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Pseudorabies virus is a typical swine alphaherpesvirus, which can cause obvious
neurological disorders and reproductive failure in pigs. It is capable of evading host
antiviral immune response. However, the mechanism by which many PRV proteins assist
the virus to evade innate immunity is not fully understood. This study identified PRV
US3 protein as a crucial antagonistic viral factor that represses interferon beta (IFN-β)
expression. A in-depth study showed that US3 protein restricted type I IFN production
by targeting interferon regulatory factor 3 (IRF3), a key molecule required for type I IFN
induction. Additionally, US3 protein interacted with IRF3, degraded its protein expression
to block the phosphorylation of IRF3. These findings suggested a novel strategy utilized
by PRV to inhibit IFN-β production and escape the host innate immunity.
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INTRODUCTION

During a virus infection, host cellular recognition receptors (PRRs) recognize pathogen-associated
molecular patterns (PAMPs) and trigger the induction of type I interferons (IFNs) and pro-
inflammatory cytokines to restrict viral replication, clear up of infected cells, and further orchestrate
the adaptive immune response to eradicate infected pathogens (Kawai and Akira, 2006; Carpenter
et al., 2014; Beachboard and Horner, 2016; Chen et al., 2017). Among the PRRs, Cyclic GMP-AMP
(cGAMP) synthase (cGAS) is a cytosolic DNA sensor and, when triggered, mounts a type I IFN
response. Upon sensing pathogen DNA, cGAS catalyzes the synthesis of cGAMP, which activates
the endoplasmic reticulum (ER)-anchored stimulator of interferon genes (STING). Stimulator
of interferon genes then translocate from the ER to the Golgi apparatus to the recruit and
phosphorylate TANK-binding kinase 1 (TBK1) and IκB kinase (IKK). These events then activate
IRF3 and NF-κB to activate type I IFN production (Fitzgerald et al., 2003; Sharma et al., 2003; Sun
et al., 2013; Xia et al., 2016).

To counteract the antiviral effects of cGAS-STING engagement, several DNA viruses, including
Kaposi’s sarcoma-associated herpesvirus (Li et al., 2000; Ma et al., 2015; Wu et al., 2015), Herpes
simplex virus 1 (Christensen et al., 2016; Su et al., 2016; Zhang et al., 2016; Zheng, 2018; Lin
and Zheng, 2019; Zhu and Zheng, 2020), and Marek’s disease virus (Gao et al., 2019; Li et al.,
2019), have evolved different evasion strategies. Pseudorabies virus (PRV), a member of the
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subfamily Alphaherpesvirinae of the family Herpesviridae
(Mettenleiter, 2000), causes fatal fever and encephalomyelitis in
pigs and susceptible animals (Sun et al., 2016). Although pigs
are the natural host of PRV, other mammals, such as ruminants,
carnivores, and rodents, are susceptible to PRV infection
(Fonseca et al., 2010). Indeed, PRV infection is also known to
cause human endophthalmitis in China (Ai et al., 2018; Fan
et al., 2020; Liu et al., 2020; Wang et al., 2020). Importantly, PRV
infection and the disease it causes have brought huge impact on
economic for the swine industry.

Pseudorabies virus (PRV) is known to block type I IFN host
antiviral responses. When PRV infects primary rat fibroblast cells,
interferon-stimulated genes (ISGs) in these cells are suppressed
(Brukman and Enquist, 2006b). The PRV glycoprotein gE/gI
complex (Lamote et al., 2017), UL50 (Zhang et al., 2017), and
EP0 (Brukman and Enquist, 2006a) can suppresses type I IFN
host responses. Importantly, PRV UL13 inhibits cGAS-STING-
mediated IFN-β production by phosphorylating IRF3 (Bo et al.,
2020; Lv et al., 2020).

PRV protein kinase US3 has been shown to protect
infected cells from apoptosis (Geenen et al., 2005; Qin et al.,
2019). We reasoned that this could occur via exerting an
uncharacterized antiviral evasion strategy and hypothesized that
this could be occurring via the cGAS-STING pathway. US3
is a viral serine/threonine kinase, which is conserved in the
alphaherpesvirus subfamily. Many studies indicated that Herpes
simplex virus 1 (HSV-1) encoding US3 protein is involved in
many processes during viral infection (Wagenaar et al., 1995;
Leopardi et al., 1997; Reynolds et al., 2002; Cartier et al., 2003)
and many other functions. Regarding how HSV-1 counteracts
the host’s natural immune response, many studies showed that
US3 could inhibit IFN-β (Wang et al., 2013; You et al., 2020)
and Nuclear factor κB (NF-κB) (Wang et al., 2014) activation.
Although HSV-1 US3 protein has multiple mechanisms for
immune evasion, the immune evasion functions of PRV US3 are
still poorly understood.

In this study, we found that PRV dampened IFN-β responses
and that US3 protein impaired IFN-β production via degradation
of IRF3. US3 also interacted with IRF3 and blocked its activation.
Additionally, US3 knockdown partially recovered PRV infection-
induced IRF3 degradation and IFN-β expression, suggesting
PRV US3 could subvert antiviral innate immunity and evade
host antiviral responses via a different mechanism compared
to HSV-1 US3.

MATERIALS AND METHODS

Cells and Viruses
The porcine kidney (PK15) cells were obtained from ATCC
and cultured in DMEM supplemented with 10% new bovine
serum (NBS) at 37◦C in a 5% CO2 incubator. Pseudorabies Virus
Bartha is an attenuated vaccine strain, obtained by extensive
passaging of an Aujeszky strain isolated in Hungary (Christensen
et al., 1992). Bartha-61 was propagated in BHK-21 cells, and
the supernatants of infected cells were clarified and stored
at−80◦C.

Antibodies and Reagents
Anti-FLAG tag rabbit polyclonal antibody (D110005), Anti-
cGAS rabbit polyclonal antibody (D163570), HRP (horseradish
peroxidase)-conjugated Goat Anti-Rabbit IgG (D110058)
and HRP-conjugated Goat Anti-Mouse IgG (D110087) were
purchased from Sangon Biotech (Shanghai, China). HA tag
Polyclonal antibody (51064-2-AP) and IRF3 Polyclonal antibody
(11312-1-AP) were purchased from Proteintech (Wuhan,
China); STING (D2P2F) Rabbit mAb (13647S), Phospho-IRF-3
(Ser386) (E7J8G) XP R© Rabbit mAb antibody (37829S) and
Myc-Tag (9B11) Mouse mAb (2276S) were bought from Cell
Signaling Technology. Anti-HIST3H3 Polyclonal Antibody
(K106623P) were purchased from Solarbio (Beijing, China).
GAPDH Mouse Monoclonal Antibody (AF5009) and β-actin
Mouse Monoclonal Antibody (AA128) were purchased from
Beyotime Biotechnology (Shanghai, China). Anti-HSP90β

antibody was purchased from Abbkine (ABP54794) (China).
TransStart R© Top Green qPCR SuperMix (+Dye II)

was purchased from Transgen (Beijing, China). Cell
membrane/cytoplasm/nuclear membrane protein step extraction
kit (BB-31042) was bought from BestBio (Shanghai, China).
Lipofectamine 3000 was purchased from invitrogen. Chemical
reagents polybrene (Millipore), puromycin and RNase inhibitor
(Thermo), MG132 (Beyotime), chloroquine (CQ) (tlrl-chq,
InvivoGen) and ISD (tlrl-isdc, InvivoGen) were bought from
indicated manufactures.

Plasmids
Plasmids encoding HA-tagged cGAS and STING were
constructed by molecular cloning methods. Myc tagged US3
plasmid was constructed in-house. All plasmids were verified by
sequencing. The primer sequences used in this study are available
upon request. pCMV-FLAG-TBK1, IRF3 constitutively active
mutant IRF3/5D-FLAG and pCMV-FLAG-IRF3 expression
plasmids were all constructed in-house.

Western Blotting
Cells were harvested and whole-cell extracts were prepared with
lysis buffer buffer RIPA (Solarbio, Beijing, China). Cell extracts
were subjected to 10% or 15% SDS-PAGE, and the separated
proteins were transferred to PVDF membranes (Millipore). The
PVDF membranes were incubated with specific primary and
HRP-conjugated secondary antibodies. GAPDH or β-actin was
served as a loading control. The proteins were detected using ECL
Blotting Substrates (Bio-Rad, CA, United States).

Co-immunoprecipitation Assay
Cells were collected with a lysis buffer supplemented with a
phosphatase inhibitor cocktail and incubated with anti-FLAG
or anti-IRF3 antibody for 12 h at 4◦. Then 10 µL of Protein G
agarose slurry (Beyotime, China) was added to each lysate. After
incubation for 4 h at 4◦, the lysates were centrifuged at 2500 rpm
for 5 min. The beads were collected and washed 5 times with ice-
cold PBS. The precipitates were mixed with SDS buffer and boiled
for 5 min at 95◦. After centrifugation at 6000 rpm for 1 min, the
supernatant was collected and used for western blot analysis.
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RNA Extraction and Real-Time
Quantitative PCR
mRNA levels was determined for IFN-β using relative qPCR.
Cellular RNA was isolated and reverse-transcribed to cDNA.
Methods were performed as previously described (Xie et al.,
2020). Primers for RT-qPCR are available upon request.

CCK-8 Assay
Cell proliferation was determined using the CCK-8 assay. PK15
cells were seeded in 96-well plates overnight and then untreated
or treated with MG132 or CQ. The proliferative ability of the
cells was evaluated at 6 h and 12 h according to manufactures’
instruction.

Statistical Analysis
Measurements were compared using a one-way ANOVA.
Statistical significance comparisons were calculated using a
Student’s t-test in GraphPad Prism 7.0 software (La Jolla,
CA, United States). Values are expressed in graph bars as
the mean ± SD of at least three independent experiments,
unless otherwise noted. Asterisks denote statistically significant
differences (∗∗∗ p< 0.001, ∗∗ p< 0.01, and ∗ p< 0.05).

RESULTS

Pseudorabies Virus US3 Protein Blocks
IFN-β Activation
Given that HSV-1 US3 can prevent IFN-β activation during
infection (Wang et al., 2013; You et al., 2020), we wondered if
PRV US3 protein performed a similar function via interfering
with an IFN-β pathway. ISD used in this study is a double-
stranded DNA 60-mer oligonucleotide derived from the HSV-1
genome. PK15 cells were transfected with a US3 expression
plasmid for 24 h before ISD transfection to determine the
effect of PRV US3 on IFN-β production induced by ISD. RT-
qPCR results showed ISD strongly activated IFN-β mRNA
expression. However, the activation was remarkably decreased
in the presence of Myc-US3 expression (Figure 1), suggesting
PRV US3 expression inhibits the IFN-β activation in a dose-
dependent manner.

IRF3 Might Be the Potential Target of
Pseudorabies Virus US3 Protein
Type I IFN induction is mainly mediated by the cGAS-STING
pathway during DNA virus infection. Cells were transfected
with either plasmid encoding cGAS-STING signaling pathway
adaptors TBK1, IRF3/5D, a constitutively active form of IRF3
containing five C-terminal substitutive Asp (D) residues (Ramos
and Gale, 2011) and cGAS and STING proteins for 12 h before
overexpressing US3 transiently for a further 24 h. Exogenous
overexpression of any of these adaptor molecules significantly
activated IFN-β expression. Interestingly, US3 protein expression
repressed all of these adaptor molecules triggered IFN-β
activation (Figures 2A–D). Thereby, we considered that IRF3

FIGURE 1 | pCMV-Myc-US3 plasmid (0.2 µg, 0.5 µg, and 1.0 µg) was
transfected into PK15 cells used Lipofectamine 3000. ISD (2 µg/mL) was
transfected into above cells for 12 h before cells collection. US3 protein
expression was detected by western blotting. An anti-Myc antibody was used
and GAPDH served as the loading control. Then cellular RNA were extracted
and cDNA was transcripted for IFN-β mRNA detection. Data were listed as
mean ± SD from three independent experiments. Comparison between two
groups was evaluated by unpaired Student’s t test. ** p < 0.01, *** p < 0.001.

might be a targeting protein for US3 hindering the type I IFN
pathway.

US3 Interacts With IRF3 and Degrades
IRF3 Through the Proteasomal Pathway
IRF3 plays an extremely pivotal role in the induction of IFN
in responding to viral infection. PRV US3 protein exhibited a
remarkable inhibitory effect on IRF3 and its upstream adaptors
(Figure 2), suggesting that it could target IRF3. PK15 cells were
co-transfected with FLAG-IRF3 and Myc-US3 plasmids to test
whether US3 interacted with IRF3. An anti-FLAG antibody was
used to carry out co-immunoprecipitation (Co-IP) assay. As
shown in Figure 3A, IRF3 coprecipitated with US3 protein,
suggesting a direct interaction between US3 and IRF3 protein. To
verify the interaction between US3 protein and endogenous IRF3,
Co-IP was operated by transfecting PK15 cells with Myc-vector-
or Myc-US3 expressing plasmids, anti-IRF3 antibody was used to
detect and visualize IRF3 expression. As shown in Figure 3B, US3
protein was immunoprecipitated with endogenous IRF3.

Indeed, overexpression of US3 decreased IRF3 protein
expression (Figure 3C). US3 overexpressing cells were treated
with proteasome inhibitor MG132 and the autophagy inhibitor
chloroquine diphosphate (CQ) to explore the mechanism by
which US3 decreases IRF3 expression. We confirmed that
MG132 and CQ were not toxic on PK15 cells (Figure 3D).
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FIGURE 2 | PK15 cells were cotransfected with empty vector (0.5 µg) or Myc-US3 (0.5 µg) plasmids and the indicated plasmids expressing cGAS (15 ng) + STING
(2.5 ng) (A), STING (0.2 µg) (B), TBK1(0.2 µg) (C) or IRF3(5D) (0.2 µg) (D) for 24 h. Then cells were collected for total RNA extraction. IFN-β mRNA expression level
was measured by RT-qPCR. Expression of various adaptor molecules and US3 protein was evaluated by western blotting. β-actin served as loading control. Data
were listed as mean ± SD from three independent experiments. Comparison between two groups was evaluated by unpaired Student’s t test. ** p < 0.01,
*** p < 0.001.
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FIGURE 3 | (A) PK15 cells were co-transfected with empty vector (0.5 µg) or Myc-US3 (0.5 µg) plasmids and FLAG-IRF3 (0.2 µg) plasmids for 30 h. The cells were
then lysed and immunoprecipitated with an anti-Flag antibody. The whole-cell lysates (input) and immunoprecipitation (IP) complexes were analyzed using an
anti-Myc, anti-FLAG or anti-GAPDH antibody by western blotting. (B) PK15 cells were transfected with empty vector (0.5 µg) or Myc-US3 (0.5 µg) plasmids for
30 h. The cells were lysed and immunoprecipitated with an anti-IRF3 antibody. The input and IP complexes were analyzed by western blotting using anti-IRF3,
anti-Myc or anti-GAPDH antibodies. (C) PK15 cells were transfected with empty vector (0.5 µg) or Myc-US3 (0.5 µg) for 24 h, then cells were collected for western
blotting using anti-IRF3, anti-Myc or anti-GAPDH antibodies. (D) Chemicals were previously tested for cytotoxicity at the concentrations used. PK15 cells treated
with 7.5 µM MG132 or 50 µM CQ for 6 h and 12 h in 96 well plate. Cell viability was determined using the CCK8 reagent. Data were expressed as the mean ± SD
from three independent experiments. (E) PK15 cells were transfected with Myc-US3 (0.5 µg) or empty vector (0.5 µg) for 24 h, then treated with lysosomal inhibitor
MG132 (7.5 µM) or the lysosome inhibitor CQ(50 µM)for 6 h. DMSO treated cells served as vehicle control. Then cells were collected and immunoblotting for IRF3
and Myc. GAPDH served as a loading control.
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FIGURE 4 | PK15 cells were transfected with empty vector (0.5 µg) or Myc-US3 (0.5 µg) plasmids for 24 h and then transfected with ISD (2 µg/mL) for 12 h. Cells
were untreated (A) or treated (B) with 7.5 µM MG132 for another 6 h before collection. IRF3, phosphorylated IRF3 (p-IRF3), and US3 protein (Myc) expression was
detected by immune blotting. GAPDH or β-actin served as loading control.

Immunoblotting analysis revealed that MG132 inhibited
IRF3 degradation but not CQ, suggesting that degradation
occurs through the ubiquitination-proteasomal, not autophagic
pathway (Figure 3E).

US3 Protein Suppresses IRF3
Phosphorylation
The phosphorylation of IRF3 is required for the induction
of IFNs. Pseudorabies Virus US3 protein blocks type I IFN
production by targeting IRF3. The levels of ISD-induced IRF3
phosphorylation in the absence or presence of US3 protein
were examined to investigate whether US3 protein affected
the phosphorylation of IRF3. PK15 cells were transfected with
Myc-US3 or empty vector plasmids along with ISD. ISD
induced significant phosphorylation of IRF3 in both Myc-
US3 and empty vector plasmid-transfected cells. Whether
treated with MG132 or not, the phosphorylation level of
IRF3 was markedly lower in the Myc-US3-transfected cells
than in the empty vector-transfected cells (Figures 4A,B).
These results indicated that PRV US3 protein abrogated IRF3
phosphorylation.

US3 Protein Blocks IRF3 Nuclear
Translocation
IRF3 is a transcription factor that participated in type I IFN
production, and its function is realized by transposition from
the cytoplasm to the nucleus (Vandevenne et al., 2011). The
phosphorylation of IRF3 causes its nuclear translocation. Our
results showed that US3 interacts with IRF3 protein and
inhibits its phosphorylation. PK15 cells were co-transfected
with Myc-US3 expressing plasmids and ISD to investigate
the effects of US3 protein on the nuclear translocation of
IRF3. As US3 could degrade IRF3 expression through the
proteasome pathway (Figure 3E), the above experimental cells
were treated with MG132 for 6 h before collection. The
distribution of IRF3 in cytoplasma or nucleus was detected
by nuclear-cytoplasmic separation experiment. Compared with
the empty vector-transfected group, in the US3 transfected

group, most of the IRF3 protein remained in the cytoplasm,
and only a small amount of IRF3 entered the nucleus
(Figure 5). The result indicated that US3 protein inhibited

FIGURE 5 | ISD (2 µg/mL) was transfected into PK15 cells in the presence of
either pCMV-Myc (0.5 µg) or Myc-US3 (0.5 µg) for 24 h. Before collected,
cells were treated with MG132 for 6 h. Then cytoplasmic and nuclear proteins
were extracted and subjected to western blotting. Expression of IRF3 and
Myc tagged US3 was detected with specific antibodies. HSP90 was used as
a cytoplasmic protein marker, whereas Histone3 was used as a nuclear
protein marker. GAPDH served as loading control.
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FIGURE 6 | (A) PK15 cells were transfected with shRNA targeting US3 (0.5 µg) or control shRNA (0.5 µg) for 24 h. Then cells were infected with MOI of 1 PRV for
12 h. Cells were collected for cellular RNA extraction. cDNA was transcripted for IFN-β mRNA detection. Data were listed as mean ± SD from three independent
experiments. Comparison between two groups were examined by unpaired Student’s t test. ** p < 0.01. (B) PK15 cells were transfected with shRNA-US3 (1 µg) or
shRNA-control (1 µg) for 24h followed with Myc-US3 (0.5 µg) plasmid transfection. 24 h post transfection, cells were collected and lysed for IRF3 and Myc tagged
US3 expression using specific antibodies. GAPDH served as loading control. (C) PK15 cells were transfected with shRNA-US3 (1 µg) or shRNA-control (1 µg) for
24 h followed with ISD (2 µg/mL) plasmid transfection. 12 h post transfection, above cells were uninfected or infected with MOI of 3 PRV for another 12 h. Cells were
collected for total RNA extraction. 1 µg RNA was transcripted into cDNA for IFN-β mRNA detection. Data were expressed as mean ± SD from three independent
experiments and were measured in technical duplicate. Comparisons between groups were performed by Student’s t test. * p < 0.05, ** p < 0.01, *** p < 0.001.
(D) PK15 cells were infected with PRV Bartha strain (WT) and PRV-shRNA-US3 at 3 MOI. Endogenous IRF3 expression level was determined by western blotting at
6 h and 12 h post infection. GAPDH served as loading control.

ISD-induced nuclear translocation of IRF3 to prevent IFN-β
production.

Pseudorabies Virus Mutant Containing a
US3 Knockdown Produces Higher Levels
of Innate Immunity
To further determine US3 functions during a live PRV infection,
two shRNAs targeted to US3 were designed and synthesized

by Genechem (Shanghai, China). shRNAs targeted to US3
were transfected into PK15 cells following PRV infection. 12 h
post-infection, cells were collected for RNA extraction. IFN-β
mRNA expression was detected by RT-qPCR. Results showed
in Figure 6A, IFN-β transcripts are present in significantly
higher levels in cells transfected with shRNA targeting US3
than those transfected with shRNA-control. To verify whether
this result is related to the reduced expression of US3, we
examined the expression of US3 by western blotting and found
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that shRNA-US3 can effectively interfere with the expression of
US3 (Figure 6B).

Next, we studied the effect of US3 knockdown expression
on ISD-triggered IFN-β transcription. It was found that ISD
can effectively stimulate the transcription of IFN-β, and PRV
infection inhibited the expression of IFN-β at the mRNA level.
However, in shRNA-US3 and ISD transfected cells, the inhibition
of IFN-β expression by PRV was weakened (Figure 6C) but not
completely disappeared, suggesting that other viral proteins may
be involved in the process of resistance to host innate immunity.
Altogether, these results further confirmed that US3 protein
could antagonize the activation of IFN-β pathway.

To further study the expression of IRF3 protein in viral
infection, PK15 cells were inoculated with 3 MOI PRV Bartha-
61 strain (wild type, WT) or PRV-shRNA-US3 for 6 h and
12 h, respectively. Cells were collected for IRF3 detection. As in
Figure 6D shown, levels of endogenous IRF3 in PRV-shRNA-US3
infected cells were markedly higher than in WT strain infected
cells, suggesting that US3 helps to enable PRV degrade IRF3 and
resistance to IFN-β signaling pathway.

DISCUSSION

The innate immune system composes the first line of host, and
protects hosts from viral infection. The capability of viruses to
avoid and regulate host innate immunity response is of great
importance for viral infection (Bowie and Unterholzner, 2008).
As the cGAS-MITA-TBK1 axis plays an indispensable role in
host defense against DNA viruses infection (Kato et al., 2017),
the DNA viruses have developed numerous means to counteract
this signaling pathway for replication and latent infection (Ma
and Damania, 2016). This study showed that PK15 cells infection
with PRV significantly suppressed type I IFN production. We also
demonstrated the role of US3 in the IFN-β signaling pathway
and revealed the mechanism used by PRV to antagonize host
antiviral response.

The US3 protein is a multifunctional serine/threonine-
protein kinase. US3 expression modulates a wide range of
cellular processes, including virus nuclear egress, inhibition
of apoptosis, reorganization of the cytoskeleton, and several
immune modulators (Favoreel et al., 2005; Deruelle et al., 2007;
Deruelle and Favoreel, 2011). In the current study, we showed
that exogenous overexpression of PRV US3 inhibited cGAS-
STING, TBK1, IRF3(5D), or ISD-triggered activation of IFN-β
(Figure 2). Furthermore, US3 could interact with IRF3 and
degrade the protein expression level of IRF3 (Figure 3).

In this study, IRF3 was recognized as a target of PRV US3
protein, through which it inhibited type I IFN production. IRF3
is a key regulator of IFN-β pathway. It can be phosphorylated by
cellular and viral proteins, conducing to either the activation or
suppression of IRF3 transcriptional activities. As a consequence,
leading to increase or decrease of IFN-β production. Previous
studies reported that several conserved herpes virus-encoded
kinases might contribute be involved in anti-IFN function by
suppressing the IRF3 pathway, such as HSV-1 UL13, HCMV
UL97, MHV-68 ORF36, and the EBV BGLF4 kinase protein

FIGURE 7 | PRV protein kinase US3 interacts with IRF3 and degrades IRF3
protein expression through proteasome pathway. Additionally, US3 inhibits
IRF3 phosphorylation and prevent its nuclear translocation, then negatively
regulates IFN-β production.

(Hwang et al., 2009). Here, we demonstrated that PRV US3
protein antagonized the IFN-β pathway by targeting IRF3,
through degradation of its protein expression, inhibits IRF3
phosphorylated and nuclear translocation (Figures 3–5). There is
a direct interaction between US3 and IRF3, and endogenous IRF3
levels are affected by US3, so phosphorylated IRF3 decreased
maybe result from degradation of endogenous IRF3 by US3. To
rule out this effect and explore more accurately the effect of
US3 on IRF3 phosphorylation, we used MG132 to treat the cells
transfected with Myc-US3 and ISD or empty vector and ISD.
Results found that after treated with MG132, the total IRF3 in
the cells did not decrease in the Myc-US3 transfection group,
but the IRF3 phosphorylation level of cells transfected with Myc-
US3 was significantly lower than that of cells transfected without
empty vector (Figure 4B). These results further confirmed that
US3 could inhibit the phosphorylation of IRF3.

To understand the role of US3 interaction with the IFN-β
signaling pathway, we used the PRV-shRNA-US3 strain for
further study. When knockdown US3 expression, its ability to
inhibit IFN-β transcription was weakened (Figures 6A–C). These
results indicate that US3 plays an important role in antagonizing
innate immunity. US3 also influences IRF3 expression. IRF3
levels in PRV-shRNA-US3-infected cells are significantly higher
than those in WT strain infected cells, indicating that a virus
failure to express US3 has a weakened capability to prevent IRF3
and IFN-β activation.
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In summary, our data demonstrated a possible mechanism
that US3 antagonized IFN-β signaling pathway (Figure 7).
US3 inhibited IFN-β production by targeting IRF3. There
was a direct interaction between US3 and IRF3. Moreover,
US3 degraded IRF3 protein level expression and blocked its
activation. These findings suggested that PRV US3 could inhibit
the IFN-β production and provide new insights into innate
immune evasion by PRV.
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