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The use of traditional chemical insecticides for pest control often leads to environmental
pollution and a decrease in biodiversity. Recently, insect sex pheromones were applied
for sustainable biocontrol of pests in fields, due to their limited adverse impacts
on biodiversity and food safety compared to that of other conventional insecticides.
However, the structures of insect pheromones are complex, and their chemical synthesis
is not commercially feasible. As yeasts have been widely used for fatty acid-derived
pheromone production in the past few years, using engineered yeasts may be promising
and sustainable for the low-cost production of fatty acid-derived pheromones. The
primary fatty acids produced by Saccharomyces cerevisiae and other yeasts are C16
and C18, and it is also possible to rewire/reprogram the metabolic flux for other
fatty acids or fatty acid derivatives. This review summarizes the fatty acid biosynthetic
pathway in S. cerevisiae and recent progress in yeast engineering in terms of metabolic
engineering and synthetic biology strategies to produce insect pheromones. In the
future, insect pheromones produced by yeasts might provide an eco-friendly pest
control method in agricultural fields.

Keywords: insect sex pheromone, fatty acids, Saccharomyces cerevisiae, metabolic engineering, synthetic
biology

INTRODUCTION

Pheromones are the chemicals used by individuals to communicate with members of the same
species (Karlson and Luscher, 1959). Many insect pheromones are fatty acid-derived molecules,
which play an essential role in the insect life cycle, such as attraction, aggression, aphrodisiacs,
anti-aphrodisiacs, aggregation, kin recognition, and alarm signaling (Yew and Chung, 2015).
Insect pheromones are trace chemicals usually secreted by female insects to attract males of the
same species. Most insect pheromones studies focus on moth and a few other Lepidopteran sex
pheromones. Based on their chemical structures, moth sex pheromones are classified into three
types, the Type-I (75%), the Type-II (15%), and the miscellaneous groups (10%) (Ando et al.,
2004). Type-I sex pheromones are alcohols, aldehydes, and acetates with 10–18 carbon chains,
and are produced by most moth species. Type-II sex pheromones comprise odd polyunsaturated
hydrocarbons (C17-C23) with two or three double bonds at positions three, six, or nine, in addition
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to their corresponding epoxide derivatives (Matsumoto, 2010;
Sun et al., 2019; Yang et al., 2020). The miscellaneous groups of
sex pheromones comprise secondary alcohols with short-chain
fatty acids (C7 and C9) and can be further classified as Type-0,
while those with methyl-branched compounds are classified as
Type-III (Ando and Yamamoto, 2020).

Pest control is a global challenge associated with food
supplies. One of the most potent green strategies for pest
biocontrol involves mating disruption in insects by releasing
pheromones into the crop field (Reddy and Guerrero, 2010;
Benelli et al., 2019). Sex pheromones have been widely used
for insect control and monitoring in agriculture, horticulture,
and forestry (Witzgall et al., 2010). Using pheromones for
pest control is highly efficient, non-toxic, not harmful to the
beneficial insect species, and does not pollute the environment,
which satisfies the requirement of food and environmental
security. The sex pheromone components are already being
chemically synthesized, nevertheless, their chemical synthesis
requires expensive substrates and catalysts and generates
hazardous wastes (Herbert et al., 2013; Turczel et al., 2018).
In this study, we review Type-I insect sex pheromones
and their biosynthetic pathways, since most sex pheromones
are assigned to this class. We have also summarized the
biosynthesis of sex pheromones using engineered yeasts and
discussed the potential application of yeasts for insect sex
pheromone production.

SEX PHEROMONE BIOSYNTHESIS IN
LEPIDOPTERANS

Moths and other Lepidopteran insects mainly produce Type-I
sex pheromones; these are produced in the sex pheromone gland
(PG), and released when needed (Tillman et al., 1999; Ando et al.,
2004). In fact, most female moths release pheromones at relatively
low level, while some species release periodically when matched
pheromones are available (Raina et al., 2000; Jurenka, 2017).

Since most moth pheromones have a straight-chain carbon
backbone, their biosynthetic pathways are common in different
moth species (Figure 1). The first step of sex pheromone
biosynthesis is the synthesis of fatty acids, which starts
with acetyl-CoA and is catalyzed by acetyl-CoA carboxylase
and fatty acid synthase (FAS). A series of saturated fatty
acid precursors are used for pheromone biosynthesis. The
secondary step is desaturation, which involves highly specific
desaturases to generate one double bond or several double
bonds at different positions in the fatty acids. The third
step involves the reduction of fatty acids by fatty acid
reductases (FARs) to convert fatty acyl to fatty alcohol.
The succeeding steps are associated with the functional
group modification catalyzed by fatty alcohol oxidases and
fatty acetyltransferases to form aldehyde and acetate ester
groups (Tehlivets et al., 2007; Wang M. et al., 2020). Here,
we highlight some of the key enzymes involved in the
desaturation, reduction, and functional group modification
steps in the biosynthesis of representative pheromones
(Supplementary Figure 1).

DESATURASES

In Lepidoptera and other insects, a variety of acyl-CoA
desaturases catalyze the desaturation of fatty acyl intermediates,
and they often localize at endoplasmic reticulum membrane
(Figure 1; Hagström et al., 2013a). Especially, 111 desaturases
(Z11 desaturase, E11 desaturase) generate a double bond at
the C11 position. In the female silkmoth Bombyx mori, the
first double bond is introduced at C16:CoA fatty acid by
Z11 desaturase to form Z11-16:CoA (Matsumoto et al., 2007).
The desaturation reaction is common in Heliothis subflexa,
Spodoptera litura, and Antheraea pernyi (Choi et al., 2002; Lin
et al., 2018). In H. subflexa, desaturation of C18:CoA is catalyzed
by Z11 desaturase to produce Z11-C18:CoA (Choi et al., 2002).
Both Z11 desaturase (converts C16:CoA to Z11-C16:CoA) and
E11 desaturase (converts C14:CoA to E11-C14:CoA) have been
identified in S. litura (Lin et al., 2018). Several other desaturases
that catalyze double bond generation in saturated fatty acyl
have been identified. For instance, in Streltzoviella insularis, 15
desaturases (Z5 and E5) catalyze the conversion of C16:CoA
to (E/Z)5-C16:CoA, and Z9 desaturases catalyze the conversion
of C16:CoA to Z9-C16:CoA (Yang et al., 2020). In A. pernyi,
E6 desaturase catalyzes C16:CoA to E6-C16:CoA (Wang et al.,
2010a). In Grapholita molesta and Grapholita dimorpha, 110
desaturase (Z10 and E10) desaturates C14:CoA to form (E/Z)10-
C14:CoA (Jung and Kim, 2014). Several desaturases exhibit
the specificity for mono-unsaturated substrates. In S. litura, Z9
desaturase introduces a second double bond in E11-C14:CoA
to form Z9, E11-C14:CoA, while E12 desaturase converts Z9-
C14:CoA to Z9, E12-C14:CoA (Lin et al., 2018). In A. pernyi,
E6 desaturase converts C16:CoA to E6-C16:CoA, and Z11
desaturase converts E6-C16:CoA to E6, Z11-C16:CoA (Wang
et al., 2010a). Likewise, E5, Z7-C12:CoA is produced by the
desaturation of Z7-C12:CoA by E5 desaturase in Thysanoplusia
intermixta (Ono et al., 2002). Many moth and other Lepidopteran
pheromone intermediates can be desaturated by applying
different combinations, temporal orders, and stereospecificity of
diverse desaturases.

FATTY ACID REDUCTASES

Fatty acid reductases catalyze the reduction of fatty-acyl
pheromone precursors to their corresponding alcohols. In
moth, many types of FARs have been identified and their
substrate specificity has been found to produce species-specific
pheromones (Figure 1). Some FARs exhibit broad substrate
preferences. For example, the first pheromone-gland fatty acyl
reductase (pgFAR) isolated from the B. mori shows its activity
on a broad range of saturated and monounsaturated C14-
and C18-acyl precursors (Moto et al., 2003). In three species
of Yponomeuta, a single pgFAR has been found to efficiently
reduce saturated and unsaturated C14- and C16-acyl precursors
(Liénard et al., 2010). The pgFARs have been found to possess
a general selectivity for C8-C16 fatty acyl precursors in four
closely related heliothine moths (Hagström et al., 2012). Some
FARs also reduce specific pheromone intermediates. In two sex
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FIGURE 1 | Biosynthetic pathways of sex pheromones in several lepidopteran species (including Bombyx mori, Spodoptera litura, Streltzoviella insularis, Antheraea
pernyi, Thysanoplusia intermixta, Heliothis subflexa, H. virescens, Grapholita molesta, and G. dimorpha). Pheromone synthesis starts with a ubiquitous fatty acid
synthesis, followed by desaturation of fatty acyl-CoA precursors, then reduction and functional group modification steps to produce species-specific alcohol (blue),
aldehyde (green), or acetate ester (pink), that can be used as pheromone blends; the structure of each pheromone molecule is also shown. The general biosynthesis
processes and enzymes involved are also marked in this figure.

pheromone races of Ostrinia nubilalis, the allelic variation in
the gene coding for pgFAR has been observed to cause distinct
substrate stereoselectivity (E11-C14:acid and Z11-C14:acid),
which contributes to the intraspecific reproductive isolation
in moths (Lassance et al., 2010). In Spodoptera exigua, a
highly selective pgFAR I has been reported, which catalyzes the
reduction of Z11-C16:acyl to produce moth pheromone signals
(Antony et al., 2016). The substrate selectivity of pgFARs plays an
essential role in generating species-specific signals.

THE MODIFICATION ENZYMES

Fatty acid reductases catalyze the conversion of the functional
groups of fatty-acyl pheromone precursors to the hydroxyl group.
Likewise, aldehyde-producing oxidases, acetyltransferases, and
other enzymes can also modify the pheromones in many
moths (Figure 1). Some oxidases transform fatty alcohols
into aldehydes. The aldehydic sex pheromone components in
Heliothis zea are catalyzed by cuticular alcohol oxidases, and the
oxidases are also responsible for the conversion of the primary
fatty alcohols to fatty aldehydes (Dou et al., 2020). In H. subflexa
and H. virescens, the major pheromone component is Z11-
hexadecenal (Z11-C16:Ald), which is produced by the oxidation
of the precursor Z11-hexadecenol (Z11-C16:OH) (Choi et al.,

2002). The sex pheromone component of Amyelois transitella,
Z11, Z13-C16:Ald, is probably produced from Z11, Z13-C16:OH
in the PG by oxidation (Wang et al., 2010b). In some moth
species of Choristoneura fumiferana (Roscoe et al., 2016), S. litura
(Lin et al., 2018), and S. insularis (Yang et al., 2020), the acetyl
transferases catalyze the conversion of fatty alcohols to acetate
ester pheromones.

Thus, diverse Type-I pheromones are generated by the co-
catalyzation of differing combinations, temporal orders, and
substrate specificities of desaturases, reductases, oxidases, and
modification enzymes (Matsumoto, 2010).

METABOLIC ENGINEERING
STRATEGIES FOR FATTY ACID
PRODUCTION IN SACCHAROMYCES
CEREVISIAE

As a model species, S. cerevisiae has been used to produce a
variety of different fatty acids or fatty acid-derived products
(Wei et al., 2019; Gao et al., 2020; Guan et al., 2020). Most
Lepidopteran sex pheromones are fatty acid alcohols, aldehydes,
or fatty alcohol acetates with chain lengths of 10-18 carbons.
S. cerevisiae cells mainly produce C16 and C18 fatty acids
(Tehlivets et al., 2007; Wei et al., 2017b), which are suitable
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as potential chassis for the microbial synthesis of insect sex
pheromones (Supplementary Figure 1).

Acetyl-CoA is the precursor for fatty acid biosynthesis.
In mitochondria, acetyl-CoA mainly enters the TCA cycle to
be oxidized and release energy. In the cytoplasm, pyruvate
is converted to acetyl-CoA under the catalysis of pyruvate
decarboxylase, acetaldehyde dehydrogenase (ALD), and two
acetyl-CoA synthetases (ACS1 and ACS2) (Krivoruchko et al.,
2015; Zhang et al., 2018; Wang M. et al., 2020). The carboxyl
group is transferred to acetyl-CoA to yield malonyl-CoA
catalyzed by acetyl-CoA carboxylase (ACC1). Then, acetyl-
CoA and malonyl-CoA are catalyzed by FAS for fatty acid
synthesis and elongation (Tehlivets et al., 2007). In S. cerevisiae,
cytosolic FAS is capable of synthesizing fatty acids up to C20
in vitro. The elongation enzymes (ELO) can increase the length
of the fatty acids up to C26 in yeasts (Rössler et al., 2003).
Normally, ELO1 extends C12-C16 fatty acyl-CoAs to C16-C18
fatty acids, ELO2 extends palmitoyl-CoA and stearoyl-CoA up
to C22 fatty acids, and ELO3 catalyzes the synthesis of C20-
C26 fatty acids from C18-CoA (Oh et al., 1997; Rössler et al.,
2003; Wenning et al., 2017). Approximately 70-80% of yeast
fatty acids are monounsaturated, and the desaturation reactions
are catalyzed by OLE1, the endoplasmic reticulum membrane-
bound 19 fatty acid desaturase (Martin et al., 2007). Metabolic
engineering strategies for the biosynthesis of fatty acids mainly
include increasing the content of fatty acid precursors and
cofactors, eliminating the competing pathways, and regulating
the activity of fatty acid synthases and elongation enzymes
(Supplementary Figure 1).

Cytosolic acetyl-CoA is the primary substrate for de novo
FAS biosynthesis in yeast. Deletion of alcohol dehydrogenase
(ADH) genes could reduce ethanol formation from acetaldehyde,
and the overexpression of a heterologous mutant acetyl-CoA
synthase from Salmonella enterica (SeAcsL641P) combined with
the overexpression of ALD (more specifically ALD6) could
increase the flux toward acetyl-CoA-derived products (Shiba
et al., 2007). Alternatively, engineering the cytosolic pyruvate
dehydrogenase (PDH) bypass pathway (Kozak et al., 2014),
ATP-citrate lyase (ACL) pathway, and the phosphoketolase
pathway could further enhance acetyl-CoA biosynthesis (de Jong
et al., 2014). Expression of an ATP-independent PDH complex
from Enterococcus faecalis and ACL could increase the pool of
cytosolic acetyl-CoA in S. cerevisiae (Supplementary Figure 1;
Kozak et al., 2014; Feng et al., 2015).

Malonyl-CoA is the rate-limiting compound in de novo
fatty acid biosynthesis in yeast. Overexpression of ACC1
gene in S. cerevisiae was found to increase the levels of fatty
acids (Shin et al., 2012). Plasmid-based overexpression of
endogenous ACC1 increased the total fatty acid production
from 42.7 mg/L to 63.2 mg/L (∼1.48-fold) (Runguphan
and Keasling, 2014). The activity of ACC1 is negatively
regulated by snf1-dependent phosphorylation, and the
introduction of mutations in two phosphorylation sites of
ACC1 (ACC1S659A,S1157A) increased ACC1 activity and total
fatty acid content (Shi et al., 2014). When the third mutation
was introduced in ACC1S659A,S1157A, the resulting strain
with ACC1S686A,S659A,S1157A could produce a higher amount

malonyl-CoA, and the titer of 3-hydroxypropionic acid —
a malonyl-CoA-derived compound — improved by 1.5-fold
(Chen et al., 2018).

The cofactor NADPH is required in the cell for de novo fatty
acid synthesis in yeast. A recent metabolic flux analysis indicated
that 60% of all NADPH is consumed for glutamate biosynthesis
by the NADP+-dependent glutamate dehydrogenases GDH1 and
GDH3 (d’Espaux et al., 2017). Deletion of the GDH1 gene in yeast
resulted in a 2.7-fold improvement in fatty alcohol production
(d’Espaux et al., 2017). Xylulose-5-phosphate, which is produced
by the pentose phosphate (PP) pathway, acts as the precursor
of the phosphoketolase (PHK) pathway. The combination of
PHK and PP pathways in S. cerevisiae led to increased cytosolic
NADPH levels and subsequently improved production of fatty
acid ethyl esters (de Jong et al., 2014). Downregulation of PGI1
(encoding glucose-6-phosphate isomerase 1) and enhancing
PP pathway flux by overexpression of ZWF1 (encoding
glucose-6-phosphate dehydrogenase), GND1 (encoding 6-
phosphogluconate dehydrogenase, decarboxylating 1), TKL1
(encoding transketolase-1), and TAL1 (encoding transaldolase)
could increase NADPH supply and significantly improve the
production of free fatty acids (FFAs) (Yu et al., 2018).

Another effective way to increase fatty acids production
involves eliminating the competing metabolic pathways, such as
β-oxidation and triacylglycerol production (Wei et al., 2017a,
2018). The β-oxidation pathway is often stalled by deletion
of FAA (encoding acyl-CoA synthetase), PXA (encoding the
peroxisomal long-chain acyl-CoA transporter complex), and/or
POX1 (encoding fatty acyl-CoA oxidase, catalyzing the first
step of β-oxidation). Disruption of β-oxidation by knockouts in
FAA2, PXA1, and POX1 genes increased intracellular fatty acid
levels by 55% compared to that in the control strain BY4741
(Leber et al., 2015). The disruption of FAA1 in S. cerevisiae B-
1 strain resulted in a two-fold increase in fatty acid secretion
level (Michinaka et al., 2003), while a double deletion of FAA1
and FAA4 in yeast significantly increased the production of
FFAs (Scharnewski et al., 2008; Li et al., 2014; Runguphan and
Keasling, 2014; Zhou et al., 2016). Simultaneous deletion of
FAA1, FAA4, and POX1 further increased the production of
fatty acids by 31% compared to strain with only FAA1 and
FAA4 deletion (Li et al., 2014). A S. cerevisiae strain with multi-
gene deletions (faa11faa41fat11faa21pxa11pox11) was able
to produce 1.3 g/L extracellular FFAs, which is higher than
490 mg/L FFAs production in a strain with triple deletions of
faa11faa41fat11 (Leber et al., 2015).

Overexpression of the FAS complex by replacing the native
FAS1 and FAS2 promoters with the strong constitutive PTEF1
promoter could increase total fatty acid production as well as
lipid content (Runguphan and Keasling, 2014). In fact, plasmid-
based overexpression of the E. coli acyl-ACP thioesterase (‘TesA)
in S. cerevisiae led to the production of 5 mg/L of FFAs,
eight-times that produced by the background strain (0.6 mg/L)
(Runguphan and Keasling, 2014). Overexpression of ‘TesA in
S. cerevisiae WRY1 strain (all fatty acid biosynthesis genes under
PTEF1 promoter) improved FFAs production levels to 52 mg/L
(Runguphan and Keasling, 2014). Likewise, expressing FAS from
Rhodospuridium toruloides (RtFAS) in yeast increased the total
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TABLE 1 | A summary of insect pheromones produced by various engineered yeasts.

Insect sex pheromones Derived Insect species Yeast species Yeast products Fermentation
scale

Titers of
product

References

E10, Z12-C16:OH B. mori S. cerevisiae E10,Z12-C16:OH Flask NDa Moto et al., 2003

Z11-C16:Ald H. virescens S. cerevisiae Z11-C16:OH Flask 19.5 µg/L Hagström et al., 2013b

Z11-C16:Ald H. armigera Y. lipolytica Z11-C16:OH Bioreactor 2.57 g/L Holkenbrink et al., 2020

Z9-C14:OAc S. frugiperda Y. lipolytica Z9-C14:OH Flask 73.6 mg/L Holkenbrink et al., 2020

Z11-C14:OAc O. nubilalis Y. lipolytica Z11-C14:OH Bioreactor 188.1 mg/L Petkevicius et al., 2021

C16-C18 fatty alcohols B. lapidarius Y. lipolytica C16 FA-OHs Flask 14.6 mg/L Hambalko et al., 2020

C16-C18 fatty alcohols B. lucorum Y. lipolytica C18-C24 FA-OHs Flask 166.6 mg/L Hambalko et al., 2020

C16-C18 fatty alcohols B. lapidarius S. cerevisiae C16 FA-OHs Flask 79 mg/L Tupec et al., 2019

C16-C18 fatty alcohols B. lucorum S. cerevisiae C18-C26 FA-OHs Flask 6.9 mg/L Tupec et al., 2019

aData not provided.

lipid as well as FFA content (Zhou et al., 2016). In another
report, a combination strategy, involving blockage of fatty acid
activation and degradation, introducing an optimized acetyl-CoA
pathway, expressing a more efficient FAS, and overexpressing
the endogenous acetyl-CoA carboxylase increased FFA titer to
10.4 g/L (Zhou et al., 2016).

The length and saturation of fatty acids in S. cerevisiae
can be modulated. When a thioesterase from Acinetobacter
baylyi (’AcTesA) was embedded into reaction compartments
of fungal FASs, it led to 5-13 times more production of
extracellular short/medium-chain fatty acids compared to that
in the wild-type strains (Zhu et al., 2017). In one study,
S. cerevisiae was successfully engineered to produce very-
long-chain fatty acids (C16-C18 and C22-C24 VLCFAs) and
derived chemicals by incorporating a heterologous FAS I
system from Mycobacterium vaccae. By the introduction of
endogenous yeast fatty acid elongation system, C22-C26 fatty
acids could be selectively produced (Yu et al., 2017). By tailoring
the bacterial carboxylic acid reductase from Mycobacterium
marinum (MmCAR) via directed evolution and rational design,
introduction of the MmCAR variants and metabolic engineering
strategies successfully led to the establishment of a S. cerevisiae
platform with the capability of medium-chain fatty alcohol
production (Hu et al., 2020). Furthermore, modulation of ACC1
and ELO1 expression led to increased titers of C18:0 and C18:1
(Bergenholm et al., 2018).

PRODUCTION OF INSECT SEX
PHEROMONES IN YEASTS

Compared with conventional insecticides, insect sex pheromones
are specific for pest management and are thus environmentally
friendly. Some insect sex pheromone biosynthetic enzymes
and pathways have been identified and functionally analyzed,
providing the possibility to produce pheromones by synthetic
biology-based strategies. A pheromone-gland-specific FAR gene
(encoding FAR) of the silkmoth was expressed in S. cerevisiae,
and the resulting yeast strain could produce E10, Z12-C16:OH,
which induced typical mating behavior in male B. mori (Moto
et al., 2003). Co-expression of a 111 fatty acyl-CoA desaturase

gene and a reductase gene of Agrotis segetum in S. cerevisiae
led to the production of a set of long-chain fatty acids
and alcohols that do not occur naturally in yeast, and the
titer of Z11-C16:OH was 19.5 µg/L. Moreover, the oxidized
extracts from the yeast cells were found to induce specific
electrophysiological activity in male antennae of H. virescens
(Hagström et al., 2013b).

Insect pheromones of Z11-C16:OH and Z9-tetradecenol (Z9-
C14:OH) have been produced by engineered oleaginous yeast,
Yarrowia lipolytica. The combined activity of a desaturase
from A. transitella (Atr111) and a reductase from Helicoverpa
armigera (HarFAR) resulted in the production of 1.7 mg/L
Z11-C16:OH (Table 1; Holkenbrink et al., 2020). Likewise,
the combination expression of a desaturase from Drosophila
melanogaster (Dme19), reductase HarFAR, and acetyltransferase
ATF1 of S. cerevisiae led to the production of 7.3 mg/L Z9-
C14:OAc, which is the main sex pheromone component of the
fall armyworm Spodoptera frugiperda. (Table 1; Holkenbrink
et al., 2020). Several strategies, including preventing endogenous
fatty alcohol degradation, inhibiting acyl-CoA degradation,
reducing the flux toward storage lipids, and increasing the
supply of tetradecanoyl-CoA precursor, have been applied to
improve pheromones production; consequently, the engineered
Y. lipolytica strains could produce 73.6 mg/L of Z9-C14:OH
(15-fold increase in titer over the background strain) and
2.57 g/L of Z11-C16:OH (Table 1; Holkenbrink et al., 2020).
Introduction of a point mutation into the α-subunit of FAS
(FAS2I 1220F), and overexpression of an optimal combination of
a fatty acyl-CoA desaturase (FAD; Lbo_PPTQ) from Lobesia
botrana, FAR (HarFAR) from H. armigera and the gene
encoding native FAS1 led to a final Z11-14:OH titer of
188.1 mg/L in fed-batch fermentation (Table 1; Petkevicius
et al., 2021). In another study, expression of the gene encoding
FAR, BlapFAR4 from Bombus lapidarius or BlucFAR1 from
Bombus lucorum in Y. lipolytica, led to the production of
bumblebee pheromones consisting of long-chain fatty alcohols.
The titer of saturated fatty alcohols with C18-C24 was
166.6 mg/L, while the titer of C16 FA-OHs (C16:0-OH and
C16:1-OH) was 14.6 mg/L (Table 1; Hambalko et al., 2020).
However, in S. cerevisiae, expression of BlucFAR1 produced
only a small amount of FA-OHs (6.9 mg/L), while the
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expression of BlapFAR4 led to the production of 79 mg/L of C16-
OHs (Table 1; Tupec et al., 2019). The difference in titers and
chain length of FA-OH products in engineered Y. lipolytica and
S. cerevisiae may be due to the variations in substrate availability,
hinting at the selection of different yeast chassis cells for the
biosynthesis of different sex pheromones based on yeast fatty
acid profiles (Wei et al., 2017b). As Y. lipolytica is an oleaginous
yeast and robust to diverse substrates, Y. lipolytica has more
potential to be an ideal insect pheromone production cell factory
(Dobrowolski et al., 2019; Vasconcelos et al., 2019).

As cell factories, S. cerevisiae and other yeasts mainly
produce C16 and C18 fatty acids (Wei et al., 2017b; Wang
J. et al., 2020), that are suitable for the biosynthesis of C16
and C18 pheromones. Currently, various metabolic engineering
strategies, such as increasing substrate precursors and cofactors,
eliminating competing pathways, and modulation of FAS
and other keystone enzymes in sex pheromone biosynthetic
pathways, have been developed to improve the production of
fatty acids and their derivatives in yeasts. Engineered yeasts can
produce a high level of Lepidopteran and a few other insect
sex pheromones. Strategies to increase pheromone production
using synthetic biology approaches require designing optimal
pheromone biosynthetic pathway, and protein engineering of key
enzymes with high activities. It is also necessary to identify more
suitable keystone genes for insect pheromone production based
on omics technologies.

CONCLUSION AND FUTURE
PERSPECTIVE

The cost of chemically synthesized pheromones is high, therefore,
mating disruption applications currently primarily target higher-
value crops (Ioriatti and Lucchi, 2016). Biosynthesis of insect
sex pheromone using engineered microbial strains is one of the
most promising environmentally friendly strategies for large-
scale commercial production of pheromones at a relatively low
cost. An increasing number of FADs and FARs and other
functional modification enzymes involved in the biosynthesis of
Lepidopteran sex pheromones have been successfully identified
and functionally characterized. However, characterizing more
efficient insect sex pheromone enzymes and adaption of insect
sex pheromone pathways to yeast cell factories still need
further studies.

As cell factories, S. cerevisiae and other yeasts produce
fatty acids that are appropriate for C16 and C18 pheromone

biosynthesis. Various metabolic engineering strategies, such as
increasing levels of the biosynthetic precursors and cofactor,
eliminating competing pathways, and regulating the activity of
FAS and elongation enzymes, have been developed in yeast
to increase the production of fatty acids and to modify chain
length and saturation. With such synthetic biology strategies,
engineering of S. cerevisiae, Y. lipolytica or other yeasts to
produce Lepidopteran sex pheromones has achieved considerable
success. With further development and application of advanced
yeast tools, such as high throughput screening strategy (Tan
et al., 2020), metabolic mass transfer strategy (Xue et al., 2021),
and efficient gene editing tools for non-conventional oleaginous
yeasts (Shan et al., 2021), large-scale commercial production
of sex pheromones in engineered yeasts with a high titer, rate
and yield would be possible, and will also facilitate moth-
mating disruption using biosynthetic sex pheromones in a cost-
efficient manner. In the future, the application of yeast-based sex
pheromones will lead to eco-friendly agriculture with a green pest
control strategy.
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