing sources of food or threats using small molecular messengers (Mukherjee
and Bassler, 2019). Apart from aiding each other, bacteria most often compete using toxic
molecules. In a close contact intercellular war, they may inject lethal molecules (peptidoglycan
hydrolases, phospholipases, pore forming proteins, DNases, RNases, NAD(P)+ hydrolases, and
ADP-ribosyltransferase among others), to suppress antagonistic species using the type VI secretion
system (Coulthurst, 2019; Ross et al., 2019). Another type of antagonism is the secretion of toxic
molecules destined for competitors (Richards et al., 2017). If the toxic effector molecules are
proteinaceous they are called bacteriocins (Cotter et al., 2013). The term describes a broad and
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heterogenous category of molecules that can inhibit bacterial
growth while being present in a defined contained environment
(chemosphere) (Baquero et al., 2019). They are roughly divided
in two categories: one of transmembrane proteins [colicins
(Kleanthous, 2010)] and another of peptides (class I bacteriocins)
(Riley and Wertz, 2002). Microcins are class I bacteriocins with
pluripotent inhibitory actions that may act in synergy with
the larger colicins for even broader inhibition effects (Baquero
et al., 2019). Bacteriocins have a narrow target range and are
designed to benefit the species that produces them over its closely
related competitors.

Antimicrobial peptides (AMPs), a term first used for
antibacterial peptides of the innate immune response of
eukaryotes, are found in all kingdoms of life (Hancock, 2001).
Eukaryotic AMPs mostly target and disrupt bacterial membranes
at micromolar concentrations, without interacting with receptors
(Kumar et al., 2018). They take advantage of the specific lipid
constitution of bacterial membranes [very polar parts of the
exposed lipid heads (Kumar et al., 2018)] and the curvature of the
bacterial membrane (Matsuzaki et al., 1998; Drin and Antonny,
2010) to act as detergents lysing the bacterial cell. AMP-like
detergents may constitute part of bacterial defenses against other
bacterial species [e.g., class I bacteriocin nisin from Lactococcus
lactis (Breukink et al., 1999), mersacidin from Bacillus sp.
(Chatterjee et al., 1992), bacteriocins MccV, MccE492, and MccL].
The bacteria generating AMPs are not harmed due to specific
immunity mechanisms that include specific AMP pumps (Beis
and Rebuffat, 2019), or dedicated immunity proteins embedded
within the cellular membrane, that specifically bind to the
cognate AMPs on the extracellular side preventing its entrance-
damage to the cell (Hassan et al., 2012; Beis and Rebuffat, 2019).

Antimicrobial peptides maintain a balanced microbiome
and establish compatibility between bacterial populations in
niches such as the human gut (Kerr et al., 2002; Kirkup
and Riley, 2004; Majeed et al., 2011). Apart from their
role in microbial biodiversity, AMPs have been employed as
antimicrobials. Purified AMPs have been used to extend food
preservation time, in the treatment of infectious diseases (e.g.,
skin infections and wounds) (Pfalzgraff et al., 2018) and cancer
(Rodrigues et al., 2019). The therapeutic potential of AMPs
as a replacement drug candidate for antibiotics has immense
potential, in particular for the treatment of pathogens resistant
to antibiotics (Yang et al., 2014).

Antimicrobial peptides that form pores are generally
considered α-helical amphipathic molecules that may act as
detergents on bacterial membranes (Blondelle et al., 1999). The
amphipathicity and α-helical secondary structure characteristics
have been exploited by a number of prediction tools in order to
predict AMPs in a given protein sequence (Gabere and Noble,
2017). Detailed studies on mutations affecting the toxicity of
eukaryotic bovine peptide bactenecin 2A (Hilpert et al., 2005)
have been used for the formulation of AMPA, a predictor of
antimicrobial peptides in a protein sequence (Torrent et al.,
2009, 2012). Specifically, AMPA uses a sophisticated algorithm
that gives an antimicrobial propensity value for a selected
peptide stretch (Torrent et al., 2009). Each amino acid of the
stretch is assigned an “antimicrobial index” value derived from

high-throughput screening results (antimicrobial IC50 values)
concerning amino acid replacements of the AMP bactenecin
2A (Hilpert et al., 2005). AMPA has been thoroughly validated
in silico exhibiting accurate prediction of 80–90% of the
assessed antimicrobial proteins including human ribonucleases,
lysozymes and bacterial bacteriocins (Torrent et al., 2009).

We wondered whether bacterial proteomes might hide
antibacterial stretches that could be used for interbacterial
competition among different genera. Assuming that sequence
similarities of AMPs from the proteomes of different bacteria
could form a basis for interspecies competition, a computational
method termed Bacterial Wars (BW) was developed and
employed herein to explore the relationship between putative
AMPs and bacterial predominance. The BW method (i) analyzed
and compared putative AMPs hidden in the proteomes of
different bacterial taxa and (ii) used these AMPs to predict
interbacterial antagonism based on their sequence similarities.
Finally, we put the hypothesis to the test by comparing the
outcome of BW, to the abundance of bacterial genera in eleven
publicly available 16S rRNA derived datasets as well as the species
from a high-resolution full shotgun metagenomics dataset. The
overall outcome was that AMPs embedded within bacterial
proteomes may affect prevalence of individual taxa in the gut.
To differentiate this form of competition from previously known
specialized mechanisms, the novel concept is coined as “putative
AMP defense.”

RESULTS

Large Scale Prediction of Bacterial
Antimicrobial Peptides, and Construction
of Bacterial Networks – The Bacterial
Wars Method
To detect and analyze putative AMPs from different bacterial
species we first created a database (available as a data list – see
below for details) that related bacterial species by the sequence
similarities of their AMP. The database was then queried to
form networks of bacterial interactions based on the number
of common AMPs (details below). To achieve these goals and
develop the BW method, the following steps were performed:
(1) All proteomes from∼3000 bacterial strains were downloaded
from UniProt. Only Swiss-Prot sequences were retained from the
proteomes as these are fully curated. (2) The curated protein
sets of these species were used as input for the AMPA software
(Torrent et al., 2009, 2012), which predicted and assigned a
propensity score to all putative AMP sequences. Over 300,000
AMPs were predicted for all bacterial species, with some showing
higher numbers of predicted AMPs with respect to others
(Figure 1A). Although bacterial putative AMPs were in high
numbers they trailed behind the number of putative AMPs from
human (Figures 1A,B). Still their numbers were significantly
higher than the 200 experimentally verified peptides attributed
so far to all bacterial species (Kumar et al., 2018). Certain
species (e.g., Buchnera aphidicola) deviated from the fitted dashed
regression line, highlighting a disproportional ratio of predicted
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FIGURE 1 | (A) Normalized AMP counts for bacterial species with the highest number of predicted AMPs (1–25), selected species of interest (26–28) and human.
AMP counts were normalized by the number of proteins included in the prediction process (AMP/protein ratio). Due to filtering of proteins (only curated Swiss-Prot
taken in consideration) some species had very few remaining proteins. For visualization purposes, only species with at least 140 remaining proteins are shown
above. The color scale represents the actual number of AMPs for each organism. (B) Scatter plot showing the number of predicted AMPs against the number of
proteins used as input to AMPA software for each organism. Numerical labels correspond to the species in 1a while color groups represent taxa. (C) The 25 most
enriched protein categories derived from clusters of size 1 (i.e., unique AMPs). (D) Histogram for all 109.678 clusters showing the distribution of clusters size (i.e.,
number of AMPs within the cluster – AMPs with >80% sequence similarity). The red bar highlights the large number of unique AMPs (cluster size of 1).

AMPs (high) with respect to proteins included in the analysis.
(3) The resulting bacterial AMPs were next fed into CdHit (Li
and Godzik, 2006; Fu et al., 2012) to obtain clusters of highly
similar peptides (>80% sequence similarity). This resulted in
109,678 clusters, most of which were comprised of solely one
member, namely AMPs which are unique to one species. Further
analysis of the unique AMPs revealed that they were encrypted in
specific protein categories, especially proteins binding to nucleic
acids (Figure 1C). A full list of all the protein description
in clusters with unique AMPs are available as Supplementary
Table 1. Histograms showing the overall cluster distribution
obtained from CdHit also highlight a large portion of unique

AMPs (Figure 1D). (4) Next, an adjacency matrix was created
by calculating the number of highly similar/common AMPs
between all pairs of species in our dataset. (5) This matrix
was later used to create an edge list for the construction of
the BW database (the edge list is available as Supplementary
Table 2). (6) BW utilized this information to construct and
visualize genus-to-genus (which can also extend to species-
to-species) networks. Network nodes denote species or taxa
and edges denote nodes with common AMPs. The weight of
the edges is proportional to the number of shared common
AMPs. The overall methodology is described schematically in
Figure 2.
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FIGURE 2 | Schematic workflow of the BW methodology. (1) All bacterial proteomes were retrieved from UniProt and filtered to extract the Swiss-Prot curated
sequences. (2) AMP perdition was performed using AMPA. (3) CdHit was used to cluster AMPs based on sequence similarity (threshold >80%). (4) Pairwise
comparison was performed for all bacterial taxa to obtain the number of common AMPs for each bacterial pair (i.e., creating an adjacency matrix). (5) The adjacency
matrix was used to construct an edge list, which, was used to create the BW database of interactions. (6) Querying the BW database for selected taxa allows for
networks of interactions to be generated where bacteria taxa are represented as nodes and the number of common peptides as the edge weight.

A Network Measure to Assess Bacterial
Antagonism – The Die Score
Following the generation of networks of bacterial relationships
based on their common AMPs, a novel network-based score
was introduced (termed Die score). The Die score was used
for calculating the relative likelihood for any given bacterial
species (node) to die in a specific microbiome. We hypothesized
that since bacteria are immune to their own AMPs, taxa that
shared many common AMPs (high edge weight) would compete
less. Therefore, the capacity of bacterial taxa to antagonize each
other should be inversely dependent on the similarity of their
AMPs. The Die score can quantify this hypothesis using network
topology calculations, thus providing measure of how likely
a bacterial node will die in the existing network of bacterial
interactions. The higher (more positive) the Die score, the more
likely for a species to die in the underlining microbiome, while
smaller (or negative) Die scores exhibit the opposite trend.
A mathematical explanation of the Die score and how it is
calculated for all nodes in a given network is described in the
section “Materials and Methods.”

Validation Schemes of the Putative
Antimicrobial Peptide Defense
Hypothesis
Validation 1 – Building of Bacterial Wars and
Microbiome Networks From Publicly Available Data
Having constructed a methodology (BW) to extract and analyze
relationships among different proteomes according to their
predicted AMPs, validation of the outcome was performed using
MB data from eleven 16S rRNA gene plus 1 shotgun gut

microbiome datasets (Duvallet et al., 2017). The MB data provide
an accurate representation of actual bacterial abundances in the
underlying microbiomes. All bacterial abundances were extracted
at the genus level from each 16S rRNA gene MB dataset and at the
species level for the shotgun MB dataset. Two parallel approaches
were performed using the Die score, one for BW and one for
MB–generated networks. A detailed overview of the validation
process using one of the microbiomes [Zhu et al. (2013), non-
alcoholic steatohepatitis (NASH) vs. Healthy] (Zhu et al., 2013)
was performed as a case study (Figure 3). The process involved
six steps: (1) a list of bacterial genera was extracted from the Zhu
et al. (2013), NASH dataset and used to query the BW database
(edge list file) to obtain information on the number of shared
common peptides between all pairs of bacterial genera in the
microbiome list. (2) A network of bacteria genera, termed the BW
network, was constructed using the information available from
the BW database. Genera were denoted as network nodes and the
number of common AMPs defined their edge weights. Similarly,
(3) a network of co-occurrence was created using the abundance
data available for the Zhu et al. (2013), NASH dataset, termed
the MB network. Co-occurrence networks were constrained by
different correlation strengths (rho) including both positive co-
occurrence (+rho) and negative co-occurrence (−rho) networks.
Different rho cut-offs were set according to the size of the dataset
in-hand. The co-occurrence network was used as the validation
network. (4) For an examined dataset, Die scores were calculated
for all the nodes in both the BW network and the MB network.
The MB network did not provide any information on AMPs.
To render it comparable with the BW network, we transformed
the MB network to a bi-directed network where the outgoing
edge weights represented the abundance of the bacterial genus
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FIGURE 3 | Schematic workflow of the BW validation process. (1) A list of microbial genera was extracted from microbiome dataset (e.g., Zhu et al. (2013) NASH vs.
Control gut MB dataset). (2) The BW database was queried using this list and the relevant BW network was constructed from the results obtained from this query. (3)
A MB co-occurrence bi-directed network using a rho = 0.4 and p-value = 0.05 was constructed from the abundance table for the case study dataset. (4) Die scores
were calculated for both networks and normalized by subtracting the mean and dividing by the standard deviation. (5) Some bacterial genera were not included in
the BW database and therefore only the intersection of Die scores (full list in Supplementary Table 3) from both networks was taken into consideration in step 5.
The rows in the table are highlighted in red (maximum, positive Die score) and green (minimum, negative Die score), following the legend shown in the bottom right
panel. The transition from red to green denotes genera, which are more or less likely to die, respectively. (6) Pearson’s correlation coefficient was calculated for the
BW min/max Die scores obtaining an r-value of 1.

at any given node (see subnetworks in Figure 3, step 4). In the
bi-directed MB network, high weight of an outgoing edge (high
abundance), denoted greater compatibility within a particular
microbiome. Inversely, low weights of an outgoing edge (lower
abundance), denoted less compatibility among bacterial genera
within the microbiome under investigation. The construction of
the bi-directed MB network allowed for the application of the
Die score to both BW and MB networks, resulting in two lists of
Die scores. (5) An intersection of the two types of networks was
obtained, as some genera were not included in the BW database.
A partial table with the lists obtained from the intersection of Die
scores is shown in step 5 of Figure 3. Supplementary Table 3

shows the full lists of genera and their Die scores, for both the
BW and BW networks for the case study by Zhu et al. (2013),
as well as all additional datasets analyzed herein. Finally, (6) the
correlation between the Die score lists from both networks was
calculated to provide a statistical significance for the validity of
the working hypothesis (see next section for detailed results).

Validation 2 – Comparison of Die Scores Between
Bacterial Wars and Microbiome Networks by the
Pearson’s Correlation Coefficient
The two Die score lists generated from the taxa of the BW
and MB networks (Figure 3 steps 5–6) were compared using
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the Pearson’s correlation coefficient. A positive correlation
would provide evidence in favor of the putative AMP defense
hypothesis. Initially, taxa with the highest (maximum) and lowest
(minimum) Die scores from a given BW network were compared
to the Die scores from the respective MB network.

A complete agreement was observed in the correlation
coefficient (r = 1) across all eleven 16S microbiome datasets
using this initial assessment (Supplementary Figure 1). However,
correlation was not observed for the shotgun metagenomics
dataset at the species level. When taxa with the second highest
and lowest Die scores were compared, the correlation dropped
for some datasets, averaging a correlation coefficient of r = 0.425
across all twelve microbiomes. Similarly, when the comparison
was extended to include taxa with the third highest and lowest
Die scores, Pearson’s correlations averaged a total of r = 0.325
across all datasets (Supplementary Figure 1). Thus, BW and MB
data were in agreement for genera with the highest (maximum)
and lowest (minimum) Die scores but not for all taxa with
intermediate Die score values and not for individual species.

Validation 3 – Assessing the Skewness of Die Score
Distributions for Bacterial Wars and Microbiome
Networks
A correlation coefficient provides an adequate insight of the trend
of the data. However, if a specific genus or species achieves a
high Die score in both BW and MB networks but does not
appear in the same ranking in both networks, then it would
not adhere to the correlation trend. This would result in a poor
Pearson’s correlation coefficient, even though the underlined
genus/species scores were high in both incidents. To obtain
insights that a Pearson’s correlation coefficient measure could
not provide, the shape of distributions of the Die score values
(skewness) was examined. First, taxa were ranked according
to their Die scores as derived from the two networks and the
absolute distance of the rankings was calculated (see Table 1).
The new measure (Dist) provided an indication of the difference
in magnitude between the Die scores from the two different
networks. Data that were positively skewed with respect to
their distances (Dist) indicated that there was a small difference
between the taxa rankings based on their Die score. For example,
taxa with high or low Die scores in one distribution (i.e., BW),
also achieved proportionally high or low Die scores in the second
distribution (i.e., MB). This would provide evidence to support
the validity of the putative AMP defense hypothesis and would
agree with bacterial predominance based on proteome-derived
AMPs as a potential mechanism for bacterial prevalence in a
specific microbiome. On the other hand, data with a negatively
skewed Dist would mean that the Die score rankings had large
differences. For example, taxa with high or low Die scores under
one distribution, would achieve inversely proportional low and
high scores in the other. This would provide evidence against
the validity of the putative AMP defense hypothesis. Table 1
shows the procedure of calculating the absolute distance (Dist).
A full list of all the taxa can be found as Supplementary
Table 3. The use of the Dist measure to investigate skewness
for the twelve microbiome datasets showed that they adhered
to positively skewed distributions with respect to their Dist

measure (Figure 4). Therefore, skewness comparisons showed
a notable agreement for the BW and MB networks that
previously seemed not to correlate using the Pearson’s correlation
coefficient only.

Validation 4 – Statistical Analysis of the Die Scores
Between Bacterial Wars and Microbiome Networks
by the Wilcoxon Test
Statistical analysis of the Die scores between BW and MB
networks was performed by the Wilcoxon signed-rank test. This
is a non-parametric statistical test for paired groups and was
used to compare the two Die score lists and assessed whether
the ranking order of their values differed. The differences in the
rankings of the Die scores from the BW and MB networks across
all twelve MB datasets (Figure 5), were not statistically significant
(p-values > 0.05). In other words, there was no evidence to reject
the null hypothesis stating that the two Die score lists have the
same continuous distribution. This provides evidence in favor
of the putative AMP defense hypothesis, according to which
the Die score list distributions between BW and MB networks
should be similar.

Validation 5 – Comparisons of Die Scores Between
Bacterial Wars and Microbiome Networks From
States of Health and Disease
Die scores from BW networks and MB co-occurrence networks
for twelve gut microbiome datasets were positively correlated
(positive skewness for Dist). In these comparisons, all healthy
and all diseased state microbiomes for each of the 12 datasets
were grouped together (the analyzed MB datasets contained
both disease and control samples). Next, we examined whether
correlations would be affected upon separation of the MB
data into different sample types with greater homogeneity.
Therefore, the analysis steps outlined in Figure 3 were repeated
after separating the twelve gut MB data to their health and
diseased states.

Case Study 1 – Healthy States
Taxa with the highest (maximum) and lowest (minimum) Die
scores from the BW network were positively correlated to the
Die scores from the corresponding taxa from the MB network

TABLE 1 | Absolute distance (Dist) calculation using Zhu et al. (2013) NASH
dataset as a case study.

DieBW score DieMB score DieBW ranks DieMB ranks Dist

Acidovorax −0.45 0.88 20 32 12

Acinetobacter −0.49 0.64 14 21 7

Actinomyces 1.89 0.88 32 28 4

Akkermansia −0.35 0.88 26 25 1

Arcobacter −0.43 −0.58 24 7 17

Bifidobacterium −0.54 −0.01 11 10 1

Campylobacter −0.46 0.86 18 23 5

Citrobacter −0.56 0.88 10 31 21

Clostridium −0.8 0.09 1 12 11

. . . . . . . . . . . . . . . . . .

Weissella −0.35 0.4 25 18 7
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FIGURE 4 | Visualization of skewness for Die score differences for BW and MB networks. Histogram plots for all the data (disease and control) in twelve
microbiomes [including Zhu et al. (2013) dataset – labeled as nash_ob_baker], showing the distribution and skewness of the distances (Dist). Positively skewed
distributions of Dist measures were observed for all twelve microbiomes.

for 10 out of 12 datasets (Table 2A). In addition, the skewness
of the different Die scores was also positively skewed for 12
out of 12 (100%) of the MB-control networks when compared
to the corresponding BW network’s Die scores (Supplementary
Figure 2 and Supplementary Table 4).

Case Study 2 – Diseased States
Performing the same analysis on the diseased state microbiome
datasets, taxa with the highest (maximum) and lowest
(minimum) Die scores from the BW network were in overall
positive correlation (10 out of 12 datasets) with the Die scores

from the corresponding taxa from the MB network. An
exception was the microbiome data set from the nash_chan
dataset (Table 2B). In addition, the different Die scores
were also positively skewed for 9 out of 12 (75%) of the
MB-diseased state networks (Supplementary Figure 3 and
Supplementary Table 4).

In both case studies, taxa with high and low Die scores
were different in the healthy and diseased state networks. This
highlights the potential of the BW method to follow-up/predict
taxa, which are more, or less likely to die in a given gut
microbiome. All correlation plots for the datasets analyzed herein
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FIGURE 5 | Wilcoxon signed-rank test for BW and MB networks. The p-values are all >0.05, indicating that the results obtained from the Wilcoxon tests using the
ranked Die scores were not statistically significant between the BW and MB networks. This is in favor of the putative AMP defense hypothesis that would expect
similar distributions for both types of Die score lists.

can be found as Supplementary Figures 4–6. Diseased state
bacterial taxa corroborated by bibliographic information can be
viewed in Supplementary Table 5.

Evolutionary Considerations
In the BW methodology, clustering of highly similar peptides
was based on >80% sequence similarity. This high threshold
raised the possibility of a similar clustering of AMPs from
genera with close phylogenetic origin. To address this issue,
a phylogenetic tree of all genera used in the case study for
healthy and diseased state microbiomes (Tables 2A,B) was
constructed along with the Die score as predicted by BW
(Figure 6). According to the presented distribution, bacteria of
the same family did not have similar Die scores. This observation
demonstrates that the putative AMP defense hypothesis is not
biased by bacterial genera with high evolutionary conservation
and therefore high genomic sequence similarity. In fact, genera
such as Prevotella, Tannarella, and Bacteroides, fared differently
within the specific microbiomes presented here, despite all being

members of the order Bacteroidales. Prevotella obtained high
Die score (more likely to die) while the latter two attained
low Die scores (less likely to die). Different Die scores were
obtained for Pseudobutyrivibrio, Clostridium, and Eubacterium
from Clostridiales and Carnobacterium, Lactobacillus, and
Streptococcus of Lactobacillales. These findings demonstrate the
extreme specificity of different AMPs for different genera.

DISCUSSION

The concept of peptides of bacterial origin as factors of
interbacterial antagonism is not new (Baquero and Moreno,
1984). Examples date back to microcin E492 which is secreted
by Klebsiella pneumoniae RYC492 and is active against various
Enterobacteriaceae (de Lorenzo, 1984; Thomas et al., 2004;
Gillor et al., 2008). Some of these peptides [e.g., mersacidin,
nisin, subtilin, cinnamycin, duramycin, actagardine, epidermin,
gallidermin, lanthiopeptin (Chatterjee et al., 1992)], may require
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TABLE 2 | Top Die score taxa for healthy and disease MB networks and their
correlation with BW Die scores.

(A) Healthy states

Dataset Most likely to die Least likely to
die

Pearson’s
correlation DieBW

vs. DieMB

HIV_Dinh Pseudobutyrivibrio Clostridium 1

ASD_Son Prevotella Salmonella −1

EDD_Singh Actinomyces Pseudomonas 1

ASD_KB Eubacterium Bacteroides 1

HIV_Noguera-Julian Tannerella Streptococcus 1

CDI_Schubert Actinomyces,
Anaerobiospirillum

Neisseria −0.8

OB_Zupancic Dickeya Pseudomonas 1

MHE_Zhang Dickeya Enterobacter 1

PAR_Scheperjans Hafnia Salmonella 1

NASH_Chan Prevotella Haemophilus 1

NASH_OB_Baker Prevotella Streptococcus 1

ParkinsonsMetaG Lactobacillus
acidophilus

Staphylococcus
aureus

1

(B) Diseased states

Dataset Most likely to die Least likely to
die

Pearson’s
correlation DieBW

vs. DieMB

HIV_Dinh Pseudobutyrivibrio Clostridium 1

ASD_Son Comamonas Streptococcus 1

EDD_Singh Anaeroplasma,
Tannerella

Yersinia 1

ASD_KB Prevotella Lactobacillus 1

HIV_Noguera-Julian Anaerobiospirillum,
Ensifer

Streptococcus 1

CDI_Schubert Carnobacterium Pseudomonas 1

OB_Zupancic Pseudobutyrivibrio Haemophilus 1

MHE_Zhang Leptotrichia Streptococcus 1

PAR_Scheperjans Pseudobutyrivibrio Streptococcus 1

NASH_Chan Salmonella Bifidobacterium −1

NASH_OB_Baker Actinomyces Streptococcus 1

ParkinsonsMetaG Alcaligenes faecalis Staphylococcus
aureus

−1

post translational modification [addition of lanthionine (Knerr
and van der Donk, 2012)] to stabilize the peptide and enhance
the killing effect. Synthetic improvements of hairpin AMPs have
also been used (Wu and Hancock, 1999; Liu et al., 2013).
Despite the wide diversity of bacterial species, the isolated and
characterized AMPs from bacteria are a fraction compared to
those from eukaryotes (200 bacterial AMPs compared to 2159
from animals) (Kumar et al., 2018). The herein predicted 3000
putative AMPs for E. coli only (Figure 1B), suggests that the
number of bacterial (and human) AMPs may be underestimated.
The high number of bacterial AMPs is suggestive of a possible
underlying function. Could it be that bacteria (and perhaps
other organisms) employ AMPs encrypted in their proteomes to
defend themselves against foe, especially in the relatively stable
environment of a chemosphere (e.g., gut)? Could it be that a dying

or dead bacterium might become a source of AMPs resulting
from the proteolysis of its own proteins, to antagonize “enemy”
species? This possibility would require the presence of proteases
in a chemosphere. Bacterial proteases do exist in the colon
(Ruiz-Perez and Nataro, 2014; Sears et al., 2014; Guyton et al.,
2019) as well as proteases from other microorganisms (Espinosa-
Cantellano and Martínez-Palomo, 2000; Ajjampur and Tan, 2016)
to account for such proteolytic activity. Most of the proteins
identified as potential sources of AMPs were cationic with nucleic
acid binding properties (Figure 1B). Such proteins contain many
basic residues (e.g., lysines) and are thus amenable to proteolytic
degradation. The concept of AMP homology among bacterial
proteomes as being the main prerequisite for bacterial species
compatibility cannot be envisaged without proteolysis occurring
in a chemosphere that would allow for the continuous production
of AMPs. A mechanism as such would relieve the cell from the
need of the energy expenses to synthesize de novo AMPs by
protein synthesis.

Under the supposition that a bacterial proteome is a potential
source of AMPs that are not toxic to the host species and/or
species that share AMP homology, a methodology was developed
(“Bacterial Wars” or BW) that could predict the outcome
of interbacterial competitions. BW (i) detected all putative
AMPs embedded in curated proteins from UniProt-derived
bacterial proteomes, (ii) clustered the detected AMPs by sequence
similarity (iii) created a database of bacterial taxa based on AMP
sequence similarities and finally (iv) predicted specific taxa that
were more likely to “die” in a given microbiome. The final
step was achieved using a novel network-based scoring scheme
(termed “Die score”) that provided a measure of how likely a
given microbial genus/species was to “die” in a given niche. It
should be noted that the Die score is a network measure that may
not be restricted to this work. It can be applied to any network
that may follow similar assumptions to the bacterial networks
generated from the BW method (e.g., co-occurrence networks).
The methodology was used to provide evidence in favor of the
putative AMP defense hypothesis using eleven 16S rRNA gene
datasets as well as one full shotgun metagenomics dataset from
the gut microbiome, where the outcomes of the BW method were
compared to co-occurrence networks derived from these data. In
almost all examined cases, bacterial predominance seemed to be
affected by the similarity of encoded AMPs in bacterial proteins.

Co-occurrence networks are subject to change depending on
the parameters used during the algorithm employed for their
construction (i.e., the choice of correlation metric, the p-value
cut-off etc.). This directly impinges on the correlation scores
between Die scores for BW and MB networks and although
we have tried to be as judicious as possible in the use of these
parameters across the twelve datasets assessed in this study, there
is still an aspect of subjectivity in the use of these parameters that
could potentially affect results. Another concern is the exclusive
use of AMPA as a detector of AMPs. It could well be that not
all AMPs are detectable by AMPA and not all AMPs predicted
by AMPA may have antibacterial properties. All these concerns
must be addressed experimentally, which is not a trivial task. We
can only state that under the current handling and analysis of
proteomes, AMPs and bacterial abundances, putative AMPs seem
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FIGURE 6 | Phylogenetic distribution of the bacteria with the maximum (red) and minimum (green) Die scores. Bacterial genera were taken from controls and disease
data, Tables 2A,B and were colored according to their BW Die scores. The taxonomic division for the different genera is shown on top and depicted as notches of
different shapes on the ancestry lines. Escherichia coli (black color text) is included for comparison. Genera without numbers represent single observations from
Tables 2A,B. When present, numbers represent more observations. Salmonella (blue) acquired low and high Die scores in two different microbiomes.

like a significant factor in the interaction of different bacteria in a
chemosphere (putative AMP defense hypothesis).

Numerous databases describe AMPs from prokaryotic and
eukaryotic organisms (Seshadri Sundararajan et al., 2012;
Gogoladze et al., 2014; Fan et al., 2016; Lin et al., 2016;
Pirtskhalava et al., 2016; Waghu et al., 2016; Wang et al., 2016).
They host experimentally validated, as well as computationally
predicted, AMPs and are fully searchable allowing for queries
of multiple search criteria. However, they do not provide any
information on the relationship among the different AMPs or
some background to explain their efficiency against specific
organisms. The herein developed database combined with the
BW methodology has the potential of detecting relationships
between AMPs in the proteomes of different bacterial taxa and
provide such information for further experimentation purposes.
Predictions on the predominance and outlook of specific taxa in
a given microbiome may lie within the potential of the method.

A first glance on bacterial genome size and AMP count
suggests that the two are not related (Figure 1A). The aphid
dwelling Buchnera aphidicola with a relatively small genome
appears as having the highest number of putative AMPs followed
by Wigglesworthia glossinidia, that lives in the gut of tsetse flies
and is considered as having one of the smallest known genomes
of any living organism. On the other hand, the predatory

Bdellovibrio bacteriovorus, and Fusobacterium nucleatum of the
oral cavity, seem as having less putative AMPs. E. coli lab
strain K12 has a large number of putative AMPs (Figure 1B)
but relatively small compared to its proteome (Figure 1A).
Could it be that bacteria that live in relatively host-independent
conditions (more open chemospheres) may need less AMPs? The
relationship between, abiotic conditions of living, surrounding
microbiomes and hosts are some of the issues that could be the
object of a comparative study with the aim of explaining the
different numbers of AMPs in different bacterial taxa.

A large proportion of the putative AMPs were unique as
they shared low sequence similarity (<80%) (Figure 1C). This
could be viewed as the extreme versatility of the combinatorial
capabilities of microorganisms to create diverse AMPs to face
an opponent species. Comparison of the Die scores in bacteria
with close phylogenetic origin showed that putative AMPs were
specific to the level of genera (Figure 6).

In summary, we propose that putative AMPs hidden within
the proteome of bacteria may affect their symbiosis with other
species in a given chemosphere. In support of the putative AMP
defense hypothesis, we provide computational data corroborated
by gut microbiome datasets on the abundance of bacterial species
in the enterobiomes of different diseases. We believe that our
findings may add another jigsaw in the mosaic of bacterial
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interactions and could perhaps provide leads for the construction
of species-specific AMPs.

MATERIALS AND METHODS

Datasets
16S rRNA gene processed OTU tables were used. These represent
the abundances (in counts) of specific taxa in eleven gut
microbiome datasets. The datasets were downloaded from the
MicrobiomeHD database (Duvallet et al., 2017), https://zenodo.
org/record/569601#.XdPrYmgzaUk.

The datasets included:

1. EDD_Singh, 2015 enteric diarrheal disease (EDD) –
(Singh et al., 2015).

2. CDI_Schubert, 2014 Clostridium difficile infection (CDI) –
(Schubert et al., 2014).

3. OB_Zupancic, 2012 Obesity (OB) (Zupancic et al., 2012).
4. HIV_Noguera-Julian, 2016 HIV

(Noguera-Julian et al., 2016).
5. HIV_Dinh, 2014 HIV (Dinh et al., 2015).
6. MHE_Zhang, 2013 liver diseases (LIV)

(Zhang et al., 2013).
7. PAR_Scheperjans, 2014 Parkinson’s (PAR)

(Scheperjans et al., 2015).
8. ASD_KB, 2013 Autism (ASD) (Kang et al., 2013).
9. ASD_Son, 2015 Autism (ASD) (Son et al., 2015).

10. NASH_Chang, 2013, non-alcoholic steatohepatitis
(NASH) (Wong et al., 2013).

11. NASH_OB_Baker, 2013, non-alcoholic steatohepatitis
(NASH) (Zhu et al., 2013).

Shotgun metagenomics dataset:

1. Parkinson’s disease vs. control metagenomics dataset
(Becker et al., 2021).

Predicting Antimicrobial Peptides Using
AMPA
AMPA (Torrent et al., 2009, 2012), is a publicly available tool for
prediction of antimicrobial peptides in a given protein sequence.
It is available as a web browser1 but also as a standalone tool. We
downloaded and utilized the source code for AMPA written in
PERL and available under Linux, in order to perform batch runs
for our proteins of interests as detailed in Figure 2. We ran AMPA
using the default settings for all input protein sequences.

Clustering Antimicrobial Peptides Using
a Similarity Threshold
CdHit was used to cluster AMPs by applying a sequence similarity
threshold. AMP similarity was set up to support the hypothesis
that bacterial species that share common AMPs (sequence
similarity >80%) may coexist more harmoniously in comparison
to species that share less or no sequence similarity in their AMPs.

1http://tcoffee.crg.cat/apps/ampa/do

Network Construction
Two different types of networks were constructed using: (i) the
BW database (available as an edge list – see Supplementary
Table 2) and (ii) MB abundance tables. Network constructions
and co-occurrence calculations were performed in R using the
following library packages: phyloseq, vegan, ape, WGCNA, igraph,
and network. All networks for the 16S data were constructed
at the genus level, while the network constructed for the
shotgun metagenomics dataset depicts species level associations
All networks generated for the BW methodology can be found
as Supplementary Figures 7–10. The networks at the genus
level were constructed by aggregating all the AMPs found in the
species belonging to a specific genus.

Die Score
The Die score provides a measure of how likely a particular
bacterial node (genus/species) is to “die” in a given microbiome
environment characterized by a network. It can also be
considered as a projection of the relative abundance of bacterial
taxa based on their topology in a network. The putative AMP
defense hypothesis assumes that bacteria’s capacity to kill each
other is inversely dependent on the similarity of their peptides.
Therefore, for the BW approach, we created a graph BW with
nodes representing different bacterial taxa and edges representing
their common peptides.

For a node i in a given graph BW, we calculated the Die score
(D) with equation (1):

Di =
Ni − Si

Np
(1)

Where: Si represents the strength of the node (i.e., the
weighted degree of the node i) and sums up the number of
neighboring bacteria that node i is linked to via an edge (e.g.,
shares common peptides), as well as the edge weight (e.g., number
of common peptides). Ni represents the number of pairs with
no edges (e.g., no common peptides). It is calculated using the
expression Ni = Np − degi, where degi represents the degree of
the node i. Np = (n2

− n)/2 represents the number of all possible
pairs in the network.

The Die score can take values in the range of [−1, 1]. A value of
1 means that a particular bacterial taxon (genus/species) is more
likely to die, while a value of −1 means exactly the opposite (less
likely to die). After the initial calculation using eq. (1), the Die
score was normalized by extracting the mean and dividing by the
standard deviation. This allowed for a greater range for the Die
score for better highlighting differences among the taxa analyzed
by this measure.

The Die score formula described above, can also be applied
to microbiome (MB) co-occurrence networks (or graphs). In
this case, instead of common AMPs, the edges represent the
relative abundances of the particular bacterial taxa (represented
as nodes). The co-occurrence networks have to be modified to bi-
directed networks, whereby the outgoing edge weight represents
the relative abundance of the specific node under consideration.
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Dist Measure
The Dist measure was given by the following eq. (2):

Dist = |RNK(DieBW)− RNK(DieMB)| (2)

RNK is the ranking function performed, whereby all taxa are
ranked according to their position in the Die score vector (the
genus/species with the lowest Die was ranked as 1, and increasing
rankings denote higher Die scores). The R function named
“rank(),” was used to rank the Die scores. In case of ranking ties,
the average of the rankings was calculated, accounting for some
decimal places in the ranking tables (as shown in Supplementary
Table 3). Dist is calculated as the absolute difference between the
ranked Die scores from the BW and MB networks, DieBW and
DieMB, respectively.

Skewness
Skewness was calculated using the R function “skewness()” in the
e1071 package, according to Joanes and Gill (1998). The equation
used is: G_1 = g_1 ∗ sqrt(n(n-1)/(n-2). Positive skewness was
determined by any one of the following observations: histograms
showing a short left tail and a long right tail, skewness calculations
with value >0.4 and/or median of the distribution being closer to
the first quartile – as depicted in the boxplots.
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