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From increasing evidence has emerged a tight link among the environment, intestine
microbiota, and host health status; moreover, the microbial interaction in different
habitats is crucial for ecosystems. However, how the environmental microbial
community assembly governs the intestinal microbiota and microbial communities of
multiple habitats contribute to the metacommunity remain elusive. Here, we designed
two delicate experiments from temporal and spatial scales in a shrimp culture pond
ecosystem (SCPE). Of the SCPE metacommunity, the microbial diversity was mainly
contributed to by the diversity of−βIntraHabitats and βInterHabitats, and water and sediment
communities had a large contribution to the shrimp intestine community as shown
by SourceTracker and Sloan neutral community model analyses. Also, phylogenetic
bin-based null model results show that microbial assembly of three habitats in
the SCPE appeared to be largely driven by stochastic processes. These results
enrich our understanding of the environment–intestinal microbiota–host health closely
linked relationship, making it possible to be the central dogma for an anthropogenic
aquaculture ecosystem. Our findings enhance the mechanistic understanding of
microbial assembly in the SCPE for further analyzing metacommunities, which has
important implications for microbial ecology and animal health.

Keywords: microbial community, assembly mechanism, metacommunity, shrimp culture pond ecosystem,
water/shrimp intestine/sediment habitat
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INTRODUCTION

The intestinal microbiome is increasingly recognized as having
a fundamental role in regulating the physiology and health of
animals and humans (Clemente et al., 2012; Le Chatelier et al.,
2013; Jie et al., 2017). Generally, both host genetics and the
environment can shape the composition of the human intestinal
microbiota (Benson et al., 2010; Spor et al., 2011; Turpin et al.,
2016), and moreover, a recent study demonstrates that the effect
of environmental factors appears to outweigh host genetics in
shaping the microbiota (Rothschild et al., 2018). Thus, a central
issue is the extent to which the intestinal microbial community is
determined by host genetics and/or the environment. Increasing
evidence has emerged that the composition of the intestine
microbiome is shaped by multiple factors and supports a close
link among the environment, intestinal microbiota, and host
health status (Rothschild et al., 2018; Sun et al., 2020), which
is similar to the central dogma of molecular biology (Crick,
1970). It has been long appreciated that microorganisms play
an indispensable role in various ecosystems and provide a wide
range of environmental services (Wall et al., 2015; Graham
et al., 2016; Fierer, 2017), including maintaining the quality of
aquatic ecosystems, as this has an impact on animal health and
disease control in addition to element cycling and water quality,
and affects the productivity and sustainability of aquaculture
(Moriarty, 1997; Assefa and Abunna, 2008; Zhou et al., 2009;
Tania et al., 2018). More importantly, microbial communities
from multiple habitats in aquaculture systems (e.g., surrounding
water, animal intestine, and sediment) are all closely related
to the occurrence of aquatic animal diseases (Zhu et al., 2016;
Hou et al., 2017, 2018; Xiong et al., 2017), challenging us to
fully understand the structure, function, and interaction in such
complex aquaculture ecosystems.

With increasing demands for animal proteins due to rising
populations, global aquaculture production has increased by
500% since the late 1980s (Food and Agriculture Organization,
2016). Aquaculture has become the third largest source of animal
proteins, accounting for 17% of global protein consumption, and
the annual output of aquaculture products in China is more
than 60% of the world’s (Food and Agriculture Organization,
2018). Unfortunately, the frequent occurrence of diseases has
threatened the aquaculture industry. Shrimp (mainly Litopenaeus
vannamei and others) are among the most important aquatic
products among fishery trading commodities worldwide (Zhang
et al., 2019). Recently, bacterial diseases, such as white feces
syndrome, early mortality syndrome, acute hepatopancreatic
necrosis disease, and hepatopancreas necrosis syndrome, have
reduced the global production of shrimp by an estimated 23%,
leading to a loss of billions of dollars annually (Sriurairatana et al.,
2014; Lee et al., 2015; Huang et al., 2016, 2020). The contribution
of dysbiosis in intestinal microbiota to human and animal
diseases is recognized (Jie et al., 2017; Zhang et al., 2018; Huang
et al., 2020). As a unique anthropogenic aquaculture ecosystem,
the shrimp culture pond ecosystem (SCPE) is disturbed by
artificial manipulation and management and is composed of
many biotic and abiotic factors in multiple habitats (e.g., water,
shrimp intestine, sediment, and so on), especially with aquatic

animals living in the ecosystem, forming a metacommunity,
which is different from other natural and engineered ecosystems
(Huang et al., 2016; Hou et al., 2018). Therefore, it is necessary to
understand the microbial ecology of the SCPE metacommunity
for sustainable outputs of aquaculture products.

Microbial communities in aquaculture ecosystems, as in
many types of habitats (Rungrassamee et al., 2014; Fan
et al., 2016; Hou et al., 2018), are highly diverse and vary
concurrently with various environmental and geographic factors
(e.g., host developmental stages, environmental factors, and
geographical distance) (Yan et al., 2016; Hou et al., 2017; Li
et al., 2017; Zeng et al., 2017). Despite recent advances in
understanding the microbial ecology of aquaculture ecosystems,
their microbial assembly mechanisms remain unclear. In general,
the mechanisms shaping the microbial diversity among species
are considered to be ecological processes (Hanson et al., 2012).
Recently, our knowledge about ecological processes in shaping
the microbial community has been enriched substantially (Zhou
and Ning, 2017; Ning et al., 2019, 2020). For some aquatic
ecosystems (e.g., lakes), deterministic processes play a primary
role in shaping the water or sediment microbial community
structure (Wang et al., 2013; Yan et al., 2017). Stochastic
processes play a dominant role in the assemblage of microbial
communities in aquatic animal intestines (Burns et al., 2016).
More importantly, in aquatic ecosystems, microbial communities
of water, animal intestine, sediment habitats, and other associated
habitats constitute a metacommunity (Al-Harbi and Uddin, 2005;
Leibold et al., 2014; Del’Duca et al., 2015; Cleary et al., 2019),
and although still poorly understood, the interaction among these
communities is important for aquatic animal productivity and
health (Schryver and Vadstein, 2014). In particular, it is essential
to understand the interaction among microbial communities
of animal intestine and surrounding environments for healthy
aquaculture. However, how microbial communities of multiple
habitats (water, animal intestine, and sediment) in aquaculture
ecosystems contribute to the metacommunity and the ecological
interplay between environmental communities and intestinal
microbiota is poorly understood.

In this study, we aimed to understand microbial assembly
mechanisms for a metacommunity of three habitats (water,
shrimp intestine, and sediment) in SCPE with three ecological
questions: (i) What ecological processes shape the microbial
community structures in the three habitats? (ii) What is
the contribution of communities from each habitat to the
SCPE metacommunity? (iii) Is the shrimp intestinal microbiota
shaped by environmental microbial communities? To address
these questions, we hypothesized that (H1) the communities
of three habitats have important contributions to the SCPE
microbial metacommunity and (H2) environmental microbial
communities have a decisive role in shaping the shrimp
intestinal microbiota.

To address these hypotheses, we analyzed microbial
communities from the three habitats (water, shrimp intestine,
and sediment) in SCPE across six regions in China, tracked the
dynamics of microbial communities of six development stages in
the entire cycle of shrimp culture, and explored their assembly
mechanisms by sequencing of 16S rRNA gene amplicons and
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metacommunity analysis. This study provides new insights
into our understanding of microbial assembly mechanisms
in the SCPE, and the developed framework will facilitate
metacommunity analysis, significantly advancing microbial
ecology of aquaculture ecosystems and animal health.

MATERIALS AND METHODS

Experimental Design and Sample
Collection in Shrimp Culture Pond
Ecosystem
Samples were collected from 88 L. vannamei cultural ponds in
six regions, i.e., Dianbai and Yangjiang (DB + YJ), Zhuhai and
Zhongshan (ZH + ZS), Hainan (HN), Qinzhou (QZ), Zhangpu
(ZP), and Tianjing (TJ) (19.20◦–39.29◦N, 108.56◦–117.93◦E) in
China over the period of June to October, 2017. Geographical
distances between sites ranged from 0.31 to 2063.35 km. The
sampled ponds had similar size (∼3300 m2), water depth
(∼1.2 m), shrimp development stage (50–60 days), and stocking
density (100,000–200,000 shrimps each pond) (Supplementary
Table 1). Site locations were recorded by global positioning
system (GPS) (Garmin Vista HCx, United States).

Each water sample (0.5 L) was taken from a depth of 0.5 m
below the surface using a sterile bottle, and samples were
immediately placed on ice before filtration through a 0.22-
µm polyethersulfone membrane (Supor-200, Pall Corporation,
Washington, NY, United States) using a vacuum pump (Hou
et al., 2017). The surface of shrimp was sterilized with 70%
ethanol, and then intact intestine was aseptically dissected from
the musculature and placed into a 15-mL sterile centrifuge
tube containing 10 mL PBS buffer (Zeng et al., 2017). Each
1.0-g sediment sample was placed into a 15-mL centrifuge
tube and washed with 10 mL PBS buffer three times. Three
water/shrimp intestine/sediment samples were collected in each
pond. All samples were stored at −80◦C until DNA extraction
(Hou et al., 2018).

Water temperature, pH, dissolved oxygen (DO), and salinity
were measured on-site using a YSI handheld multiparameter
instrument (Model YSI 380, YSI Incorporated, United States).
Sediment pH was measured on-site using a soil pH meter (ZD-
05, Beijing Century Euron Co., Ltd., China). The total nitrogen
(TN), total phosphorus (TP), dissolved inorganic nitrogen
[ammonia nitrogen (NH4

+-N), nitrite nitrogen (NO2
−-N) and

nitrate nitrogen (NO3
−-N)], and orthophosphate (PO4

3−-P)
of water samples and TN and TP of sediment samples were
measured using an auto discrete analyzer (Model CleverChem
380, DeChem-Tech, Germany). The total carbon (TC) and total
organic carbon (TOC) of water and sediment samples were
measured using a TOC analyzer (Aurora 1030W, OI Analytical,
United States). All physicochemical variables of water and
sediment samples are described in Supplementary Tables 2, 3.

To further verify the contribution of microbial communities of
multiple habitats to the SCPE metacommunity, we conducted the
experiment to explore the temporal dynamics of environmental
water and sediment microbiota and intestinal microbiota along

L. vannamei development. For the delicate experiment, we
selected nine shrimp culture ponds in the study area, which was
located at Lianxi shrimp farm of Guangdong Haida Group Co.,
in Zhuhai, China (22.37◦N, 113.22◦E). Each pond had similar
size (∼3300 m2), water depth (∼1.2 m), and stocking density
(∼100,000 shrimp) with strict and uniform culture management.
Sampling was carried out at 0, 10, 20, 30, 40, and 50 days
post-larval shrimp inoculation (DPI) (named day 0, day 10, day
20, day 30, day 40, and day 50 groups, respectively) during
shrimp culture development stage (Supplementary Table 4).
Water, shrimp intestine, and sediment samples of each pond were
processed and collected accordingly in the same way as those
in the six areas mentioned above. The physicochemical factors
were also measured with analyzers (Supplementary Tables 5, 6).
In total, 162 samples were collected and stored at −80◦C prior
to DNA extraction.

DNA Extraction, Polymerase Chain
Reaction (PCR) Amplification, and 16S
rRNA Gene Amplicon Sequencing
Genomic DNA from water, shrimp intestine, and sediment
samples were extracted using the Water DNA Isolation
Kit (Omega Bio-Tek, Doraville, GA, United States),
PowerFecal DNA Isolation Kit (Mobio, Carlsbad, CA,
United States), and PowerSoil DNA Isolation Kit (MO
BIO, Carlsbad, CA, United States), respectively. The 338F
and 806R (5′-ACTCCTACGGGAGGCA GCAG-3′ and 5′-
GGACTACHVGGGTWTCTAAT-3′) universal primer pair
was used to amplify the V3–V4 regions of the bacterial 16S
rRNA gene. The PCR products from the samples were equally
combined and then sequenced using the Illumina MiSeq platform
(Illumina, San Diego, CA, United States) by Majorbio Bio-Pharm
Technology Co., Ltd. (Shanghai, China). Raw sequencing data
were deposited in the NCBI Short Read Archive, BioProjectID
PRJNA545396 and PRJNA689351.

Paired-end sequences were merged using FLASH (V1.2.11)
(Magočm and Salzberg, 2011), and merged sequences were
processed following the Quantitative Insights Into Microbial
Ecology pipeline (QIIME, version 1.9.0) (Caporaso et al., 2010).
In brief, the sequences with ambiguous bases or truncated at
any site of more than three consecutive bases receiving a Phred
quality score (Q) <20 were removed. Chimeric sequences were
discarded using the UCHIME algorithm (Edgar et al., 2011).
Sequences with a distance-based identity of 97% or greater
were grouped into operational taxonomic units (OTUs) using
UCLUST (Edgar, 2010). The most abundant sequence from each
OTU was selected as representative and then was taxonomically
assigned against the Silva SSU database 128 using the RDP
Classifier algorithm, which enables each identified OTU to have
a close relative. To correct for uneven sequencing efforts, the
OTU table for bacteria was 10× randomly rarefied to a subset
of 14,435 sequences per sample in subsequent analyses. The core
OTU was defined based on multiple reported measures: OTU
with an occurrence frequency in more than 90% of all samples
(Ugland and Gray, 1982; Ainsworth et al., 2015). Following the
same criteria as described above, core OTUs in each habitat
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were identified from water, shrimp intestine, and sediment
samples in the SCPE.

Relationships Among Water, Shrimp
Intestine, and Sediment Microbial
Communities in the Shrimp Culture Pond
Ecosystem
The relationship between microbial communities (habitat,
location, development stage) was analyzed using Venn analysis
based on the detected OTUs (Edwards et al., 2014). For
location and development stage, an additive partitioning
framework was applied to separate out the total microbial
diversity at the ecosystem level (7Ecosystem) into smaller scale
contributions from habitats to local communities (Escalas
et al., 2013). More precisely, total ecosystem microbial
diversity was expressed as the sum of the inter-habitat
difference in the community diversity, the mean intra-
habitat difference, and mean local community diversity
with 7Ecosystem = βInterHabitats + β̄IntraHabitats + ᾱLocalCommunities.
The ecosystem level (7Ecosystem) may arise from a high microbial
dissimilarity among ponds (βInterHabitats), a high dissimilarity
among communities within each pond (β̄IntraHabitats), or from
a high diversity within each local community (ᾱLocalCommunities;
i.e., each water, shrimp intestine, and sediment sample). To
further evaluate the relationships among microbial communities,
the different sources were used to estimate their contributions
to microbial community composition of the SCPE using
SourceTracker based on a Bayesian algorithm (Knights et al.,
2011), which was run through QIIME with default settings and
with one habitat as the sink and the other two habitats as sources.
The Sloan neutral community model (Sloan et al., 2006) was
used to analyze the OTUs that were shared between the shrimp
intestine and surrounding water and/or sediment, in which the
microbial community in water and sediment was the source of
intestinal microbiota. This model predicts that the probability
of detecting an OTU in shrimp intestine due to dispersal is
directly proportional to its abundance in the corresponding
water and/or sediment community. OTUs were sorted into three
categories depending on whether they occur more frequently
(overrepresented), less frequently (underrepresented), or within
(neutrally distributed) the 95% confidence interval of the neutral
model predictions.

Estimation of Ecological Processes and
Microbial Ecological Succession in
Shrimp Culture Pond Ecosystem
We used the inferred community assembly mechanisms by a
phylogenetic bin-based null model (iCAMP) (Ning et al., 2020)
to evaluate the contribution of ecological processes on microbial
assembly of the three habitats in the SCPE based on location and
development stage. First, the observed taxa were divided into
24 “bins” based on their phylogenetic relationships. Then, the
process governing each bin was identified based on null model
analysis of phylogenetic diversity using a beta net relatedness
index (βNRI) and taxonomic β-diversities using modified Raup-
Crick metric (RC). For each bin, the fraction of pairwise

comparisons with βNRI <−1.96 and >+1.96 were considered
as the percentages of homogeneous and heterogeneous selection,
respectively. Next, RC is used to partition the remaining pairwise
comparisons with | βNRI| ≤ 1.96: The fraction of pairwise
comparisons with RC <−0.95 and >+0.95 are treated as the
percentages of homogenizing dispersal and dispersal limitation,
and remains with | βNRI| ≤ 1.96 and | RC| ≤ 0.95 represent the
percentages of drift. The above analysis was repeated for every
bin, and then the fractions of individual processes across all bins
were further weighted by the relative abundance of each bin and
summarized to estimate the relative importance of individual
processes at the whole community level.

Statistical Analysis
A ternary plot was applied to reveal the distribution of the
dominant genera (>0.1%) among water, shrimp intestine, and
sediment habitats using the package “ggtern” in R 3.3.2 (R Core
Team, 2015). Welch’s t-test was used to compare the microbial
diversity indices among water, shrimp intestine, and sediment
habitats by location and development stage. The non-metric
multidimensional scaling (NMDS) and analysis of similarity
(ANOSIM) were performed to evaluate the overall differences in
microbial communities of water, shrimp intestine, and sediment
habitats using the Bray–Curtis distance (Li et al., 2017). Then,
the differentially abundant taxa among three habitats were
identified using one-way analysis of variance (one-way ANOVA)
(Cleary et al., 2019). Moreover, we employed molecular ecology
network analysis (Deng et al., 2012) to evaluate the extent of
microbial interspecies interactions of water, shrimp intestine, and
sediment habitats, respectively, across six regions or six culture
development stages. To quantify the interspecies interactions,
a set of topological properties were calculated, including the
average path length, clustering coefficient, and co-occurrences
(Mej, 2003), and the resulting network was visualized via
Cytoscape 3.6.1.1 The structure equation model (SEM) analysis
(Bagozzi and Yi, 2012) was used to illustrate the interplay rearing
water sediment and shrimp intestinal microbial communities
and implement the effect of water and sediment environmental
factors on their microbial communities.

RESULTS

Microbial Community Diversity of the
Three Habitats in the Shrimp Culture
Pond Ecosystem Across the Country
To understand the microbial diversity in the SCPE, we conducted
a large-scale sampling and took water, shrimp intestine, and
sediment samples in 88 shrimp cultural ponds in six regions
(Figure 1A). We extracted DNA from all 264 samples and
sequenced their 16S rRNA gene amplicons. A total of 3,810,840
high-quality sequences were obtained from all samples. The
sequences clustered into 7656 OTUs with the highest number
(i.e., 7389) in the sediment (Supplementary Table 7). This was

1https://cytoscape.org/
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FIGURE 1 | Sampling sites and the α- and β-diversity of microbial communities from three habitats. (A) A total of 264 water, shrimp intestine, and sediment samples
(88 samples in each habitat) were collected from 88 cultural ponds in six regions in China. DB + YJ, ZH + ZS, HN, QZ, ZP, and TJ indicate Dianbai + Yangjiang,
Zhuhai + Zhongshan, Hainan, Qingzhou, Zhangpu, and Tianjin. (B) The α-diversity of microbial communities among water, shrimp intestine, and sediment habitats in
the SCPE of six regions. Statistical significance of the α-diversity indices among three habitats were based on the Welch’s t-test (∗∗: P < 0.01). (C) The β-diversity of
microbial communities of three habitats analyzed by NMDS and ANOSIM based on the Bray–Curtis distance.

enough to capture a majority of the microbial communities in
all samples with a coverage index of 0.96–0.99 (Supplementary
Table 7). The Shannon index significantly (P < 0.001) differed
among those three habitats with the highest in the sediment
(6.28 ± 0.28), followed by water (4.37 ± 0.50) and then shrimp
intestine (3.39± 0.99) habitats. The Chao1 index showed similar
results (Figure 1B and Supplementary Table 7). To further
evaluate the overall differences among three habitats, NMDS
analysis showed that microbial communities clustered based on
habitat, and ANOSIM analysis further revealed that the microbial
structures differed significantly (r = 0.828, P < 0.001) between
any two of the habitats (Figure 1C).

Core Microbial Operational Taxonomic
Units in Each Habitat of the Shrimp
Culture Pond Ecosystem at Six Regions
Across the Country
We next examined the occurrence of taxa in each SCPE to
determine if the core microbial taxa existed in each habitat.
We defined the core taxa as those taxa that occurred in ≥90%
of water, shrimp intestine, and sediment samples, respectively.
The results showed that about 0.6% (28 of 5078 OTUs), 0.6%
(23 of 3919 OTUs), and 0.4% (30 of 7389 OTUs) of the OTUs
constituted core taxa in the water, shrimp intestine, and sediment
habitats, respectively. This accounted for 33.1, 48.1, and 7.7%
of all sequences obtained (Supplementary Table 8). The core
OTUs in the water belonged to the phyla Cyanobacteria (19.7%),
Actinobacteria (7.4%), Proteobacteria (1.2%), Verrucomicrobia
(0.8%), and Bacteroidetes (4.1%); in the shrimp intestines to
Proteobacteria (36.6%), Cyanobacteria (3.6%), Actinobacteria
(0.4%), Tenericutes (7.0%), and Verrucomicrobia (0.5%); and
in the sediments to Proteobacteria (2.9%), Bacteroidetes (3.2%),
Actinobacteria (0.8%), Cyanobacteria (0.6%), Chloroflexi (0.2%),
and Deinococcus Thermus (0.1%) (Supplementary Table 8).
Although there were some overlaps of phyla in the different
core communities, overall, the core communities from each

habitat were distinct, suggesting that each habitat would
select their core taxa. Twenty-three core OTUs from the
shrimp intestine were also present in the water and/or
sediment habitats (Supplementary Table 8), suggesting possible
sources (e.g., environmental water and sediment) of shrimp
intestinal microbial communities. Additionally, several known
opportunistic pathogens in aquatic ecosystems, Photobacterium
OTU3557, Vibrio OTU1384, Vibrio OTU1482, Vibrio OTU2357,
Vibrio OTU2482, and Candidatus Bacilloplasma OTU1192,
were members of the shrimp intestine core community
(Supplementary Table 8).

Comparison of the Microbial
Composition of Three Habitats in the
Shrimp Culture Pond Ecosystem in Six
Regions
To understand the microbial composition of the water, sediment,
and shrimp intestine in SCPEs in six regions, we compared the
OTUs present in each using Venn analysis. The results show
that many OTUs were commonly present in all three habitats,
and the number of OTUs was found to be in any two habitats
of each regional site (Figure 2). For example, at the DB + YJ
site, 1270 OTUs were present in all three habitats, and some
OTUs were found to be in any two habitats: 1439 (intestine,
56.5%) or 3015 (sediment, 83.0%) out of 2548 water OTUs;
1439 (water, 62.0%) or 1886 (sediment, 81.2%) out of 2320
intestinal OTUs; 1886 (intestine, 35.3%) or 3015 (water, 39.6%)
out of 5336 sediment OTUs (Figures 2A,G). Most OTUs detected
at each site were present in the sediment habitat, and a high
percentage (∼80%) of those were also present in the shrimp
intestine and water habitats. Similar trends were observed in each
pond (Supplementary Figure 1).

Further comparison showed that most of the detected
phyla and genera were always present in at least one
of the three habitats but that their relative abundances
significantly (P < 0.001) differed (Supplementary Figures 2, 3
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FIGURE 2 | Venn analysis of microbial composition in water, shrimp intestine, and sediment habitats based on detected OTUs of six regions. (A–F) The numbers of
OTUs in each habitat and shared in any two or three habitats. (G) The percentage of OTUs shared in any two habitats.

Supplementary Tables 9–11). Specifically, some opportunistic
pathogens, such as Vibrio, Photobacterium, and Candidatus
Bacilloplasma, were detected in all the three habitats,
but the relative abundance in the shrimp intestine was
significantly (P < 0.001) higher than in the other two habitats
(Supplementary Figure 3). Additionally, we compared microbial
co-association networks of the three habitats. The average degree
indices of the water, shrimp intestine, and sediment microbial
communities were 14.55, 14.94, and 11.25, and the average
clustering coefficient index values were 0.57, 0.51, and 0.71 with
an average path distance of 1.87, 1.89, and 2.02, respectively
(Supplementary Figure 4 and Supplementary Table 12). These
results reveal that the microbial network in shrimp intestine
is more complex and better connected than in the water and
sediment habitats.

We were able to identify several keystone species in
these habitats. Keystone species were those with the largest
number of connections. OTU4327 and OTU16092, each with

37 connections, were classified as the keystone species with
the highest degree nodes and numerous neighbors in the
water habitat; OTU9882 in the shrimp intestine had 50
connections; and OTU16554 in the sediment had 79 connections
(Supplementary Figure 4 and Supplementary Table 13).

Microbial Communities of Environmental
Water and Sediment Mainly Contribute
to Shrimp Intestinal Microbiota in the
Shrimp Culture Pond Ecosystem
Metacommunity in Six Regions
To evaluate the contribution of each of the three habitats (water,
sediment, and shrimp intestine) to the regional diversity of
the SCPE metacommunity, we used additive partitioning of
diversity from local to regional scales. We examined whether the
microbial diversity observed at the ecosystem level (7Ecosystem)
was primarily due to a high microbial dissimilarity among
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ponds (βInterHabitats), a high dissimilarity among communities
within each pond (β̄IntraHabitats), or from a high microbial
diversity within each local community (ᾱLocalCommunities, i.e.,
water, shrimp intestine, or sediment sample). The results show
that the contribution of ᾱLocalCommunities to the metacommunity
diversity (7Ecosystem) was 28.0% ± 5.1%, inferior to βInterHabitats
(33.1% ± 10.0%) and β̄IntraHabitats (38.9% ± 9.1%) in their
contributions to 7Ecosystem (Figure 3A). The results reveal that
β̄IntraHabitats and βInterHabitats were important for generating the
microbial diversity in the SCPE.

To test if the microbial communities of environmental water
and sediment have a decisive role in shrimp intestinal microbiota,
we evaluated the contribution of different source communities to
the three habitats in the SCPE in six regions by SourceTracker.
For shrimp intestinal communities, the most dominant potential
source was sediment (an average of 27.8%), followed by water
(15.2%); for water communities, the most dominant potential
source was also sediment (40.6%), followed by shrimp intestine
(22.3%) (Figure 3B). For sediment communities, water or shrimp
intestine only contributed about 10% each (Figure 3B). These
results indicate that the microbial communities of each habitat in
the SCPE could be a source for the other two. Although sediment
appeared to be the most important source for both water and
shrimp intestinal communities, more importantly, both water
and sediment microbial communities contributed to the shrimp
intestinal microbiota in the SCPE. The contribution of water and
sediment communities to the shrimp intestinal microbiota was
corroborated by the results of SEM analysis (Figure 3C).

The Sloan neutral community model was further applied
to analyze the shared OTUs between the environmental
water/or sediment and shrimp intestine samples. That is, neutral
distribution (black points) accounted for 38.2% ± 8.5% in
water and/or sediment microbial communities of six regions,
and the proportions of overrepresented (red points) and
underrepresented (green points) OTUs were 35.8% ± 9.6% and
11.0% ± 1.1%, respectively (Figure 3D). Thus, the proportion of
shared and neutrally distributed OTUs between shrimp intestine
and water and/or sediment was relatively high, suggesting that
a significant proportion of microbial communities of shrimp
intestine tended to colonize from surrounding environments.

Ecological Processes Governing the
Microbial Assembly of the Three Shrimp
Culture Pond Ecosystem Habitats in Six
Regions
To understand the microbial assembly mechanisms at play in
the three SCPE habitats in six regions, we quantified the relative
contribution of major ecological processes that structure the
microbiota using iCAMP. The results show that most of the
microbial variation was controlled by dispersal limitation (35–
40%) and drift (30–40%) (Figure 4). Thus, stochastic factors
appear to be more important in influencing the microbial
assembly of the three SCPE habitats at a regional scale. Also,
homogeneous selection contributed 20–25% of the microbial
variation (Figure 4). Additionally, we also used SEM analysis to
reveal the effect of environmental drivers on water and sediment

microbiota and found that water (r = 0.406, P < 0.001) and
sediment properties (r = 0.579, P < 0.001) significantly affected
their microbial community structure (Supplementary Figure 5).

Environmental Water and Sediment
Microbiota Contributed to Community
Succession of the Shrimp Intestinal
Microbiota in the Shrimp Culture Pond
Ecosystem Across Different Shrimp
Culture Developmental Stages
In the experiment to further verify the contribution of the
environmental water and sediment microbial communities to
shrimp intestinal microbiota, we analyzed the dynamics of
microbial communities from three habitats across six cultural
developmental stages: day 0, day 10, day 20, day 30, day 40,
and day 50 with similar ecological features being present at each
of the six regional sites (Figure 5A). Microbial diversity (based
on OTU number, Shannon index, and Chao 1 index) was the
highest in the sediment, followed by water and shrimp intestine
for all SCPEs examined and at each of the six developmental
stages (Supplementary Table 14 and Supplementary Figure 6A).
Both NMDS and ANOSIM analyses showed that the microbial
community structure significantly (P < 0.001) differed between
any two of compared habitats at each culture developmental
stage (Supplementary Figure 6B). Similar to the results of the
six regions, most OTUs were present in the sediment habitat,
and a high percentage (∼80%) of OTUs in the shrimp intestine
and water habitats were shared with the sediment habitat at six
cultural development stages (Supplementary Figure 7). Similar
trends in microbial compositions of the three habitats at each
of the six cultural development stages were observed in each
pond (Supplementary Figure 8). We also compared microbial
co-association networks of the three habitats at each of the
six cultural development stages. The microbial networks in
the sediment and shrimp intestines were more complex and
better connected than that in the water habitat, and OTU31337,
OTU433, and OTU13771 were the keystone species in the
water, shrimp intestine, and sediment habitats, respectively
(Supplementary Figure 9 and Supplementary Tables 15, 16).

Consistent with the results of the six regions, SourceTracker
analysis also indicates that, at each cultural development stage,
any of the habitat microbial communities could be a source for
the other two communities. The most dominant potential source
for the water microbial communities was from shrimp intestine
and sediment, but for the sediment microbial communities,
only ∼12% was attributable to the water and shrimp intestine
(Figure 5B). Whereas for the shrimp intestinal microbial
communities, water and sediment microbiota were the dominant
potential sources, accounting for up to 69.9–84.7% (days
10–50) (Figure 5B), suggesting that environmental microbial
communities were important sources for the establishment of
the shrimp intestinal microbiota. On days 10 and 50, sediment
represented almost half of the potential source for shrimp
intestinal microbiota although on days 20, 30, and 40, water
was the dominant source (Figure 5B). These results were further
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FIGURE 3 | The contribution of microbial communities in water, shrimp intestine, and sediment habitats to the SCPE metacommunity of six regions. (A) Multiscale
hierarchical partitioning of microbial diversity. (B) SourceTracker analysis of contributions of water, shrimp intestine, and sediment source communities to each
other’s communities. (C) The SEM shows environmental community drivers of shrimp intestinal microbiota in the SCPE. The directed graph of SEM, and the
goodness-of-fit (GoF) statistic value was 0.626. Each box represents an observed variable or latent variable. Path coefficients are reflected in the width of the arrow
with solid and dashed arrows indicating significantly positive and negative effects, respectively. ∗∗∗: P < 0.001, ∗∗: P < 0.01. (D) The Sloan neutral model applied to
shrimp intestine communities with their corresponding surrounding water and/or sediment communities as the sources. Stacked bar chart depicts the relative
abundance of sequences in the neutrally distributed (black), overrepresented (red), and underrepresented (green) OTUs in shrimp intestine.

supported by results of the SEM and Sloan neutral community
model analyses (Figures 5C,D).

Additionally, during the six cultural development stages in the
SCPE, stochastic factors were the dominant microbial assembly
mechanism for all three habitats (Figure 5E and Supplementary
Figures 10A,B), specifically dispersal limitation (20–30%), drift

(30–55%), and homogeneous selection (20–30%). SEM analysis
shows that water (r = 0.370, P < 0.001) and sediment properties
(r = 0.641, P < 0.001) significantly affect the associated microbial
structure (Supplementary Figures 10C,D). More importantly,
combined with the results of SourceTracker, SEM, and Sloan
neutral community model analyses, these results indicate that
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FIGURE 4 | The contribution of ecological processes on the microbial assembly of water, shrimp intestine, and sediment habitats of six regions.

environmental microbial communities had a large contribution
to the succession of shrimp intestinal microbiota in the SCPE
metacommunity, which may be due to the relatively highly
stochastic processes involved in the microbial assembly of the
shrimp intestine.

DISCUSSION

The intimate link among environment, the intestinal microbiota,
and host health status is highly concerned with human and
animal health (Wall et al., 2015). The microbial communities
from the multiple habitats within an aquatic ecosystem constitute
the aquatic metacommunity, but how environmental microbial
communities shape the shrimp intestinal microbiota has not been
well studied. In this study, we considered microbial communities
of multiple habitats as the metacommunity in aquatic ecosystems
and analyzed the microbial assembly of water, shrimp intestine,
and sediment habitats. Our results show that core microbial
taxa were in each habitat and the SCPE metacommunity
(H1) and that environmental water and sediment communities
dominated the shrimp intestinal microecosystem; moreover,
microbial assembly of three habitats in the SCPE appeared to
be largely driven by stochastic processes (H2), which generally
supports our hypothesis.

Core microbial taxa provide information on putatively
important microorganisms for ecosystem functioning (Saunders
et al., 2016). Previous studies identify several bacterial OTUs
as core taxa in soil (9), human feces (6), air (2), fresh water

(1), and wastewater treatment plants (2) (Wu et al., 2019),
suggesting that various ecosystems may have different core
populations, possibly due to the number of samples used or the
high dissimilarity of the environments examined. In this study,
the core microbial OTUs were distinct in each habitat. There was
an overlap of 23 core OTUs from shrimp intestine that were also
present in the water and/or sediment habitats, which is generally
consistent with previous studies. For example, the surrounding
environments are shown to be a source of microbial species
colonizing aquatic animal intestine and vice versa (Cahill, 2004;
Sullam et al., 2012). Another study suggests that the microbes
colonizing shrimp intestines are selected from the surrounding
environments to improve host fitness (Xiong et al., 2018). It
is noteworthy that some core taxa detected in this study are
derived from some known shrimp opportunistic pathogens,
including Photobacterium OTU3557, Vibrio OTU1384, Vibrio
OTU1482, Vibrio OTU2357, Vibrio OTU2482, and Candidatus
Bacilloplasma OTU1192. An increased abundance of these
species in shrimp intestines is generally associated with disease
outbreaks (Xiong et al., 2017, 2018; Hou et al., 2018). Moreover,
the core taxa of water and sediment habitats in the SCPE may
associate with their known biological functions. For example,
several core OTUs belonged to Rhodobacter, and some oxygenic
photosynthetic microbes are known to enhance carbon cycling
and energy capture from sunlight in aquatic ecosystems (Chang
et al., 1991). A Truepera OTU (OTU15485) was identified
as a core taxon in an aquatic sediment habitat, reflecting
the importance of this species in organic matter degradation
in aquatic ecosystems (Albuquerque et al., 2005). Thus, core
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FIGURE 5 | Environmental water and sediment microbiota contributed to community succession of the shrimp intestinal microbiota in the SCPE during shrimp
developmental stages. (A) Nine shrimp culture ponds were selected in the study area, which was located at Zhuhai in China. Water, shrimp intestine, and sediment
samples with nine samples each for each time at six developmental stages: day 0, day 10, day 20, day 30, day 40, and day 50 post-larval shrimp inoculation.
Microbial communities of the surrounding water and sediment mainly contributed to shrimp intestinal microbiota in different culture stages. (B) SourceTracker
analysis of the contribution of water, shrimp intestine, and sediment source communities to each other’s communities. (C) The SEM shows environmental microbial
community drivers of shrimp intestinal microbiota in the SCPE. The directed graph of SEM and the GoF statistic value was 0.370. Each box represents an observed
or latent variable. Path coefficients are reflected in the width of the arrow with dashed arrows as significantly negative effects. ∗∗: P < 0.01, ns: no significance.
(D) The Sloan neutral model was applied to shrimp intestine communities with their corresponding surrounding water and/or sediment communities as the sources.
Stacked bar chart depicts the relative abundance of sequences in the neutrally distributed (black), overrepresented (red), and underrepresented (green) OTUs in
shrimp intestine. (E) The contribution of ecological processes to the microbial assembly of shrimp intestine habitat.
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FIGURE 6 | A schematic presentation of microbial assembly mechanisms and relationships among microbial communities of water, shrimp intestine, and sediment
habitats in the SCPE metacommunity.

microbial taxa were among the three habitats across the SCPE or
in each habitat, indicating such core taxa in shrimp intestine may
play key roles for shrimp and environment health in the SCPE.

Generally, multiple habitats constitute a metacommunity for
the overall microbial diversity in aquatic ecosystems (Zeng
et al., 2017), surrounding environments are the main sources
of microbes colonizing aquatic animal intestines, and the host
animal drives, in a large part, the selection of microorganisms
(Bolnick et al., 2014). Theoretically, aquatic animals are
microorganism-free at birth, so postnatally acquired intestinal
microorganisms should immigrate from their surroundings (Yan
et al., 2016). As all activities carried out by aquatic animals
(e.g., feeding and defecation) take place in the surrounding
water or/and sediment habitats, interactions between a host and
its environment are more direct than with terrestrial animals
and their environments; thus, the assembly of aquatic animal
intestinal microbial communities is directly influenced by the
microbes present in the surrounding environment (Bolnick et al.,
2014). Consistently, Cahill considers that the bacteria present
in aquatic environments influence the composition of animal
intestinal microbial communities (Cahill, 2004). Sullam et al.
(2012) found that fish could acquire intestinal bacteria through
water cyclic transmission by which hosts obtained their bacterial
communities from their environments. Our results reveal that

microbial communities from the water, shrimp intestine, and
sediment habitats in the SCPE had close relationships as
these three habitats are connected to each other by various
biological and ecological processes, including nutrient sharing,
dispersal, and microbial interactions (Hubbell, 2001; Schryver
and Vadstein, 2014; Adair and Douglas, 2017). For instance,
dispersion is a key factor influencing the metacommunity and
its associated community structure (Fodelianakis et al., 2019).
In this study, we observed a high percentage of dispersion from
sediment to the other two habitats in the SCPE. Compared with
water communities, shrimp intestine communities were more
closely related to sediment communities. This is likely due to
sediment features and the shrimp’s lifestyles. It is well known that
L. vannamei is planktobenthos (mainly living in the benthic zone
and occasionally floating in the water) and is most often active
in the sediment habitat. Also, L. vannamei has the characteristic
of feeding from the sediment and ingestion of particulate matter
into its intestine. Our results indicate that water and sediment
communities mainly contribute to shrimp intestinal microbiota,
but such mechanisms need to be further investigated.

We also found that each habitat harbored distinct
microbial communities, indicating that different taxa have
obvious preferences in three habitats. For example, Vibrio,
Photobacterium, and Candidatus Bacilloplasma were enriched
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in the shrimp intestine. These genera are known opportunistic
pathogens and are widespread in cultural pond ecosystems
(Vadstein et al., 2004; Li et al., 2017; Xiong et al., 2017).
The aquatic animal intestine may offer a more favorable
microenvironment for such taxa, allowing them to become
dominant in the shrimp intestine. They may then further
spread into their surrounding environments through the
excretion of aquatic animals, making the control of opportunistic
pathogen proliferation extremely challenging (Tania et al., 2018).
For example, pathogens may be reintroduced to the SCPE
through excrement “seeds” after treatment with disinfectant
(Gustafson and Bowen, 1997). As aquatic animals are important
for maintaining microbial diversity in aquatic environments
(Troussellier et al., 2017), microbial ecological management
strategies are needed to inhibit opportunistic pathogens in
aquaculture ecosystems.

Examination of underlying microbial assembly mechanisms
shows that stochastic processes play a more important role
in influencing the microbial community structure than
deterministic processes. A possible explanation is that ecological
drift (e.g., stochastic processes of birth, death, colonization)
becomes stronger due to high dispersal rates (Zhou et al., 2014).
A recent global-scale study of activated sludge communities
from wastewater treatment plants indicates that microbial spatial
turnover is largely driven by stochastic processes (Wu et al.,
2019). Similarly, in other natural and engineered ecosystems,
such as temperate forest (Bahram et al., 2016), grasslands (under
warming conditions) (Guo et al., 2018), bioreactors (Zhou et al.,
2013), and groundwater systems (perturbed by adding emulsified
vegetable oil for uranium immobilization) (Zhou et al., 2014),
stochastic processes played larger roles than deterministic
ones in explaining the microbial assembly. Our present study
is largely consistent with those previous studies, suggesting
that the microbial assembly was largely driven by stochastic
processes in the SCPE. Moreover, across different shrimp
cultural development stages, the microbial communities in each
SCPE habitat consistently displayed similar dynamics variation.
Water and sediment microbial communities make important
contributions to the shrimp intestinal microbiota at a temporal
scale, which may indicate that the microbial succession of the
shrimp intestinal community is shaped by the environmental
water and sediment microbial communities.

CONCLUSION

In summary, we systematically evaluated the microbial
community composition of water, shrimp intestine, and
sediment habitats in the SCPE as a metacommunity and revealed
their relationships among the environment, the intestine
microbiota and host health status, and possible assembly
mechanisms (Figure 6). Specifically, we identified core microbial
taxa for each habitat and the metacommunity, determined that
environmental water and sediment communities dominated
the intestinal microecosystem of L. vannamei, and found that
microbial variation was largely controlled by stochastic processes
in the SCPE. These findings enrich our understanding of the

environment–intestinal microbiota–host health closely linked
relationship, making it possible to be the central dogma for an
anthropogenic aquaculture ecosystem. This study provides new
insights into microbial assembly mechanisms and a framework
for metacommunity analysis in the SCPE and has important
implications for developing new strategies for animal health.
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