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As antibiotics resistance on superbugs has risen, more and more studies have focused
on developing rapid antibiotics susceptibility tests (AST). Meanwhile, identification of
multiple antibiotics resistance on Staphylococcus aureus provides instant information
which can assist clinicians in administrating the appropriate prescriptions. In recent
years, matrix-assisted laser desorption ionization-time of flight mass spectrometry
(MALDI-TOF MS) has emerged as a powerful tool in clinical microbiology laboratories
for the rapid identification of bacterial species. Yet, lack of study devoted on providing
efficient methods to deal with the MS shifting problem, not to mention to providing
tools incorporating the MALDI-TOF MS for the clinical use which deliver the instant
administration of antibiotics to the clinicians. In this study, we developed a web tool,
MDRSA, for the rapid identification of oxacillin-, clindamycin-, and erythromycin-resistant
Staphylococcus aureus. Specifically, the kernel density estimation (KDE) was adopted
to deal with the peak shifting problem, which is critical to analyze mass spectra data,
and machine learning methods, including decision trees, random forests, and support
vector machines, which were used to construct the classifiers to identify the antibiotic
resistance. The areas under the receiver operating the characteristic curve attained 0.8
on the internal (10-fold cross validation) and external (independent testing) validation.
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The promising results can provide more confidence to apply these prediction models in
the real world. Briefly, this study provides a web-based tool to provide rapid predictions
for the resistance of antibiotics on Staphylococcus aureus based on the MALDI-TOF
MS data. The web tool is available at: http://fdblab.csie.ncu.edu.tw/mdrsa/.

Keywords: antibiotics susceptibility test, multidrug resistance, MALDI-TOF MS, machine learning, AST (antibiotic
susceptibility testing)

INTRODUCTION

Over the past few decades, inappropriate use of antibiotics has
brought out the growth of antibiotic resistance (ABR). More
specifically, ABR is the ability of a bacterium to resist the effects
of a treated drug and leads to the drug’s ineffectiveness. Using
alternative drugs or higher doses of antibiotics to defeat ABR is
one of the solutions. However, overusing, underusing, or even
misusing the drugs accelerates the growth of ABR. Additionally,
it could lead to a bacterium being resistant to a variety of
antibiotics, which is knowns as multidrug resistance (MDR),
or even called “superbugs.” Meanwhile, superbugs are a huge
threat to global health today. One of the well-known superbugs
is methicillin-resistant Staphylococcus aureus (MRSA), which has
become a severe issue all over the world (Wolters et al., 2011;
Clerc et al., 2014; Mather et al., 2016).

Staphylococcus aureus, a Gram-positive bacterium, is a
microorganism commonly found on the skin. These carriers
are not symptomatic. However, the pathogen occasionally
causes severe diseases including skin, wounds, urinary tract,
lung infections, bacteremia, and food poisoning (Naber, 2009).
Antibiotics can effectively cure most Staphylococcus aureus
infections, but MRSA is a bacterium that can resist methicillin
and other antibiotics such as oxacillin (OX), penicillin,
amoxicillin, and cephalosporin, which are improperly used and
produce resistance. It is widely believed that the incorrect
use of antibiotics is one of the causes of drug resistance.
MRSA has a variety of antibiotic resistance and is generally
considered a nosocomial pathogen which causes high mortality
(Noskin et al., 2005). Therefore, it is very important to rapidly
distinguish between methicillin-sensitive Staphylococcus aureus
(MSSA) and MRSA.

There are several steps in the current process for determining
the treatment of infectious diseases in clinical microbiology.
When the doctor suspects that the patient is suffering from a
certain infectious disease, the specimens of the infected site are
collected for testing. After the specimen collection is completed,
the bacterial culture is adopted to provide further bacterial
identification. While confirming the bacteria, several antibiotic
susceptibility tests (AST) are performed to decide the treatment.
In general, it takes about 2–3 days to culture the bacteria and
obtain the AST results (Lowy, 2003). Although the standard
experiments are highly accurate, the time cost is also high.
Before obtaining the AST reports, it is highly dependent on the
physicians’ experience to treat patients. Yet, empirical treatments
might inadvertently cause more serious drug resistance. In short,
the rapid information of AST can reduce ineffective use of drugs.

With the rapid development of antibiotic resistance, several
methods for rapid identification of antibiotic resistance have been
proposed, such as polymerase chain reaction (PCR) assays and,
more recently, the matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-
TOF MS is a proteomic tool that measures the molecules
including proteins or peptides in the sample. The peptides
that are associated with antibiotic resistance might be detected
through MALDI-TOF mass spectra. Although qPCR, RT-
qPCR, ddPCR, and modified 16S sequencing which obtain AST
information in only a few hours could attain high performance,
MALDI-TOF MS has more potential to become a convenient
and efficient method for identification of antibiotic resistance.
The primary reason is that MALDI-TOF MS has already been
routinely used in many clinical microbiology laboratories, and
there is no additional cost for those that have a MALDI-TOF MS.
The mass spectra, generated by MALDI-TOF MS, are composed
of peaks of specific mass−to−charge ratios (M/Z) with different
intensities, which correspond to a reproducible fingerprint of
a certain microorganism (Wang et al., 1998). Consequently, a
number of studies have investigated the performance of MALDI-
TOF MS on identification of bacterial strains (Ryzhov and
Fenselau, 2001; Bizzini et al., 2010; Wang et al., 2018, 2019), and
further explored the antibiotics resistance to bacteria (Singhal
et al., 2015; Vrioni et al., 2018). Meanwhile, several studies
have reported the significant effect on clinical microbiology
(Psaroulaki and Chochlakis, 2018; Vrioni et al., 2018; Angeletti
and Ciccozzi, 2019; Rodríguez-Sánchez et al., 2019; Welker et al.,
2019). In brief, recognizing the pattern of the peptides would
serve as a fingerprint for identifying antibiotic resistance in the
study, and hence using MALDI-TOF MS to realize the rapid AST
in clinical microbiology is promising.

According to the large amount of AST reports collected by
Chang Gung Memorial Hospital, the percentages of resistant
to erythromycin (E) and clindamycin (CC) were about 50%,
which can be seen in Supplementary Figure 1. This implies
that providing instant information about the use of them
is as critical as the identification of MRSA. However, none
of the studies used substantial data or provided a web-
based prediction tool for the rapid identifications of oxacillin-,
clindamycin-, and erythromycin-resistant Staphylococcus aureus.
Therefore, the major purpose of this study is to develop a web-
based prediction tool, MDRSA, for the rapid identification of
multiple drugs resistant to Staphylococcus aureus based on a
significant amount of MALDI-TOF MS data. Clinicians would
obtain instant guidelines about the use of antibiotics for the
Staphylococcus aureus infection. Additionally, the analysis for
the informative peaks would provide more indications for the
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resistance. In short, development of rapid identification models
does contribute an impact on the clinical management of patients
with infectious diseases.

MATERIALS AND METHODS

Bacterial Isolates
A total of 20,212 and 5,005 clinical isolates were collected
from two medical centers (CGMH Linkou branch and CGMH
Kaohsiung branch). These two centers are around 330 km apart.
Both centers serve as the referral centers in the regions. It
should be noted that these data were collected from the current
routine process for determining the treatment of infectious
diseases in clinical microbiology. All clinical specimens were
collected from all the wards continuously. The specimen types
included blood, respiratory tract specimen (sputum, bronchial
wash, and bronchoalveolar lavage), sterile cavity fluid (ascites,
pleural effusion, pericardial effusion, cerebrospinal fluid, and
synovial fluid), urine, and wound. Note that the data collected
from Linkou and Kaohsiung branches were regarded as a training
set and an independent set, respectively. All the processes
of identifying Staphylococcus aureus and its resistance strictly
followed the Clinical and Laboratory Standard Institute (CLSI)
guidelines. Table 1 shows the amount of data in training and
independent testing sets. More than 81% of the isolates were
recovered from the patient’s sputum, pus, wounds, and blood
specimens as shown in Supplementary Table 1.

Matrix-Assisted Laser Desorption
Ionization Time-of-Flight Mass
Spectrometry Data Acquisition
MALDI-TOF MS was used to identify the bacterial species
and was conducted on Microflex LT (Bruker Daltonik GmbH,
Bremen, Germany) benchtop instrument. All isolates were
identified as Staphylococcus aureus by Bruker MALDI-TOF
MS, and the measurement procedures were following the
manufacturer’s instructions (Bruker Daltonik GmbH, Bremen,
Germany). Mass spectra were acquired in a linear positive mode
within a range of +2 kV to +20 Kv and the nitrogen laser
frequency was set as 60 Hz.

The species of Staphylococcus aureus was analyzed and
reported on Biotyper 3.1 software (Bruker Daltonics). Biotyper
provided the intensity and the signal quality of the peaks. For
each isolate, the maximum number of peaks was set up to 200
and the acceptable quality is larger 2.0 which is the benchmark
from the instruction of Biotyper 3.1. Furthermore, by using

TABLE 1 | Number of data in training and independent testing sets.

Training set Independent testing set

Antibiotics Resistant (%) Susceptible (%) Resistant (%) Susceptible (%)

Oxacillin 10,735 (53.11) 9,477 (46.89) 2,399 (47.93) 2,606 (52.07)

Clindamycin 9,297 (46.00) 10,915 (54.00) 1,880 (37.56) 3,125 (62.44)

Erythromycin 11,304 (55.93) 8,908 (44.07) 2,584 (51.63) 2,421 (48.37)

Flexanalysis 3.4 (Bruker Daltonik GmbH, Bremen, Germany) we
could get a mass list, the parameters were set as follows: centroid
peak detection algorithm for peak finding; Top Hat method for
baseline subtraction; signal-to-noise threshold was set as 2; the
minimum peak width expected in the spectrum was set as 6 M/Z;
the maximal number of peaks was set as 200; relative intensity
threshold was set as 0%; minimum intensity threshold was set as
0, and height was set as 80%. In this investigation, spectra ranging
from 2,000 to 20,000 M/Z were acquired for further analysis.

Spectral Data Processing
Even in the same experimental steps and environment, the
MALDI-TOF mass spectra of the same isolates may still be
different. Specifically, the strong peaks on different MALDI-TOF
mass spectra of the same strain may not be located at the same
M/Z (Lin et al., 2005; AlMasoud et al., 2014), and we called
this problem a shifting problem. Consequently, preprocessing
for each single mass spectrum before constructing the models is
an essential step, especially for large-scale data derived from the
clinical medicine.

In order to deal with the peak shifting problem that appears in
MALDI-TOF MS data, the kernel density estimation (KDE) was
adopted to estimate the actual location of the peaks. Specifically,
KDE is a non-parametric method to estimate the probability
density function (PDF) of a random variable (Sheather and Jones,
1991). The M/Z values were regarded as the random variable. We
then applied the KDE with Gaussian kernel to estimate the PDF
of the M/Z values, which can be represented as

f (x) =
1

nh

n∑
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K(
x− xi

h
) =

1
√

2πnh

n∑
i=1

exp{−
1
2
(
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h
)2
}

(1)
where x1, x2, . . ., xn are all M/Z values derived from all spectra, h
is the bandwidth, which is also the smoothing parameter, n is the
number of M/Z values, and K is the kernel function.

To obtain M/Z patterns for resistant and susceptible spectra,
we used the function “stats.gaussian_kde,” provided by SciPy
(Virtanen et al., 2020), to estimate their PDFs in this study.
It should be noted that the bandwidth is a critical parameter
for employing KDE. The parameter “bw_method” provided
in “stats.gaussian_kde” can be used to determine it. More
specifically, if “bw_method” is a scalar, the bandwidth will be
the scalar multiplied by the standard deviation of the sample.
After the PDFs of M/Z patterns for resistant and susceptible
spectra were obtained, the local modes derived from two PDFs
were retrieved and concatenated to be a one spectrum with
several peaks. Then we removed the duplicate values to construct
a reference spectrum template. In addition to removing the
duplicate values, the distance between two adjacent local modes
less than three were also removed. The minimum width of
two adjacent peaks expected in a spectrum was set as 6 M/Z
in Flexanalysis 3.4. Finally, these M/Z values formed the final
reference spectrum template. Figure 1 demonstrates the flow
chart of constructing a reference spectrum template. Note that
0.0006, 0.0008, 0.001, 0.0012, and 0.0014 were the values of
“bw_method” in this study and used to generate different
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reference spectra. Their corresponding bandwidths were 2.08,
2.77, 3.46, 4.15, and 4.84. The peaks in every spectrum were
then aligned to the nearest ones in the reference spectrum
accordingly. Supplementary Figure 2 illustrates the alignment
for mass spectrum of Isolate A. More specifically, the purple
line is the PDF of the population, so all the peaks of a mass
spectrum should be shifted to the nearest benchmark which is
the local maximum of PDF. Supplementary Table 2 all features
(peaks) used for developing oxacillin (OX), clindamycin (CC),
and erythromycin (E) models.

The amount of the intensity may be influenced by various
factors like temperature, instrument set-up, storage, and manual
operation (Baumann et al., 2005), so we need to process the raw
spectra data first. In this study, we scaled each intensity by its
spectrum’s maximum intensity. The definition of the formula is
given below:

y
∗

ij =
yij

max{yij|i = 1, 2, ..., nj}
(2)

where y
∗

ij and yij are the scaled and original intensities for the jth
spectrum at the ith peak, respectively, and max (yij| i = 1, 2, . . .,
nj) is the maximum intensity for the jth spectrum which contains
nj peaks.

Model Construction
After preprocessing the MS data, we adopted three machine
learning (ML) algorithms, including decision tree (DT), random
forest (RF), and support vector machine (SVM), to build up the
classification models to predict the antibiotic resistance. Further
information about the algorithms was then given in the next
paragraph. The grid search with 10-fold cross validation was
implemented on the training set for each bandwidth. When the
optimal parameters were obtained, the independent testing set
was used to evaluate the performance based on the model trained
by the whole training set.

DT is a commonly used method for building the classification
models. DT is formed in a tree-like structure which is constructed
by nodes and leaves. Each node represents a test on a feature
and each branch stands for an outcome of the test. Lastly, each
leaf represents the class resulting from all tests. The criterion
for yielding the best classification is important. Classification
and regression trees (CART) algorithm is one of the commonly
used algorithms to produce the best classification. The CART
algorithm is a greedy approach that allows each step to select an
optimal feature to get the most information gain when selecting
attributes (Breiman et al., 1984). The measurement for selecting
the optimal feature is finding the minimum impurity. In this
study, we used the Gini index as the approach for calculating the
impurity, which is the most common assessment approach. For
each selection, the sum of the Gini impurity for all branches will
be calculated, and the minimum one will be the best selection.
The function “sklearn.tree.DecisionTreeClassifier” in scikit-learn
package was used to build the DT model (Pedregosa et al., 2011).

RF is another common machine learning classifier, composed
of multiple optimized version of CARTs to build the prediction
model. RF uses bootstrap aggregating (bagging), one of the
ensemble learning methods, to make sure each tree randomly

gets training sets and attributes. As illustrated in Supplementary
Figure 3, the ensemble learning method trains multiple models
and votes the result finally, and the data used in each model
was randomly determined in reusable. The classification outcome
of RF is determined by the mode of every individual tree
output. Most of the time, compared to DT, RF performs
well when dealing with many features. Other reasons we
use RF are that the learning time is short, and it can
assess the importance of features easily. In this research, the
tool we used to build the RF classification model is the
function “sklearn.ensemble.RandomForestClassifier” in scikit-
learn package (Pedregosa et al., 2011).

Support vector machine (SVM) is another common
supervised learning classification. SVM finds a hyperplane
that can minimize the risk of misclassification. The method
used to minimize the risk is to find a decision boundary that
can maximize the boundaries between the two classes. As
shown in Supplementary Figure 4, there are two classes on
a plane. We can find many possible hyperplanes that can
separate two classes, and the algorithm for SVM is to find
the hyperplane that can “maximum” the distance (the largest
margin) between two classes. In this study, we use the function
“sklearn.linear_model.SGDClassifier” in scikit-learn package
(Pedregosa et al., 2011).

Statistical Analysis
Chi-squared test and t-test were employed in this study to
evaluate the capability of discriminating the resistance for
an individual peak based on their presence and intensities,
respectively. Specifically, the chi-squared test of independence
was mainly conducted to test the correlations between two
categorical variables. In short, the small p-values concluded that
the presence of a specific peak was correlated to the resistance. On
the other hand, t-test was used to compare the intensities between
two groups. Similarly, the small p-value would refer to that the
intensity of a specific peak was different between two groups.

Evaluation Metrics
In this study, we used accuracy (ACC), the area under the receiver
operating characteristic curve (AUC), sensitivity (SN), very major
error (VME), specificity (SP), major error (ME), and Matthew’s
correlation coefficient (MCC) as the performance measurements
for our models. The definitions of these measurements are given
below.

ACC =
TP + TN

TP + TN+FP + FN
(3)

SN =
TP

TP + FN
(4)

VME =
FN

TP + FN
(5)

SP =
TN

FP + TN
(6)

ME =
FP

FP + TN
(7)
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FIGURE 1 | Flow chart of constructing a reference spectrum template.

MCC =
TP × TN − FP × FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, (8)

where TP is true positive which means the number of antibiotic-
resistant isolates are correctly predicted by the classifier, TN is
true negative which means the number of antibiotic-sensitive
isolates are correctly predicted by the classifier, FP is false positive
which means the number of antibiotic-sensitive isolates are
wrongly predicted as antibiotic-resistant isolates by the classifier,
and TN is false negative which means the number of antibiotic-
resistant isolates are wrongly predicted as antibiotic-sensitive
isolates by the classifier. Accuracy is the rate of the difference
between the prediction results and the real results. MCC is the
measurement to measure the quality of the binary classification.
It returns a value between −1 and +1. If MCC returns +1, it
means the prediction is perfect; if MCC is 0, if MCC returns −1,
it represents the prediction is totally wrong. MCC considers the
case that the sizes of the classes are very different and gives a
balanced measurement.

In medicine, it is often determined by some thresholds
whether the prediction result is true or false, and this threshold
will affect the sensitivity and the specificity. In short, different
threshold sets will lead to different prediction results. The
distribution of the different threshold sensitivity and specificity
can be plotted as the ROC curve, and the area under the ROC
curve is called AUC. The most ideal case is AUC = 1, which is
the case that the point locates on the upper left corner of the
plot; when the AUC is 0.5, it represents a random selection of
conditions, which means random guess. Most cases are within
these two values. Through ROC and AUC, we can choose a more
robust and stable model.

Development of a Web-Based Prediction
Tool
We used hypertext markup language (HTML) and hypertext
preprocessor (PHP) with python code to implement a web-based
prediction tool in the backend upon submission of MALDI-TOF
MS data. Each MS data should start with “BEGIN IONS” and end
with “END IONS.” This web-based prediction tool could predict
one or more MS data for a submission. This web-prediction tool
would list the prediction probabilities for the submitted MS data
show the submitted MS figure with the important features.

RESULTS

MS Data Overview
Figure 2 shows the number of peaks in each spectrum according
to different antibiotics resistance. Most of spectra preserved 50–
150 peaks. Since most of the data were overlapped, there is
no significant difference between the number of peaks between
resistant and susceptible strains.

Figure 3 demonstrates the distribution of the number of
spectra that were derived from oxacillin-, clindamycin-, and
erythromycin-resistant/susceptible Staphylococcus aureus isolates
at M/Z = 2,000–20,000. Since the range of M/Z is too large to
obtain detailed information, we then further zoomed in to the
M/Z range 2,000–3,000 to find some information (Figure 4).
Peaks at M/Z = 2,360–2,500 are different between resistant
and susceptible strains for all three antibiotics. We summed all
intensities of resistant and susceptible isolates to observe the
difference between them. It was still difficult to compare the
difference between resistance and susceptibility (Supplementary
Figure 5), so we zoomed in on these figures to find the differences.
We found that it still has the difference of resistance and
susceptibility at the range from 2,360 to 2,500 M/Z for oxacillin,
clindamycin, and erythromycin (Supplementary Figure 6).
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FIGURE 2 | Distribution of number of peaks retrieved from each spectrum in (A) oxacillin-resistant, (B) oxacillin-susceptible, (C) clindamycin-resistant, (D)
clindamycin-susceptible, (E) erythromycin-resistant, and (F) erythromycin-susceptible Staphylococcus aureus.

Performance of Prediction Models
To build up a stable model, the parameters of the model are
critical, especially the bandwidth. The bandwidth of Gaussian
KDE is crucial. If the bandwidth is too large, the PDF will
be too smooth; if the bandwidth is too small, it will be too
harsh. We adopted 10-fold cross-validation models with different
“bw_method” parameters and different ML algorithms to find
the optimal bandwidth parameter. We tried the “bw_method”
parameters from larger to smaller, and we found that when
the “bw_method” parameter approaches 0.001, the accuracy
tends to be stable. Supplementary Table 3 shows the results
of 10-fold cross-validation with the optimal parameters based
on the grid search with different “bw_method” parameters of
Gaussian KDE on the training set of oxacillin, clindamycin,
and erythromycin, respectively. We could find that when
the “bw_method” parameter was set to 0.0008, the standard
deviations of oxacillin and clindamycin models were small and
retained high accuracy Similarly, E model would reach the
optimal when the bw_method is 0.001. Moreover, the highest
accuracies are all built by the RF algorithm.

We adopted the optimal parameters to construct the RF-based
models for the three antibiotics based on the whole training set.
These models were then tested by the independent testing set and
compared with those that did not use the KDE preprocessing.

When the KDE preprocessing was adopted, the accuracies
were 81.42, 82.20, and 74.63% for oxacillin, clindamycin, and
erythromycin, respectively (Table 2). Comparing to the models
that used data without KDE preprocessing, the accuracies derived
from KDE were higher (6.04, 5.78, and 6.58%) for oxacillin,
clindamycin, and erythromycin, respectively.

Forward Feature Selection
To obtain a more informative feature set, the feature importance
scores calculated by RF was determined in this study. More
specifically, we used the 70% training set to build up the
classification models and calculated the features’ importance
scores based on the RF algorithm. The features were then ranked
by their importance scores. After that, the feature was added
in the model sequentially until the accuracy of the remaining
30% training set reached a plateau. Supplementary Figure 7A
shows the trend of accuracy as the feature was added sequentially
for the oxacillin model. When the number of features is 36, the
model reaches a plateau and accuracy is 84.13%. The clindamycin
model, demonstrated in Supplementary Figure 7B, attained a
plateau at 37 features with an accuracy of 80.22%. Thirty-seven
features were used to reach a plateau for the erythromycin
model as shown in Supplementary Figure 7C. Table 3 shows
the performance of the selected features on the independent
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FIGURE 3 | Distribution of number of spectra that were derived from oxacillin- (upper), clindamycin- (middle), and erythromycin-resistant/susceptible (bottom)
Staphylococcus aureus isolates at each M/Z.

testing set. When the number of features reduced to about
40, the accuracy was still around 80%. Furthermore, 589, 600,
and 824 data were incorrectly called as sensitive for oxacillin,

clindamycin, and erythromycin models, respectively. Meanwhile,
384, 280, and 442 data were incorrectly called as resistant for
oxacillin, clindamycin, and erythromycin model, respectively.
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FIGURE 4 | Distribution of number of spectra that were derived from oxacillin- (upper), clindamycin- (middle), and erythromycin-resistant/susceptible (bottom)
Staphylococcus aureus isolates at M/Z = 2,000–3,000.

Supplementary Table 4 lists all selected features for each
model. We found most of the selected peaks were duplicated,
but some peaks were selected uniquely for a certain model.

More specifically, the peaks at 11,539, 4,526, and 3,297 M/Z
were only selected by the oxacillin model. While the peaks at
2,910, 3,045, 2,966, and 7,568 M/Z were only included by the
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TABLE 2 | Results of with or without kernel density estimation (KDE)
preprocessing on independent testing set.

Antibiotics Metrics Without KDE
preprocessing

Using KDE
preprocessing

OX SN 0.7962 0.7524

VME 0.2038 0.2476

SP 0.7149 0.8711

ME 0.2851 0.1289

ACC 0.7538 0.8142

AUC 0.7555 0.8117

CC SN 0.7282 0.6489

VME 0.2718 0.3511

SP 0.7859 0.9261

ME 0.2141 0.0739

ACC 0.7642 0.8220

AUC 0.7571 0.7875

E SN 0.7693 0.6908

VME 0.2307 0.3092

SP 0.5857 0.8055

ME 0.4143 0.1945

ACC 0.6805 0.7463

AUC 0.6775 0.7481

OX, oxacillin; CC, clindamycin; E, erythromycin; SN, sensitivity; VME, very major
error; SP, specificity; ME, major error; ACC, accuracy; AUC, area under the receiver
operating characteristic curve.

TABLE 3 | Performance of features selection on independent test set.

Model

Oxacillin Clindamycin Erythromycin

Number of features 36 38 37

Sensitivity 0.7545 0.6809 0.6811

Very major error 0.2455 0.3191 0.3189

Specificity 0.8526 0.9104 0.8174

Major error 0.1474 0.0896 0.1826

Accuracy 0.8706 0.8242 0.7471

AUC 0.8036 0.7956 0.7493

AUC, Area under the receiver operating characteristic curve.

clindamycin model after the feature selection. The erythromycin
model incorporated peaks at 6,524, 4,514, 5,004, and 2,652 M/Z,
which were not selected by other models. In addition, the peak at
6,593 M/Z ranked first for the oxacillin and erythromycin models.
But the clindamycin model ranked it at a 14th place. This implies
that the characteristics of resistance to clindamycin would be
different from oxacillin and erythromycin.

In order to further investigate the selected peaks, we used the
chi-square test for comparing two proportions of the resistant
and susceptible data. Additionally, we also employed the t-test
for comparing the intensities for these two groups. The results of
these two statistical tests are shown in Supplementary Tables 5–7
for the oxacillin model, the clindamycin model, and the
erythromycin model, respectively. In this study, the p-value
less than 0.001 was claimed as statistically significant. Most
p-values of chi-square tests for the selected peaks were shown the

significant difference between resistant and susceptible data. Yet,
some selected peaks did not indicate the statistical significance
such as peaks at 6,553, 5,526, and 3,277 M/Z for the clindamycin
model when the chi-square test was adopted (Supplementary
Table 5). While the t-test was employed to compare two
intensities, several peaks did not show the significant difference
such as the peaks at 3,008, 3,045, 2,200, 6,424, 6,890, and 2,966
M/Z for the clindamycin model and the peaks at 6,553, 2,306,
3,056, 2,287, and 7,021 M/Z for the erythromycin model.

Figure 5 and Supplementary Figures 8, 9 demonstrate
the top 9 selected peak distributions of the M/Z values
without peak alignment for three models to further investigate
the difference on oxacillin-, clindamycin-, and erythromycin-
resistant/susceptible data, respectively. These figures also indicate
that the resistant isolates have more chance to appear at some
specific peaks than the susceptible ones such as peaks at 6,593,
2,414, 2,432, and 2,456 M/Z on oxacillin data; peaks at 2,414,
2,432, 2,456, and 7,595 M/Z on clindamycin data; and peaks at
6,593, 2,413, 2,432, and 2,456 M/Z on erythromycin data.

Investigation of Multidrug Resistance
A Venn diagram was used to demonstrate the multiple antibiotics
resistance, which is shown in Supplementary Figure 10. About
41% (8,234/20,212) of isolates were resistant to three antibiotics,
and 37% (7,455/20,212) of isolates were susceptible to three
antibiotics. This implies that most of the isolates were either
resistant to three antibiotics or susceptible to them. Due to
the few numbers of only resistant to a specific antibiotic or
two antibiotics, we constructed a binary classification model to
discriminate that the isolate is resistant or susceptible to three
antibiotics simultaneously. Supplementary Table 8 shows the
amount of data for this classification. Similarly, we used 10-
fold cross validation to find the best parameters and models.
The performance is shown in Supplementary Table 9. The
best AUC obtained from the RF model had a bandwidth of
0.0006. According to the optimal parameters derived from the
training set, the performances on the independent testing set were
0.7918 (sensitivity), 0.9053 (specificity), 0.8545 (accuracy), 0.7057
(MCC), and 0.8486 (AUC).

RDMDRSA Web Interface
Based on our method, an online prediction server—MDRSA—
was developed to predict the possibility that an MS derived
from a Staphylococcus aureus isolate might be resistant to
a particular antibiotic. The best prediction models developed
for identifying the oxacillin-, clindamycin-, and erythromycin-
resistant were applied here. Screenshots of the website are shown
in Supplementary Figure 11.

DISCUSSION AND CONCLUSION

In this study, we used the MALDI-TOF MS data from Chang
Gung Memorial Hospital Linkou branch to build different
ML models to identify the resistance of the Staphylococcus
aureus, and the data from Chang Gung Memorial Hospital
Kaohsiung branch were further adopted to evaluate these models.
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FIGURE 5 | The top 9 selected peaks distributions of the M/Z values without peaks alignment for oxacillin-resistant (red)/susceptible (blue) data.

Additionally, we adopted the Gaussian KDE method to deal
with the shifting problem in MS data. Note that the bandwidth
selection was based on the mean accuracy of the 10-fold cross
validation. The accuracies of the 10-fold cross validation models
were 86.28, 85.66, and 80.93% for oxacillin, clindamycin, and
erythromycin models, respectively. Meanwhile, the accuracies
of the independent testing were attained to 81.42, 82.20, and
74.63% for oxacillin, clindamycin, and erythromycin models,
respectively. The forward feature selection was further used to
reduce the dimension of features according to the order of
importance derived from the RF. We then selected 36, 38, and
37 features for oxacillin, clindamycin, and erythromycin models,
respectively. The accuracies of the models used selected features
on the independent testing set were 80.56, 82.42, and 74.71% for
oxacillin, clindamycin, and erythromycin models, respectively.
The investigation of multiple drug resistance demonstrated
that most isolates were either resistant to three antibiotics or
susceptible to them. The accuracy of independent testing was
85.46% which was higher than the models that were used for
identifying a specific resistance.

Previous studies were mainly devoted to identifying
methicillin-resistant Staphylococcus aureus (MRSA), and
figuring out their informative peaks (Wang et al., 2013, 2020;

Josten et al., 2014; Østergaard et al., 2015; Camoez et al., 2016;
Rhoads et al., 2016; Bai et al., 2017; Sogawa et al., 2017; Kim
et al., 2019; Tang et al., 2019; Liu et al., 2021). Bai et al. (2017)
proposed a genetic algorithm with a t-test based population
seeding for wrapper feature selection on 727 Staphylococcus
aureus clinical isolates’ mass spectra derived from Vitek MS, and
their accuracy based on support vector machine classifier was
0.72. Sogawa et al. (2017) utilized support vector machine to
discriminate MRSA from methicillin-susceptible Staphylococcus
aureus (MSSA) based on features derived from MALDI-TOF
mass spectra. Their model reached prediction accuracies of over
85% and significantly reduced the time to initiation of targeted
antibiotic treatment in comparison with phenotypic resistance
profiling. Yet, they only considered 160 clinical isolates. Kim et al.
(2019) developed discrimination models based on 320 clinical
Staphylococcus aureus clinical isolates’ mass spectra and 181 new
ones were tested, and the DT had a sensitivity of 87.6%. Tang
et al. (2019) applied different supervised ML models which are
capable of distinguishing MRSA from MSSA. Even though their
prediction accuracy was over 90%, only 20 isolates were used. Liu
et al. (2021) used R to analyze 452 Staphylococcus aureus clinical
isolates’ mass spectra derived from Vitek MS, and the best area
under the receiver operating characteristic curve was 0.89 by
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support vector machine. Compared with previous studies,
our study used much clinical data and considered
three antibiotics.

The limitation for analyzing antibiotic resistance through
MALDI-TOF MS is that some antibiotic resistance-related
peptides might not be detectable through mass spectra derived
from MALDI-TOF MS when using the routine sample
preparation protocol. This would limit the prediction for the
antibiotic resistance. Yet, we incorporated data from two medical
centers which are around 330 km apart. Given the spatial
distribution of the two medical centers, we would detect the
spectral pattern that is associated with antibiotic resistance.
However, the possibility of detecting specific clones could not
be fully excluded now without molecular strain typing data.
Moreover, some factors including culture medium, bacteria
lysis condition, and matrix crystallization condition, would have
impact on the MALDI-TOF mass spectra and the subsequent
identification of antibiotic resistance. Meanwhile, bacterial
strains in different regions are quite diverse. Although it would be
unsuitable to apply our models in other regions, we proposed a
valid method to deal with the peak-shifting problem of MALDI-
TOF MS. Specifically, the local MS data needed to be collected
and our methods employed to develop the proper prediction
models. On the other hand, our MALDI-TOF MS data were
obtained from Bruker Daltonics GmbH. We did not compare
with different MS data which was derived from different systems
in the study. In addition, we did not further identify the proteins
for the informative peaks. Even so, the results did show that
the proportions of resistant were higher than the non-resistant
ones for the selected peaks. The further identification of the
informative peaks could provide a more comprehensive view
on the mechanism of antibiotic resistance and would be valuable
for the development of potential new treatments.

In this study, both accuracy and AUC for the internal (10-fold
cross validation) and external (independent testing) validation
attained 0.8. The promising results can provide more confidence
to apply these prediction models in the real world. Briefly, this
study provides a web-based tool to provide rapid predictions for
the resistance of antibiotics on Staphylococcus aureus based on

the MALDI-TOF MS data. In the future, a cross-national study
is required. Given the high diversity of microorganisms across
countries, it is not possible that the current prediction models can
be used in other areas/countries without adjustment. Training
and validating machine learning models based on locally relevant
MALDI-TOF MS data are favorable.
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