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The interplay between the compositional changes in the gastrointestinal microbiome,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility and
severity, and host functions is complex and yet to be fully understood. This study
performed 16S rRNA gene-based microbial profiling of 143 subjects. We observed
structural and compositional alterations in the gut microbiota of the SARS-CoV-2-
infected group in comparison to non-infected controls. The gut microbiota composition
of the SARS-CoV-2-infected individuals showed an increase in anti-inflammatory
bacteria such as Faecalibacterium (p-value = 1.72 × 10−6) and Bacteroides (p-
value = 5.67 × 10−8). We also revealed a higher relative abundance of the highly
beneficial butyrate producers such as Anaerostipes (p-value = 1.75 × 10−230),
Lachnospiraceae (p-value = 7.14 × 10−65), and Blautia (p-value = 9.22 × 10−18)
in the SARS-CoV-2-infected group in comparison to the control group. Moreover,
phylogenetic investigation of communities by reconstructing unobserved state
(PICRUSt) functional prediction analysis of the 16S rRNA gene abundance data
showed substantial differences in the enrichment of metabolic pathways such as
lipid, amino acid, carbohydrate, and xenobiotic metabolism, in comparison between
both groups. We discovered an enrichment of linoleic acid, ether lipid, glycerolipid,
and glycerophospholipid metabolism in the SARS-CoV-2-infected group, suggesting
a link to SARS-CoV-2 entry and replication in host cells. We estimate the major
contributing genera to the four pathways to be Parabacteroides, Streptococcus,
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Dorea, and Blautia, respectively. The identified differences provide a new insight
to enrich our understanding of SARS-CoV-2-related changes in gut microbiota,
their metabolic capabilities, and potential screening biomarkers linked to COVID-19
disease severity.

Keywords: COVID-19, glycerophospholipid, linoleic acid, microbiota, SARS-CoV-2

INTRODUCTION

The newly emerged β-coronavirus, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), was identified as the
cause of the respiratory illness coronavirus disease-2019 or
COVID-19. It was first reported in Wuhan, China, in late 2019,
after which it spread rapidly worldwide, with an alarmingly high
transmission rate. Aside from the commonly reported respiratory
symptoms, including fever, chills, and shortness of breath, more
than 20% of patients have also been shown to suffer from
gastrointestinal symptoms, such as diarrhea, nausea, abdominal
pain, and vomiting (He et al., 2020).

Severe acute respiratory syndrome coronavirus 2 invades
human cells through the interaction of its surface spike
protein with angiotensin-converting enzyme 2 (ACE2) receptors
expressed on the surface of several human cell types (Li
et al., 2020). ACE2 is predominantly expressed in human lung
tissue, which correlates with the primary COVID-19 infection
site (Wölfel et al., 2020). However, ACE2 receptors are also
highly expressed on enterocytes and colonocytes that line the
intestinal epithelium (Lee et al., 2020; Villapol, 2020). Together,
the presence of ACE2 receptors in gut epithelia and the
gastrointestinal symptoms of COVID-19-infected individuals
suggest that the gastrointestinal tract is an extrapulmonary site
for SARS-CoV-2 activity and infection (Hoffmann et al., 2020;
Zuo et al., 2020b).

The gastrointestinal symptoms have been linked to the
dysbiosis of the intestinal microbiome, resulting from the
viral infection and the subsequent alterations of the immune
response (He et al., 2020). Invading viruses can alter host
immune responses by facilitating stimulatory or suppressive
responses usually regulated by the microbiota in the gut
(Zuo et al., 2020b). Moreover, viral infections can alter the
gut microbiome composition resulting in the depletion of
commensal microbiota and creating a microenvironment that
allows the proliferation of pathogenic microbes (Yeoh et al.,
2021). SARS-CoV-2 infections alter the stringent regulatory
functions of commensal microorganisms of the gut, leading to
the aberrant immune responses observed in COVID-19 patients.
Patients with COVID-19 disease show a depletion of beneficial
microbes, such as the Bifidobacterium genus, and an increase
of opportunistic pathogens such as Streptococcus and Veillonella
(Gu et al., 2020; de Oliveira et al., 2021).

Members of the Firmicutes and Bacteroidetes phyla
are commensals that have directly affected SARS-CoV-2
pathogenicity and infection severity by their regulatory roles in
the ACE2 gene (Zuo et al., 2020b). Members of the Bacteroidetes
phylum are known to downregulate the expression of the
ACE2 receptor. This correlation ultimately has a “protective”
role in COVID-19 infections by minimizing the abundance

of ACE2 receptors on intestinal cell surfaces, decreasing the
interaction between the virion and the host cell. On the other
hand, members of the Firmicutes phylum can upregulate ACE2
gene expression, leading to increased interaction between
viral spike proteins and ACE2 receptors, resulting in a higher
infection rate. Other commensals, such as Faecalibacterium
prausnitzii, Eubacterium, Roseburia, and Lachnospiraceae taxa,
have immune maintenance and anti-inflammatory properties.
These commensals are associated with low infection severity and
a low SARS-CoV-2 load in patient stool samples, suggesting that
they play a role in combatting SARS-CoV-2 in the gut (Zuo et al.,
2020b). These intestine-resident beneficial bacteria are depleted
in patients with high infection severity (Xu et al., 2020). On the
other hand, several opportunistic pathogens are enriched in the
stool of COVID-19 patients, including Clostridium hathewayi,
Actinomyces viscosus, and Bacteroides nordii (Gu et al., 2020; He
et al., 2020). Together, the imbalance of the aforementioned gut
microbiota results in the gastrointestinal symptoms prevalent in
COVID-19 patients, and these microbiota perturbations persist
even after the clearance of SARS-CoV-2 (Yeoh et al., 2021).

These data collectively indicate a direct correlation between
the composition of the intestinal microbiota and SARS-CoV-
2 infection severity. Therefore, the microbial ecosystem before
and during infection can help predict the severity of SARS-
CoV-2 infection, and this can be used to mediate a patient’s
immune response to COVID-19. Therefore, this study explored
the gut microbiota composition and functionality associated with
SARS-CoV-2 infection in the United Arab Emirates.

MATERIALS AND METHODS

Participants and Study Design
This study involved 86 participants with previously confirmed
COVID-19 infection and 57 healthy individuals as controls.
SARS-CoV-2 infection was confirmed by two consecutive RT-
PCR tests targeting N and RdRp genes performed by accredited
Abu Dhabi Health Services Company (SEHA) laboratories and
RT-PCR tests targeting RdRp gene performed at the Center for
Biotechnology at Khalifa University. At the time of the study, all
COVID-19 cases completed their isolation period at a specialized
facility in Abu Dhabi, United Arab Emirates. A COVID-19-
non-infected control cohort was recruited randomly as described
before (Al Bataineh et al., 2021). All participants were provided
with an information sheet and an explanation of the study
objectives, design, and confidentiality. Volunteers signed the
required consent form before proceeding with sample collection.
The study was approved by the Abu Dhabi Health COVID-19
Research Ethics Committee (DOH/DQD/2020/538) and the
SEHA Research Ethics Committee (SEHA-IRB-005).
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Sample Collection and Handling Protocol
A total of 86 nasal swab and fecal samples from clinically
confirmed SARS-CoV-2-positive patients were collected at an
isolation facility for COVID-19 patients in Abu Dhabi, United
Arab Emirates, during the period of July–August 2020. The
inclusion criteria for this study were being above 18 years old,
able to give consent, and positive for the COVID-19 cohort. The
exclusion criteria are being below 18 years old, unable to give
consent, pregnant, and under antibiotics treatment. Swabs were
collected in NUCLISWAB kits (SALUBRIS, Inc., Boston, MA,
United States) by nurses. A sterile stool specimen container with
an integrated collection spoon and collection instructions were
provided to all subjects. Collection of 2–4 g of freshly passed stool
in sterile containers was performed, and stool samples collected
were transported on dry ice to the Center for Biotechnology
at Khalifa University, Abu Dhabi, along with all vital metadata
information for each patient’s clinical severity. The specimens
were stored immediately at −80◦C.

RNA Extraction and Quantification
Viral RNA from nasal swabs was extracted using the Miracle-
AutoXT Automated Nucleic Acid Extraction System (iNtRON
Biotechnology Inc., South Korea), and viral RNA from fecal
samples was extracted using DNeasy PowerLyzer PowerSoil Kit
(Qiagen Ltd., GmbH, Germany) following the manufacturer’s
instruction. Genes from the PrimerDesign RT-PCR COVID-19
detection kit (PrimerDesign Ltd.) were used for the quantification
of the viral RNA in nasal swabs and fecal samples. The primers
provided in the kit target the RdRp gene. Internal extraction
control primers were also provided to detect the exogenous
source of the RNA template added during the extraction step. The
PCRs were performed according to the manufacturer protocol
using the Magnetic Induction Cycler (MiC) PCR Machine (Bio
Molecular Systems, QLD, Australia).

DNA Extraction
Fecal samples were subjected to DNA extraction using the
DNeasy PowerLyzer PowerSoil Kit (Qiagen Ltd., GmbH,
Germany, catalog no. 12855-100) following the manufacturer’s
instruction (Qiagen Ltd.). DNA concentration and purity were
evaluated by optical density using NanoDrop (Thermo Fisher
Scientific, United States) at wavelengths of 230, 260, and 280 nm,
and DNA integrity was checked on 1% agarose gel electrophoresis
stained with 0.5 mg/ml ethidium bromide.

PCR Amplification and Sequencing of
the V3 and V4 Hypervariable Regions of
Bacterial 16S rRNA Genes
16S rRNA sequencing for V3 and V4 hypervariable regions
was carried out with extracted microbial DNA on the MiSeq
platform. The viral load in fecal samples was parallel-examined
and analyzed by qPCR methodology. For amplification of the
V3 and V4 hypervariable regions of the bacterial 16S rRNA
gene, primer pair sequences (Integrated DNA Technologies,
United States) were used and generated a single amplicon of
approximately 460 bp. The primer sequence design included

overhang adapter sequences optimized for Illumina sequencing,
which in turn were further processed by employing the 16S
Metagenomic Sequencing Library Preparation Protocol (Part
no. 15044223 Rev. B, Illumina). MiSeq sequencing 16S V3
and V4 region-specific amplicons were further subjected to
indexing PCR using Illumina Nextera XT index kit set A.
The final libraries were purified and pooled according to the
Illumina metagenomics workflow and were loaded on MiSeq
using MiSeq V2 300 cycle reagent kit (Illumina, Inc., San Diego,
CA, United States).

Data Analysis
The descriptive variables were verified using frequency analysis.
The non-normal quantitative variables were presented as
medians and interquartile ranges (IQRs), and the normal
quantitative variables were presented as means and standard
deviation (SD). Chi-square and Fisher’s exact tests were used
to study categorical variables. Independent-sample t-test or
non-parametric Mann–Whitney U-tests were used to analyze
continuous variables. Kruskal–Wallis or ANOVA tests were
used to verify the association. Spearman correlations were
calculated to establish bivariate relationships between viral load
and relative abundance.

BCL files from sequencing were demultiplexed using
Illumina’s bcl2fastq tool. We subsequently describe the analysis
pipeline for microbial communities based on QIIME 2, which
underwent a paradigm shift from operational taxonomic units
(OTUs) to amplicon sequence variants (ASVs), as the latter
exhibit several advantages over the former (Langille et al., 2013;
Callahan et al., 2017). After demultiplexing using the QIIME
demux, sequence quality control and feature table construction
have been performed with DADA2 (Supplementary Text). An
average of 41,141 quality-filtered reads was generated per sample
(50,665 and 26,575 for cases and control, respectively).

Visual summaries are generated with the QIIME commands
feature-table summarize and feature-table tabulate-seqs.
Subsequently, we generate a phylogeny for diversity analysis
using QIIME phylogeny. The resulting phylogeny QIIME
artifact, particularly the rooted phylogenetic tree, enables a range
of diversity analyses using QIIME diversity commands. First,
alpha diversity is determined in Shannon entropy, a commonly
applied qualitative measure of community richness (Figure 1A).
Next, a comprehensive diversity analysis is conducted with
QIIME’s command core-diversity-phylogenetic. It calculates
a range of alpha- and beta-diversity metrics with and without
using the previously generated phylogenetic tree. For example,
weighted UniFrac analyzes how microbial communities cluster
together based on the weighted phylogenetic branches shared
between communities.

In addition, this step produces a range of output visualizations,
such as three-dimensional principal coordinate analysis
(PCoA) plots, shown in Figure 1B. Finally, we enable
testing of associations between categorical metadata such as
COVID-19-positive and COVID-19-non-infected with the
help of QIIME command diversity alpha-group-significance,
where community richness is expressed in terms of the Faith
phylogenetic diversity.
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FIGURE 1 | Evaluation of the alpha- and beta-diversity of the gut microbiota of SARS-CoV-2-infected subjects. (A) Evaluation of alpha-diversity in the 143 analyzed
samples. The outlined graphs report the average rarefaction curves based on Shannon entropy and raw count of features increasing sequencing depth of
SARS-CoV-2-infected and SARS-CoV-2-non-infected samples. (B) Evaluation of beta-diversity. The panel shows the predicted principal coordinate analysis (PCoA)
plot based on weighted UniFrac distances. SARS-CoV-2-infected and SARS-CoV-2-non-infected sample datasets are colored in red and blue, respectively.

The QIIME output was analyzed using the DESeq2 package
from BioconductR using custom-written scripts in the R
programming language (3.6.1) (Love et al., 2014; Huber et al.,
2015). The standard workflow of running estimateSizeFactors,
estimateDispersions, and nbinomWaldTest was used to input
the raw (un-normalized) counts. Adjusted p-values reflect BH
false discovery rates (Benjamini and Hochberg, 1995). Results
adjusting for gender and age group were obtained by using
a likelihood ratio instead of the Wald test in the DESeq2
calculations. We also conducted a phylogenetic investigation
of communities by reconstructing unobserved state (PICRUSt)
functional analyses based on 16S rRNA gene abundance profiles.
The PICRUSt un-normalized output was also analyzed using
the standard DESeq2 workflow. PICRUSt not only estimates
full metagenomes from 16S rRNA data but also estimates for
each sample what OTU contributed to each predicted gene
(metagenome_contribution.py). We perform this analysis for
selected pathways of interest by first identifying the associations
of the respective genes to pathways and then aggregating
contribution in terms of the phylogenetic ranks family and
genus. This step accumulates positive and negative samples.
All script files for executing this workflow can be found
at https://github.com/sffeng/microbiome_covid_uae. All QIIME
and PICRUSt commands are documented in the Supplementary
Material. The R environment was utilized for visualization tools
(Wickham, 2009).

RESULTS

Gut Microbiota of Severe Acute
Respiratory Syndrome Coronavirus
2-Infected Subjects Show Compositional
Differences From Severe Acute
Respiratory Syndrome Coronavirus
2-Non-infected Subjects
We explored the compositional variation of the gut microbiome
among 86 COVID-19-positive and 57 COVID-19-non-infected
individuals from the United Arab Emirates. Relevant clinical
features are shown in Table 1. SARS-CoV-2-infected subjects
demonstrate a significant gender difference (p-value < 0.001),
age (p-value < 0.001), probiotics use (p-value < 0.001), ethnicity
(p-value = 0.019), and fiber intake (p-value = 0.011) compared
to SARS-CoV-2-non-infected subjects (Table 1). However, both
groups showed no significant difference in BMI (p-value = 0.507)
(Healey et al., 2016).

We examined the taxonomic composition generated from
high-quality reads and classified using Silva as the reference
database. We aggregated ASVs into each taxonomic rank
and plotted the relative abundance (Supplementary Text 2
and Supplementary Figure 1). The taxonomic plot shows
a clear distinction between positive and negative samples.
This difference is mainly attributable to the high presence
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TABLE 1 | Demographic characteristics of participants by case and control group.

COVID-19 Cases
(n = 86), n (%)

Controls (n = 57),
n (%)

p-value

Gender

Male 52 (60.5%) 14 (24.6%) <0.001

Female 34 (39.5%) 43 (75.4%)

Age

<25 24 (27.2%) 13 (22.8%) <0.001

26–35 27 (31.4%) 10 (17.5%)

36–51 25 (29.1%) 9 (15.8%)

>52 10 (11.6%) 25 (43.9%)

BMI

≤18.50 3 (3.7%) 2 (3.5%) 0.507

18.51–24.99 24 (29.3%) 18 (31.6%)

25.00–29.99 34 (41.5%) 17 (29.8%)

≥30.00 21 (25.6%) 20 (35.1%)

Region of origin

Middle Eastern 75 (87.2%) 57 (100.0%) 0.019

Asian 9 (10.5%) 0 (0.0%)

African 2 (2.3%) 0 (0.0%)

Use of probiotics

Yes 23 (26.7%) 32 (56.1%) <0.001

No 63 (73.3%) 25 (43.9%)

Fiber

High-fiber diet 27 (31.4%) 30 (52.6%) 0.011

Low-fiber diet 59 (68.6%) 27 (47.4%)

of the Lachnospiraceae genus in positive samples (shown
in purple, top bar contribution). Furthermore, Blautia and
Faecalibacterium appear dominant in positive samples, whereas
Prevotella features a substantial part of the negative samples.
Next, we evaluated averaged alpha-diversity for the 143 subjects.
Analysis of the averaged rarefaction curves based on Shannon
entropy and observed feature count at increasing sequencing
depth displayed that both curves plateau, suggesting adequate
coverage for most of the biodiversity in the samples. SARS-
CoV-2-infected samples show an average increased level of gut
microbiota complexity compared to SARS-CoV-2-non-infected
samples (Figure 1A).

Alpha rarefaction (measuring both Shannon entropy and
observed features) shows that each rarefaction depth has a
substantially larger diversity for SARS-CoV-2-infected samples,
in terms of both Shannon entropy and observed OTUs.
As most samples in this study contain at least 11,000
samples, we chose this number as the maximum sampling
depth during rarefaction. In addition, the rarefaction curve’s
plateau shapes strongly indicate that the sequencing depths
are adequate and give a true reflection of representative
community composition.

We also evaluated the compositional diversity among
samples and the beta-diversity of the gut microbiome. All
samples are expressed as ASV feature tables, for which we
calculate all-against-all distance matrices, where distances
between samples are expressed in terms of weighted
UniFrac. We subsequently subject the distance matrix to
PCoA (Figure 1B).

Evaluation of Bacterial Relative
Abundance and Prevalence Between
Severe Acute Respiratory Syndrome
Coronavirus 2-Infected and Severe Acute
Respiratory Syndrome Coronavirus
2-Non-infected Individuals
To explore the alterations in bacterial richness and diversity due
to SARS-CoV-2 infection, as shown in Figure 1, we adjusted for
gender and age group. We conducted a likelihood ratio test to
compare the average relative abundance and total prevalence
between both groups. The comparison between both datasets
revealed that SARS-CoV-2-infected individuals have statistically
significant enrichment of Blautia (relative abundance 13.93% in
cases vs. 4.87% in control, on average, p-value = 9.22 × 10−18),
Faecalibacterium (relative abundance 12.57% vs. 4.80%,
p-value = 1.72 × 10−6), Streptococcus (relative abundance 2.93%
vs. 0.84%, p-value = 1.24 × 10−6), among others (Figure 2). The
following bacterial genera demonstrated a depletion in SARS-
CoV-2-infected individuals: Intestinibacter (relative abundance
0% vs. 0.23%, p-value = 4.06 × 10−90), Enterorhabdus (relative
abundance 0% vs. 0.10%, p-value = 9.50 × 10−50), Anaerostipes
(relative abundance 0% vs. 1.47%, p-value = 1.75 × 10−230),
Bifidobacterium (relative abundance 2.86% vs. 7.22%,
p-value = 4.50 × 10−8), Bacteroides (relative abundance
8.23% vs. 15.27%, p-value = 5.67 × 10−8), and Prevotella (relative
abundance 3.07% vs. 11.37%, p-value = 1.59 × 10−3).

To further investigate the association between the gut
microbiomes and COVID-19 viral load, we performed
Spearman’s rank-order correlation between the viral load in
nasal and stool samples to the relative abundance of the gut
microbiome, which demonstrated a lack of significant association
(Supplementary Table 3). When categorizing viral load into a
bivariate categorical group, where a high viral load is defined as
the viral load (genome copied/µl) being above the median (IQR)
cycle threshold value for the detection of SARS-CoV-2 using
quantitative reverse-transcription PCR (median: 31.76). There
was no significant association between high vs. low SARS-CoV-2
viral load on any of the bacterial microbiome (Supplementary
Table 4) when running an independent T-test to measure
association (p < 0.05).

Functional Characterization of Severe
Acute Respiratory Syndrome
Coronavirus 2-Infected and Severe Acute
Respiratory Syndrome Coronavirus
2-Non-infected Microbiomes Based on
Phylogenetic Investigation of
Communities by Reconstructing
Unobserved State Analyses of 16S rRNA
Gene Profiles
To obtain a deeper insight into the possible functional
contributions of the gut microbiome on individuals with
COVID-19, we conducted PICRUSt prediction analyses based on
16S rRNA gene abundance profiles. Functional profiling revealed
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FIGURE 2 | Exploration of bacterial abundance and prevalence in SARS-CoV-2-infected and SARS-CoV-2-non-infected control groups. The volcano scatter plot of
base mean abundance between both groups shows the log2 change between infected vs. non-infected samples on the horizontal axis. The vertical axis shows the
abundance. Red dots indicate statistical significance after multiple testing corrections at the significance level 0.05. This figure was produced by DESeq2. While we
observe that many species are significantly different, the labeled ones of interest demonstrate either especially large effect sizes or large abundances.
Supplementary Table 1 demonstrates the base mean, fold change, effect size, and adjusted p-value (for gender and age-group via a likelihood ratio test) of each
associated bacterial genus. Supplementary Table 2 demonstrates the total prevalence and average relative abundance of each group.

significant overall differences in metabolic potential between
both groups. Over 250 functional pathways were reported
to be significantly upregulated or downregulated in relation
to COVID-19 status (Supplementary Table 4). We further
categorized these pathways and reported them in a bar plot of
fold changes related to SARS-CoV-2 infection (Figure 3).

We identified significant enrichment of metabolic pathways
implicated in the following: fatty acid and lipid biosynthesis
and degradation [Figure 3A; ether lipid metabolism (p = 2.52
× 10−9), lipid metabolism (p = 5.46 × 10−10), bisphenol
degradation (p = 2.89 × 10−5), glycolipid metabolism (p = 2.47
× 10−12), and glycerophospholipid metabolism (p = 1.79 ×

10−12)], amino acid and protein metabolism and degradation
[Figure 3B; linoleic acid metabolism (p = 1.84 × 10−6); lipid
metabolism (p = 2.31 × 10−9); lysine biosynthesis (p = 5.65 ×

10−17); and valine, leucine, and isoleucine biosynthesis (p =
4.41 × 10−6)], xenobiotic metabolism [Figure 3C; tetracycline
biosynthesis (p = 2.12 × 10−13), bacterial chemotaxis (p = 9.26
× 10−7), beta-lactam resistance (p = 6.56 × 10−5), and xylene
degradation (p = 1.91 × 10−3)], carbohydrate metabolism and
degradation [Figure 3D; synthesis and degradation of ketone
bodies (p = 4.72 × 10−5), fructose and mannose metabolism
(p = 1.11 × 10−4), pentose phosphate pathway (p = 1.98 ×

10−7)], and others [Figure 3F; pathogenic Escherichia coli
infection (p = 6.56 × 10−6)]. Furthermore, we identified
bacterial genera and metabolic pathways correlated with
statistically significant differences in abundance between groups.

Therefore, we estimate the major contributing families/genera
to those four pathways: Enterobacteriaceae/Parabacteroides,
Streptococcaceae/Streptococcus, Lachnospiraceae/Dorea, and
Lachnospiraceae/Blautia. Furthermore, the associated genes
for “pathogenic E. coli infection,” prominent in positive
samples, were mainly contributed (68.3%) by Enterobacteriaceae
(Supplementary Table 6).

DISCUSSION

The study of COVID-19 relationship with the human microbiota
is a rapidly emerging area of research, but a complete
characterization of the gut microbiota connection with COVID-
19 pathogenesis is still unclear (Zuo et al., 2020b; Rosas-
Salazar et al., 2021; Xu et al., 2021). To the best of
our knowledge, this is the first report on the emerging
COVID-19 interaction with the gut microbiota among Middle
Eastern populations. This study determined changes in the
gut microbiota composition and species abundance in SARS-
CoV-2-infected individuals. First, we described the bacterial
taxonomic diversity among SARS-CoV-2-infected and SARS-
CoV-2-non-infected groups. SARS-CoV-2 infection exerts a
substantial effect on bacterial richness and complexity, as shown
in Figure 1A. One of the most intriguing findings was the notable
compositional diversity difference between groups; COVID-19
patients clustered uniformly but shifted away from the control,
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FIGURE 3 | Functional characterization of SARS-CoV-2-infected and SARS-CoV-2-non-infected microbiomes based on PICRUSt analyses of 16S data. (A) Fatty
acid and lipid biosynthesis and degradation, (B) amino acid and protein metabolism and degradation, (C) xenobiotic metabolism, (D) carbohydrate metabolism and
degradation, (E) alcohol metabolism and degradation, and (F) other pathways. The bar plot reports the fold change of the pathway and the p-value < 0.05, adjusted
for gender and age group via a likelihood ratio test—log2fold change in the relative abundance of operational taxonomic units (OTUs) of cases over controls.
A positive log2 fold change is relative abundance in cases compared to controls. A negative log2 fold change is represented as the blue plot. A positive log2 fold
change is represented as the red plot. The p-value of each associated pathway is provided in Supplementary Table 5. Please refer to Supplementary Figure 2
for an enlarged version.

as shown in Figure 1B. Perhaps this extreme clustering shift
can be attributed to a significant gender and age difference
between both groups, as shown in Supplementary Table 1.
The control group was older and had a 3:1 female-to-male
ratio. Numerous studies have revealed gender differences in
human gut microbiota. A 2016 large-cohort study with two
extensively phenotyped independent groups determined that
gender significantly correlates with the overall microbiome
variation (Falony et al., 2016). Furthermore, gut microbiota
changes with age, displaying a distinct inflammatory profile with
increased susceptibility to infections. We determined significant
enrichment of Lachnospiraceae among the COVID-19 patient
group, which plays an essential role in gut barrier function and

immune tolerance, especially against local inflammation in a
young age group (DeJong et al., 2020).

Recent studies showed gut dysbiosis with reduced bacterial
richness and diversity among hospitalized COVID-19 patients
(Zuo et al., 2020b; Xu et al., 2021). On the contrary, we
observed higher bacterial richness in the SARS-CoV-2-infected
group. Therefore, we hypothesized that the genera of gut
bacterial enrichment might correlate with the observed minor
gastrointestinal signs and symptoms among SARS-CoV-
2-infected subjects. Furthermore, we determined a higher
relative abundance of anti-inflammatory bacteria such as
Faecalibacterium and Bacteroides in the SARS-CoV-2-infected
group (Zuo et al., 2020a,b). Furthermore, we also showed a higher
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relative abundance of the highly beneficial butyrate-producing
bacteria, such as Faecalibacterium, Anaerostipes, Lachnospiraceae,
and Blautia in the SARS-CoV-2-infected group (Riviere
et al., 2016; Gu et al., 2020; Zuo et al., 2020b). Altogether,
perhaps the gut symbiotic response plays a significant role
in counteracting COVID-19 dysregulated immune response,
restoring homeostasis, and subsequently reducing COVID-19
pathogenesis and disease manifestations (Bui et al., 2019).
Conversely, we still noticed a significantly higher relative
abundance of some pathogenic and pro-inflammatory bacteria,
consistent with previous literature, such as Streptococcus and
Prevotella spp., which may have influenced the initial COVID-19
presentation in our cohort (Iljazovic et al., 2020). These results
here were adjusted for gender and age group via a likelihood
ratio test as mentioned previously.

We attempted to explore the functional contribution of
the gut microbiota in COVID-19 pathogenesis, which may
become useful in predicting new microbial biomarkers for
COVID-19 diagnostic and management strategies. PICRUSt
functional analyses of the 16S rRNA abundance data showed
a substantial difference in metabolic capacity between the
SARS-CoV-2-infected and SARS-CoV-2-non-infected groups,
as shown in Figure 3. Furthermore, we identified several
significantly abundant pathways involved in lipid, amino acid,
carbohydrate, and xenobiotic metabolism, among others, in
the SARS-CoV-2-infected group. Lipids play various critical
cellular functions and are implicated in several stages during
viral replication, and it was found to be directly linked to
coronavirus spread and multiplication (Yan et al., 2019). Here,
we discovered an enrichment of linoleic acid metabolism,
ether lipid metabolism, bisphenol degradation, glycerolipid
metabolism, and glycerophospholipid metabolism in the
SARS-CoV-2-infected group. Interestingly, the correlations
between coronavirus-induced modifications of host lipid
metabolism and bioavailability of plasmalogens (vinyl ether
glycerophospholipids) in host cells are crucial for SARS-CoV-2
entry and replication (Schloer et al., 2019, 2021; Deng and
Angelova, 2021). For example, studies have shown that host ether
lipid metabolism and plasmalogens were essential and further
enhanced during viral infections (Liu et al., 2011; Martin-Acebes
et al., 2014; Tanner et al., 2014). Remarkably, our PICRUSt
prediction confirmed that this might also apply to SARS-CoV-2
infection, as shown in Figure 3A (Deng and Angelova, 2021).
Therefore, we further performed analysis for these pathways to
identify the individual bacterial gene contribution toward these
pathways’ enrichment (Supplementary Table 3). Interestingly,
we determined a significant contribution of Parabacteroides,
Streptococcus, Dorea, and Blautia genera toward these lipid
metabolism pathways. Previous studies correlated these genera
with short-chain fatty acid production, metabolic dysbiosis
reduction, and anti-inflammatory activity increase (Jenq et al.,
2015; Garcia-Mantrana et al., 2018; Lee et al., 2019; Wang et al.,
2019; Todorov et al., 2020). Moreover, several other studies
have demonstrated how microbial lipids alter circulating host
cholesterol and sphingolipid concentrations, thus impacting
human lipid homeostasis (Lamichhane et al., 2021; Nanda and
Ghosh, 2021). For example, a study found that tocilizumab

treatment resulted in host lipid and metabolic alterations
due to SARS-CoV-2 infection (Meoni et al., 2021). Another
study found a significant correlation between drug-induced
phospholipidosis and inhibition of SARS-CoV-2 replication in
cells (Tummino et al., 2021).

Furthermore, Winkler et al. determined that the gut
microbiome Clostridium scindens supports antiviral protection
through a bile acid–IFN signaling axis. Likewise, Parabacteroides
was found to alleviate obesity and metabolic dysfunctions via the
production of succinate and bile acids (Wang et al., 2019; Winkler
et al., 2020). Therefore, we hypothesize a direct role for the
aforementioned genus to ameliorate SARS-CoV-2 entry to and
replication in the host cell and to reduce COVID-19 severity, as
evident by the mild clinical manifestations in the infected group.
The predicted linkage to particular gut microbiota members may
prove helpful as a microbial biomarker to provide new tools for
COVID-19 management strategies.

We also observed enrichment of pathways involved in amino
acid metabolism. A recent metabolomics analysis study proposed
an essential role for branched-chain amino acids during hypoxic
conditions associated with COVID-19 via an α-keto-acid oxidase
mechanism, underscoring a plausible link to gut microbiota
supplementation of amino acid during SARS-CoV-2 infection to
mitigate disease severity (Paez-Franco et al., 2021). Furthermore,
we also noted a shift from the liver cytochrome P450-
mediated drug metabolism toward other functions, as shown in
Figure 3C. Chemokines and cytokines play a significant role in
COVID-19 immunopathology, as they are the underlying cause
for exacerbated immune response leading to cytokine storm
(Henderson et al., 2020). Cytokine increase and inflammation
during SARS-CoV-2 and other viral infections have been shown
to suppress cytochrome P450 enzymes, thereby resulting in
hepatic clearance of xenobiotics (Deb and Arrighi, 2021).

Interestingly, we also noted a robust upregulation of the
pathogenic E. coli infection pathway function among the SARS-
CoV-2-infected group, as shown in Figure 3F. COVID-19 co-
infection with pathogenic and opportunistic bacteria is well
established in literature (Calcagno et al., 2021). The associated
genes for the pathogenic E. coli infection pathway among positive
samples were mainly contributed (68.3%) by Enterobacteriaceae,
a large family of Gram-negative bacteria, including E. coli.

We want to mention that participants in this study
demonstrated significant age, gender, and probiotic use
differences, as shown in Supplementary Table 1. Still, they
share similar lifestyle and dietary habits such as dietary fiber
intake in both groups. Future longitudinal cohorts would
be more beneficial to understand the temporal relationship
between SARS-CoV-2 susceptibility as well as severity and
the compositional changes of the gut microbiome. Due to the
heterogeneous nature of the SARS-CoV-2 phenotype, affected
patients were not classified based on symptom severity and hence
lacked stratified analysis.

In conclusion, our data report a significant compositional and
functional shift in the gut microbiota of COVID-19 patients.
We observed an increased relative abundance of beneficial
bacteria based on the relative ratio changes of significant taxa
between SARS-CoV-2-infected and SARS-CoV-2-non-infected
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individuals. The investigated bacterial taxonomic profiles
suggested a biological shift toward anti-inflammation in
the SARS-CoV-2-infected group that may explain the mild
COVID-19 sign and symptoms in this group. Furthermore,
SARS-CoV-2-infected individuals exhibited a higher density of
bacterial genes enriched in pathways directly involved in lipid
metabolism, primarily Parabacteroides, Streptococcus, Dorea,
and Blautia genera. We also showed that the compositional
changes in the gut microbiota were not affected by gender and
age. Altogether, our findings suggest a putative role for the
gut microbiota in protecting against SARS-CoV-2 infection.
However, these findings should be followed by additional
validation studies on larger cohorts involving populations with
different environmental conditions and genetic backgrounds.
The identified bacterial genera can most likely provide screening
biomarkers to predict COVID-19 pathogenesis and better
manage disease severity in the era of the COVID-19 pandemic
with increased demands on healthcare.
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