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INTRODUCTION

The transition from an aquatic to a terrestrial lifestyle has evolved multiple times, and in numerous
different phyla, in earth’s history. In many crab species, this process is still underway (Bliss and
Mantel, 1968), providing a unique opportunity to study the evolution of terrestrialization, as
well as the role of associated microbiomes during this process (Cannicci et al., 2020). Recently,
Cannicci et al. (2020) reported on the potential importance of microbiomes in the transition of
crabs, formally wholly aquatic species, to life, fully or in part, in terrestrial environments. The
authors argue that symbiotic bacteria, such as those of gill and gut microbiomes, may play a
key role in easing this transition, by helping crabs to overcome physiological and morphological
challenges associated with conquering the terrestrial environment, such as impaired respiration
and osmotic regulation, and a new, often primary plant-based low nitrogen diet. Here we focus on
the microbiomes of crab larvae and their potential role for the evolution of terrestrialization.

Crabs that are transitioning to life on land fall into two broad categories: terrestrial species that
spend their whole adult life (except for larval release) on land independent of tidal inundation or
freshwater bodies, and semi-terrestrial species that spend their adult life on land but are dependent
on tidal inundation or freshwater (Burggren and McMahon, 1988; Anger, 1995). Many marine
organisms form symbiotic relationships with microorganisms to aid life in extreme environments
(Sogin etal., 2020). In line with the hologenome theory, this suggests that host-microbe interactions
play an important role in an organism’s evolution, where the genes of both the host and
its microbes co-evolve in the collective “holobiont” (Zilber-Rosenberg and Rosenberg, 2008),
potentially allowing the colonization of formerly hostile environments (Bang et al., 2018). Microbial
symbionts, as individual species or in mixed-species assemblages, are present in many crustaceans,
such as the marine isopod Idotea balthica (diet-specific gut microbiomes, Mattila et al., 2014), the
intertidal brachyuran crab Eriocheir sinensis (gill and gut microbiomes, Zhang et al., 2016), and
the freshwater signal crayfish Pacifastacus leniusculus (intestinal bacteria, Hernandez-Pérez et al.,
2021). Given that microbial assemblages are often specific to certain organs of their hosts (Chomicki
et al., 2020), symbioses have likely evolved in support of a specific function.

The microbial assemblages associated with the guts of semi-terrestrial crabs have been proposed
to aid in the adaptation of a low nitrogen, herbivorous diet during terrestrialization (Bui and
Lee, 2015), like microbial assemblages of other aquatic invertebrates, e.g., isopods, where they
enable the digestion of cellulose (Zimmer et al., 2002; O’Connor et al., 2014). The bacteria
specifically associated with crab gills (Zhang et al., 2016, 2017) may facilitate ammonia excretion
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(Weihrauch et al., 2004), utilize gaseous CO, (Morris, 2001),
and buffer exposure to oxygen, which occurs at a concentration
30 times higher (Hsia et al., 2013) in the terrestrial compared
to the marine environment where the host organism evolved.
The microbiomes of both gut and gills could therefore provide
terrestrial and semi-terrestrial crabs (here collectively called
semi-/terrestrial) with means to cope with life in marine as well as
in terrestrial environments. Whilst the presence of microbiomes
and their role in buffering the stresses imposed on crabs by
terrestrialization is beginning to be discussed (Bui and Lee, 2015;
Cannicci et al.,, 2020), there are many unknowns. For example,
the mode of bacterial acquisition, bacterial diversity, topological
association, and the precise functions of their organ-specific
microbial assemblages are still poorly understood, both for adult
semi-/terrestrial crabs and their early life stages.

Most semi-/terrestrial crab species, like their aquatic
counterparts, have a biphasic life cycle including fully
aquatic larvae, via which they transition to semi-/terrestrial
juvenile/adult life (Anger, 1995; Hartnoll et al, 2014).
Understanding microbial colonization of the larvae would
likely provide critical insights into how these crabs have been
able to move from water to land, and whether the bacteria
themselves facilitate this transition.

LARVAE, THE VECTOR BETWEEN WATER
AND LAND, AND THEIR POTENTIAL
MICROBIOME ACQUISITION PATHWAYS

Most semi-/terrestrial crab species are broadcast spawners with
pelagic larvae that develop for 3-6 weeks in the marine
environment (Bliss and Mantel, 1968; Anger, 1995), undergoing
multiple zoeal stages and one megalopal stage, mirroring the
life history characteristics of fully aquatic crabs. In some semi-
[terrestrial species, larval development is abbreviated (Anger,
1995; Gonzélez-Gordillo et al., 2010; Vogt, 2013) and/or maternal
brood care increased. For example, the larvae of the fiddler
crab Uca subcylindrica, a species adapted to semiarid habitats,
develop inside non-permanent water bodies to megalopae
within as little as 2.5 days (Rabalais and Cameron, 1983). The
Jamaican freshwater bromeliad crab Metopaulias depressus also
undergoes abbreviated development; its larvae are released into
phytothelmes and are actively guarded by their mothers (Diesel,
1989; Diesel and Schuh, 1993). Semi-/terrestrial crabs with larvae
that (still) need to develop in the sea act as vectors at the marine-
terrestrial interface. Some species travel considerable distances
over land from their inland habitats to the coast, e.g., the inland
forest-dwelling Christmas Island crab Gecarcoidea natalis travels
up to 4km (Adamczewska and Morris, 2001) to release its
larvae into the sea. In the sea, the offspring of semi-/terrestrial
crabs are preyed upon by aquatic predators and consume
plankton to acquire biomass that is brought back to the land
when the megalopae settle and metamorphose into the benthic
juvenile stage. Hence, semi-/terrestrial crab larvae are couplers
of nutrients, and likely microbiomes, between aquatic and
terrestrial ecosystems, with each successive generation having to

make the transition from a life in water to a life on land. If, as
recently suggested (Cannicci et al., 2020), symbiotic microbiomes
facilitate the evolution from an aquatic to a terrestrial life, then
these larval stages provide a unique opportunity to explore this
transition firsthand.

Bacterial colonization of marine invertebrate larvae has
been evidenced as an essential step in their adaptation to
specific, often extreme, environments. For example, once
settled, the larvae and juveniles of the gutless giant tube
worm Riftia spp. are colonized by sulfur-oxidizing bacteria
(Nussbaumer et al., 2006). Their acquisition promotes
developmental changes in the juvenile worm, including the
growth of specific tissues for the bacteria to colonize. The
endosymbiotic bacteria within these tissues facilitate sulfur-
oxidation (Minic and Hervé, 2004), allowing the worms to
survive in hydrothermal vent ecosystems. In some species,
such as the sponge Amphimedon queenslandica, settlement
and metamorphosis to benthic juvenile stage are facilitated
by the larvae’s microbiota (Song et al., 2021). These vertically
acquired symbiotic bacteria produce arginine, the substrate
needed for nitric oxide synthesis and the signal that regulates
settlement and metamorphosis in many invertebrate species.
Bacterial colonization plays a key role in the larvae of the
intertidal barnacle Semibalanus balanoides, which are colonized
during the settlement phase of the cyprid stage. The cypris’
microbiome composition changes upon settlement, with
potential implications for growth and survival during the
barnacle’s benthic life stage (Aldred and Nelson, 2019).
In other marine crustacean species embryos and larvae
are colonized by specific symbiotic bacteria that increase
protection from pathogenic fungi and bacteria (Gil-Turnes
et al., 1989—Palaemon macrodactylus; Gil-Turnes and Fenical,
1992—Homarus americanus), and in Bryozoa bacteria reduce
larval predation risk through the production of cytotoxins
(Lopanik et al., 2004—Bugula neritina).

While microbiomes have not been found in all animal species
studied (including crustacean larvae) (Hammer et al, 2019;
Martin et al., 2020), there is evidence that when present in marine
invertebrate larvae, symbiotic relationships are often formed. It
is important to comprehend at which developmental stage these
microbes are acquired if we are to understand whether and how
these relationships aid the transition between life stages and
contribute to the evolution toward terrestrialization.

Larval microbiomes of semi-/terrestrial crabs may be
obtained horizontally from the surrounding environment, or
vertically, through their parents (Figure 1). Horizontal bacterial
transmission can occur either during the pelagic stages from
the surrounding water (Lopanik et al., 2004; Hadfield, 2021)
or upon first settlement (Nussbaumer et al., 2006; Aldred
and Nelson, 2019) e.g., at the megalopa stage. Megalopae
of many semi-/terrestrial crabs spend considerable time on
the sediment surface, ahead of their metamorphosis into
benthic juveniles (Anger, 2001; Hamasaki et al., 2015) and
settlement is often driven by specific environmental and
conspecific cues present in the sediment or the water layer
above (Diele and Simith, 2007; Simith et al., 2013), possibly
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Microbiomes may help adults to cope
with the challenges of a semi-/terrestrial

lifestyle

Horizontal transmission
of microbiomes from .\
water/sediment to
juveniles

Vertical transmission
of microbiomes from
mother to eggs

Transition to land
potentially facilitated by
microbiomes

Horizontal transmission

megalopae

model life cycle from egg, through larvae, to adult crab.

FIGURE 1 | Life cycle of a semi-terrestrial crab (here represented as a female fiddler crab; subfamily Gelasiminae, taken as a model species; adapted after Peer et al.,
2015) indicating the potential time points of vertical and horizontal acquisition of symbiotic microbiomes that may facilitate the transition from a life in water to one on
land. Green and orange arrows indicate potential vertical and horizontal transmission routes of symbiotic microorganisms, respectively. Black arrows indicate the

Horizontal transmission
of microbiomes from
water to zoeae

including substances emitted by bacterial biofilms (Simith
et al, 2017). The period that the megalopae spend on the
sediment before metamorphosing to the first juvenile crab
stage may therefore provide an ideal time for the acquisition
of bacteria from this substrate (Lim et al, 2019). Evidence
of sediment bacteria transfer has been shown in adult
fiddler crabs, Uca panacea, where the crabs’ microbiome is
populated by bacteria from their burrows (carapace microbiome)
and the sediment surface (carapace and gut microbiome)
(Cuellar-Gempeler and Leibold, 2019).

Alternatively, vertical transmission of a larva’s microbiome
is generally through the mother, either from her microbiota
or that received from the father during mating (Damiani
et al., 2008). Given the conservative broadcast spawning and
pelagic larval stages of most semi-/terrestrial crabs, vertical
transmission would have to occur through symbiont association
with adult gametes (Russell et al., 2018) or through an association
between the microbes and the females’ ovaries. Egg associated
microbiomes that act as the vertical transmission point for
symbionts (Nyholm, 2020) have been evidenced for the deep-
sea yeti crab, Kiwa puravida (Gofiredi et al., 2014), and the
hydrothermal vent shrimp, Rimicaris exoculata (Methou et al.,
2019). In semi-/terrestrial crabs, microbes that are transmitted

through the mother’s eggs would colonize their target organ
upon hatching or, if such organ has not yet developed at
this developmental stage (e.g., gills), persist internally or on
the larvae’s carapace until formed. If vertical transmission is
occurring in semi-/terrestrial crabs, it would indicate a complex
symbiotic relationship where the crabs’ entire life cycles are
intertwined with their microbiome.

Given the large number of crab species that have conquered
the land but retained pelagic larvae that develop in the
oceans, we advocate the importance of integrating the early
life history stages into future studies on microbiomes as
a paradigm for the evolution of terrestrialization in crabs.
Identifying whether, when, and under which acquisition pathway
microbiome transmission is occurring in the early life history of
species with biphasic life cycles has the potential to significantly
enhance our understanding of the contribution of animal-
microbiome interactions in the crabs’ transition from a life in
water onto land.
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