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Bioactive Natural Products in Actinobacteria Isolated in Rainwater From Storm Clouds Transported by Western Winds in Spain
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Actinobacteria are the main producers of bioactive natural products essential for human health. Although their diversity in the atmosphere remains largely unexplored, using a multidisciplinary approach, we studied here 27 antibiotic producing Actinobacteria strains, isolated from 13 different precipitation events at three locations in Northern and Southern Spain. Rain samples were collected throughout 2013–2016, from events with prevailing Western winds. NOAA HYSPLIT meteorological analyses were used to estimate the sources and trajectories of the air-mass that caused the rainfall events. Five-day backward air masses trajectories of the diverse events reveals a main oceanic source from the North Atlantic Ocean, and in some events long range transport from the Pacific and the Arctic Oceans; terrestrial sources from continental North America and Western Europe were also estimated. Different strains were isolated depending on the precipitation event and the latitude of the sampling site. Taxonomic identification by 16S rRNA sequencing and phylogenetic analysis revealed these strains to belong to two Actinobacteria genera. Most of the isolates belong to the genus Streptomyces, thus increasing the number of species of this genus isolated from the atmosphere. Furthermore, five strains belonging to the rare Actinobacterial genus Nocardiopsis were isolated in some events. These results reinforce our previous Streptomyces atmospheric dispersion model, which we extend herein to the genus Nocardiopsis. Production of bioactive secondary metabolites was analyzed by LC-UV-MS. Comparative analyses of Streptomyces and Nocardiopsis metabolites with natural product databases led to the identification of multiple, chemically diverse, compounds. Among bioactive natural products identified 55% are antibiotics, both antibacterial and antifungal, and 23% have antitumor or cytotoxic properties; also compounds with antiparasitic, anti-inflammatory, immunosuppressive, antiviral, insecticidal, neuroprotective, anti-arthritic activities were found. Our findings suggest that over time, through samples collected from different precipitation events, and space, in different sampling places, we can have access to a great diversity of Actinobacteria producing an extraordinary reservoir of bioactive natural products, from remote and very distant origins, thus highlighting the atmosphere as a contrasted source for the discovery of novel compounds of relevance in medicine and biotechnology.
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INTRODUCTION

In nature, members of the Phylum Actinobacteria continue to be the main producers of structurally diverse bioactive natural products, essential for human health. Among Actinobacteria, species of the Streptomyces genus are the most prolific source of novel compounds of medical and industrial relevance as antibiotic and anticancer drugs urgently needed to overcome clinical resistance and toxicity problems. Although traditionally considered soil bacteria, there is increasing evidence that Streptomyces species are ubiquitous, being present not only on terrestrial ecosystems, but also in some of the most extreme and less explored environments on our planet such as the oceans and the atmosphere.

New trends in drug discovery include the search for novel bioactive Actinobacteria in unexplored or underexplored environments. Previous reports in oceanic and atmospheric environments of the Cantabrian Sea region (North Spain, Northeast Atlantic) revealed that phylogenetically diverse Actinobacteria, with a great pharmacological potential, are widespread among intertidal and subtidal seaweeds (Braña et al., 2015; Sarmiento-Vizcaíno et al., 2016) and also among deep-sea coral reefs ecosystems (Sarmiento-Vizcaíno et al., 2017b), where a novel barotolerant actinobacterium, Myceligenerans cantabricum, was isolated (Sarmiento-Vizcaíno et al., 2015). Some of these marine strains were the source of nine new biologically active natural products with antibiotic properties against clinically relevant antibiotic resistant pathogens and cytotoxic activities toward diverse human cancer cell lines (Braña et al., 2017a, b; Sarmiento-Vizcaíno et al., 2017b; Ortiz-López et al., 2018; Rodríguez et al., 2018).

Strains belonging to three Streptomyces species widespread among these coastal and deep-sea habitats (Streptomyces cyaneofuscatus, Streptomyces carnosus, and Streptomyces albidoflavus) were also isolated from different cloud precipitation events happened in the Cantabrian Sea Coast (Braña et al., 2015; Sarmiento-Vizcaíno et al., 2016). Since then, atmospheric precipitations (hailstone, rainwater and snow) were used as natural sampling tools for the study of actinobacterial diversity in the atmosphere. Bioactive strains corresponding to about 3–4% of known Streptomyces species were isolated after precipitations and found to produce a great number of natural products with different biological activities, mainly as antimicrobial and anticancer agents (Sarmiento-Vizcaíno et al., 2018). These atmospheric-derived strains also produced 38 molecules not found in Natural products databases, thus revealing the atmosphere as a novel and promising source for natural product discovery.

Based on previous observations of cultivable Streptomyces species isolated in recent years from different precipitation events on the Cantabrian coast, an atmospheric dispersal model was proposed to explain the cosmopolitan distribution of highly halotolerant Streptomyces species (Sarmiento-Vizcaíno et al., 2016). According to this model, coupled to the Earth’s hydrological cycle, marine bioaerosols forming clouds contribute to the transfer of Streptomyces from oceans into the atmosphere, were they travel dispersed by winds, falling down to the earth by precipitation. Further support for this model came from a culture-independent approach, which reported Actinobacteria among the most dominant phyla in atmospheric precipitations in Japan, also showing seasonal variations in correlation with estimated air mass trajectories (Hiraoka et al., 2017). Connections between oceans, clouds and atmosphere, and their relevance in atmospheric chemistry and climate were addressed through the study of sea spray aerosols (Cochran et al., 2017). Actinobacterial transfer into sea spray aerosols in an experimental ocean-atmosphere mesocosm was also reported (Michaud et al., 2018).

In a culture dependent approach, we provide here further insights into the phylogenetic and secondary metabolic diversity of bioactive atmospheric Actinobacteria isolated from rainwater in precipitations events from Westerly winds in Spain over 4 years’ time. This approach involved rainwater sampling from different locations in Spain, meteorological analyses, taxonomical and phylogenetic analyses with identification at species level. Antimicrobial assays, metabolic profiling and LC-UV-MS analyses of compounds produced were used to assess the Actinobacteria biosynthetic diversity.



MATERIALS AND METHODS


Sampling of Atmospheric Precipitations

Atmospheric precipitations samples, including rainwater, hailstone and snow were collected within years 2013–2016 at the North of Spain, at the Cantabrian Sea coastal region of Asturias (Figure 1). This is a remarkably wet and rainy region, whose climate is under the influence of the Atlantic Ocean. Samples of 2–3 mL were taken in sterile recipients at the localities of Gijón (43° 32′ N, 5° 39′ W), and Oviedo (43° 21′ N, 5° 52′ W) and plated on selective agar media as previously described (Braña et al., 2015; Sarmiento-Vizcaíno et al., 2016). An additional rain sample (50 mL) was collected in 2016, in Seville (37° 23′ N, 5° 59′ W), Andalusia, South of Spain. Seville has a Mediterranean climate and is considered one of the warmest cities in continental Europe. During all precipitation events sampled here the prevailing wind direction has been Western.
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FIGURE 1. Sampling locations in Spain. Overview of the European Seas (Atlantic Ocean). Stars indicate the sampling locations in Northern and Southern Spain.




Isolation of Actinobacteria Strains and Culture Media

A collection of cultivable Actinobacteria strains were obtained after plating of precipitation samples on selective agar media, prepared with cycloheximide (80 μg mL–1) as antifungal and nalidixic acid (20 μg mL–1) as anti-Gram negative bacteria, using MOPS BLEB 1/6 (Oxoid) basal medium as previously reported (Sarmiento-Vizcaíno et al., 2016). Two different media either prepared with distilled water or with a supplement of 3.5% NaCl were used in selection plates. After 2–3 weeks of incubation at 28°C, colonies were selected based on different morphological features and pigment production on R5A agar plates. Isolated pure cultures were conserved in 20% glycerol at both −20° and −70°C. For halotolerance studies, MOPS BLEB 1/6 (Oxoid) was used as the basal medium, adding NaCl at 0, 3.5, 7.0, and 10.5% (w/v) final concentrations. R5A medium was used for secondary metabolite production as previously described (Sarmiento-Vizcaíno et al., 2018).



Bioactive Strains Selection

The antimicrobial activities of isolates were determined by agar diffusion methods using the following indicator microorganisms: the Gram-positive bacteria Micrococcus luteus ATCC 14452 and Streptomyces 85E ATCC 55824, the Gram-negative Escherichia coli ESS, and the yeast Saccharomyces cerevisiae var. carlsbergensis as previously reported (Sarmiento-Vizcaíno et al., 2018). Analyses were performed in TSA1/2 (Merck) against bacteria and in Sabouraud 1/2 (Pronadisa) against yeast. For antibiotic production Actinobacteria cultures were routinely cultured. Figure 2 shows an example of bioassays performed against Micrococcus luteus as indicator bacteria. Agar plugs of 7 mm diameter from Actinobacteria cultures on solid R5A medium (Figure 2A) were assay for initial selection of bioactive isolates. Also Kirby-Bauer based test using with 6-mm-diameter AA Discs (Whatman), loaded with ethyl acetate extracts of bioactive isolates, were performed (Figure 2B). Agar plugs assays detect all diffusible compounds produced by actinobacterial strains, both polar and apolar, whereas the AA discs bioassays only detect diffusible apolar molecules which were extracted with ethyl acetate.
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FIGURE 2. Bioassay diffusion assays. Micrococcus luteus was used as indicator microorganism. The zones of complete inhibition are measured as the diameters in mm. (A) Agar plugs. (B) AA discs loaded with ethyl acetate extracts of the isolates.




Air Mass Backward Trajectories Analyses

To estimate the long-range transport journey of air masses that originated the precipitation events herein studied, backward trajectories were generated using the HYSPLIT model (Hybrid Single Particle Lagrangian Integrated Trajectory) from the Global Data Assimilation System of National Oceanic and Atmospheric Administration, United States (Stein et al., 2015). To track the transport pathways of air masses and determine the origin of diverse air parcels, 5-day backward trajectories (used generally in bioaerosol studies) were obtained using the NOAA model.1 To find out the trajectories of atmospheric air masses, the sampling locations were used as the backward trajectory start point with altitudes over the sea level of 30, 1,000 and 3,000 m (Gijón), as previously reported (Sarmiento-Vizcaíno et al., 2018); 300, 1,000, and 3,000 m (Oviedo) and 7, 1,000, and 3,000 m (Seville).



16S RNA Analysis Identification and Phylogenetic Analysis

For taxonomic identification of the strains, DNA was extracted with a microbial isolation kit (Ultra Clean, MoBio Laboratories, Inc.) and standard methods were used for checking the purity (Russell and Sambrook, 2001). Partial 16S rRNA gene sequences of the bacterial strains were obtained by using the 616V (forward) and 699R (reverse) primers (Arahal et al., 2008) in PCR amplification as previously described (Braña et al., 2015). The nucleotide sequences were compared to sequences in databases using the BLAST program (Basic Local Alignment Search Tool) against the NCBI (National Centre for Biotechnology Information), submitted and deposited in the EMBL sequence database with accession numbers LR702033-LR702059. Phylogenetic analysis of the strains based on 16S rRNA sequences was performed as previously reported (Sarmiento-Vizcaíno et al., 2018).



Chromatographic Analysis

Plugs of R5A plates (about 7 mL) were extracted using ethyl acetate in neutral and acidic (1% v/v formic acid) conditions. After evaporation, the organic fraction residue was redissolved in 100 μL of a mixture of DMSO and methanol (50:50). The analyses of the samples were performed by reversed phase liquid chromatography as previously described (Braña et al., 2015; Sarmiento-Vizcaíno et al., 2016).



Identification of Compounds by LC-UV-Vis and LC-UV-HRMS Analyses

Samples were first analyzed and evaluated using an in-house HPLC-UV-Vis database. LC-UV-HRMS analyses were carried out as previously reported (Pérez-Victoria et al., 2016; Sarmiento-Vizcaíno et al., 2018) and major peaks in each chromatogram were searched against the MEDINA’s internal database and also against the Dictionary of Natural Products (DNP) (Chapman & Hall/CRC, 2015).




RESULTS


Isolation and Characterization of Bioactive Atmospheric Actinobacteria by Sampling Multiple Precipitation Events in Spain

The strains herein studied were obtained from a unique Actinobacteria collection generated, during 4 years’ time frame (2013–2016) from diverse atmospheric precipitation events in Spain, as previously reported (Sarmiento-Vizcaíno et al., 2018). After a dereplication process involving phenotypical features, antibiotic activity and also meteorological analyses (see next section), 27 morphologically different bioactive strains isolated from rainwater from storm clouds transported by Western winds were selected for this study. Table 1 shows the results of initial antibiotic analyses of selected strains against a panel of indicator microorganisms (bacteria and fungi) by using agar diffusion assays (Figure 2A). The strains were isolated from samples collected in 12 rainfall events, and one hailstone event (A-241) at three different locations in Spain. The three different sampling places are shown in Figure 1. Among the 27 bioactive isolates, 18 were obtained from samples collected in the North Spain (43° N), 12 in the Cantabrian Sea coast (Gijón) and six strains at 28 km inland (Oviedo); finally 9 strains were isolated from a single rainfall event in South Spain (Seville, 37° N).


TABLE 1. Antibiotic activities of atmospheric Actinobacteria cultures against a panel of Gram-negative, Gram-positive bacteria and fungi.
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Backward Transport Trajectories Analyses

Meteorological analyses were performed to estimate the sources and trajectories of the different air masses that originated the precipitation events in which the selected strains were isolated. These sources were estimated using 5 days HYSPLIT backward trajectories. As shown in Figure 3, most backward trajectories showed air masses traveled eastward off the Atlantic Ocean toward continental Europe. As estimated, the air masses reaching the three sampling sites in Spain were predominantly of marine origin. In the atmospheric precipitation events herein studied, different air masses were transported by westerly winds (traveling at different altitudes) mainly from the Atlantic Ocean. In some events, that will be further stated, the trajectory also involves long-range transport from continental America, the Arctic Ocean and even the Northern Pacific Ocean, to downwind areas, such as the sampling place in continental Europe.
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FIGURE 3. Five-day backward trajectories of air masses generating the storms that arrived at Spain and caused the diverse precipitation events. They were calculated with the NOAA HYSPLIT Model with three different transects with different arriving height as previously reported (Sarmiento-Vizcaíno et al., 2018). The sampling locations were used as the backward trajectory start point with altitudes over sea level of 30, 1,000, and 3,000 m (Gijón), 300, 1,000, and 3,000 m (Oviedo), and 7, 1,000, and 3,000 m (Seville). Sampling places are indicated by the black asterisks.




Taxonomic Identification and Phylogenetic Analyses of Bioactive Isolates

Identification of airborne-derived bioactive strains was determined by sequencing fragments of their 16S rRNA gene. Nucleotide sequences were then deposited in the EMBL database, and corresponding accession numbers are shown on Table 2. Phylogenetic analyses of isolates (Figure 4), based on 16S rRNA gene alignments, demonstrate that all isolates belong to two different genera among the Phylum Actinobacteria, since they share 99–100% identity with known actinobacterial species. As shown in Table 2, the identified strains have their closest homologs in previous species isolated from very diverse oceanic and terrestrial habitats. Among 27 studied isolates, 23 belonged to the Streptomyces genus, as previous reports in this environment. Interestingly, all these species are different from the ones isolated in a hailstone precipitation event from clouds transported by prevalent Northwestern winds (Sarmiento-Vizcaíno et al., 2018), thus suggesting that depending on the wind direction different strains can be isolated.


TABLE 2. Phylogenetic diversity of atmospheric-derived bioactive Actinobacteria isolates.
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FIGURE 4. Neighbor-joining phylogenetic tree generated by distance matrix analysis of 16S rRNA gene sequences from atmospheric Actinobacteria (Streptomyces and Nocardiopsis) strains (highlighted) and nearest phylogenetic relatives. The numbers on branch nodes indicate bootstrap values (1,000 resamplings; only values > 50% are shown). Bar represents1% sequence divergence.


In addition, isolates belonging to the actinobacterial genus Nocardiopsis were herein identified in two precipitation events. A Nocardiopsis alba homolog, isolated in one of the North sampling places (Gijón), and several Nocardiopsis synnemataformans homologs in the South sampling place (Seville), which differ approximately in 6 latitudinal degrees. Nocardiopsis species were previously reported both in terrestrial and aquatic ecosystems (Bennur et al., 2015; Table 2) and are considered of pharmaceutical and biotechnological relevance due to its ability to produce diverse bioactive secondary metabolites (Bennur et al., 2016; Ibrahim et al., 2018).

A generalized feature of all Actinobacteria here studied is their ability to tolerate high NaCl concentrations, in the range 3.5–10.5% (Table 2). This high halotolerance is in agreement with previous reports within Streptomyces (Sarmiento-Vizcaíno et al., 2018) and in Nocardiopsis species, which are considered as the most abundant halophilic actinobacteria (Hamedi et al., 2013).



Metabolite Profiling Analysis and Identification of Bioactive Secondary Metabolites Produced

Chemical diversity of atmospheric Actinobacteria was assessed by metabolic profiling analyses of ethyl acetate extracts of bioactive strains, obtained in neutral and acidic conditions, screened for antibiotic production using agar diffusion with AA discs (Figure 2B), against a panel of indicator microorganisms (Table 3). Strong antibiotic activities were observed in all extracts, which were particularly active against M. luteus. The extracts were then analyzed for production of secondary metabolites by LC-UV and LC/HRMS analyses in combination with searches in UV and MS databases or the DNP after generation of a molecular formula of each peak based on HRMS results. Most of the strains show complex metabolic profiles producing multiple secondary metabolites in R5A medium (Supplementary Material 1). Figure 5 displays UV210 nm chromatograms corresponding to Nocardiopsis sp. A-256 and Streptomyces sp. A-254 samples.


TABLE 3. Antibiotic activities of ethyl acetate extracts of the strains.
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FIGURE 5. UV210 nm chromatogram of samples A-254 and A-256 with peaks annotated showing dereplicated components. Dereplicated components in sample A-254: (1) Cyclo(prolylvalyl), (2) Cyclo(leucylprolyl), (3) Cyclo(phenylalanylprolyl), (4) Cyclo(prolytryptophyl), (5) C21H38NO9 (related to ravidomycin but with a molecular formula not found in the Dictionary of Natural Products), (6) Deacetylravidomycin, (7) C30H33NO9 (related to ravidomycin but with a molecular formula not found in the Dictionary of Natural Products), (8) Ravidomycin, (9) C40H57NO10 (molecular formula not found in the Dictionary of Natural Products), (10) Tetronomycin, (11) Salaceyin A and (12) Salaceyin B. Dereplicated components in sample A-256: (1) Bisucaberin B, (2) Cyclo(leucylprolyl), (3) Kahakamide A, (4) Endophenazine D, (5) Dihydroxyphenazine, (6) 1-Hydroxy-6-methoxyphenazine, (7) 1-Phenazinecarboxylic acid, (8) Piperafizine B, (9) 3-Benzylidene-6-(4-methoxybenzylidene)-2,5- piperazinedione, (10) 4′-Methoxyneihumicin or XR 330.


Comparative analysis of Streptomyces and Nocardiopsis metabolites detected with natural product databases led to the identification of a total of 169 compounds detected after LC/MS dereplication in the ethyl acetate extracts of all strains metabolites, 139 were identified in the Dictionary of Natural Products, as shown in Table 4. Concerning the biological activity of identified natural products, the most frequent are antibiotics, with a total of 77 antibacterial and antifungal compounds, and also 32 antitumor or cytotoxic agents, 9 antiparasitic, 5 anti-inflammatory, 5 immunosuppressive, 3 antiviral, 2 insecticidal, 1 neuroprotective, 1 antiarthritic,1 plant hormone, 1 siderophore, 1 photoprotective and other products of diverse pharmacological and biotechnological relevance. Some compounds were only found to be produced by strains belonging to the Nocardiopsis genus, such as the antibacterial and anti-Trypanosoma brucei dihydroxyphenazine (A-256, A-257, A-260); the plant hormone Indol Acetic Acid (strain A-260), the antimicrobial kahakamide A, and the immunosuppressant N-(2-hydroxyphenyl)acetamide (A-257), among others.


TABLE 4. Identified compounds produced by atmospheric derived Actinobacteria strains and their biological activities.
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Of great interest, 30 compounds had molecular formulae determined by HRMS not reported for any molecule included inNatural Products Databases(Supplementary Material 2). These molecules, 28 produced by Streptomyces species and two by Nocardiopsis sp. A-169, deserve further research since they might be new natural products and thus candidates for the discovery of new biologically active substances. Table 5 shows the number of identified compounds, the number of novel molecules produced by each strain, and the results of meteorological analyses to estimate the sources and trajectories of the different air masses that caused the precipitation events, estimated with a 5-day NOAA Hysplit Model (Figure 3). Concerning novel molecules, 20 were produced by strains isolated in the Northern Spain sampling places and 10 by strains isolated in Southern Spain. The air masses of the Southern precipitation event (strains A-258, A-261, A-262, A-266) originate in the Atlantic Ocean. The air masses corresponding to the Northern Spain precipitation events were also sourced in the Atlantic Ocean (strains A-167, A-169, A-249, and A-171), but in some cases (strains A-53, A-254, A-269, A-271) they originate in the Arctic Ocean, and continental America, strain A-87 in United States and strain A-139 in Canada.


TABLE 5. Number of compounds and sources of the producing Actinobacteria strains isolated from rainwater precipitations.
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DISCUSSION

Exploration of the diversity of Actinobacteria producing biologically active natural products in the atmosphere was herein addressed by sampling multiple precipitation events with prevalent Westerly winds over 4 years in different sampling sites in Spain. Most of the isolates obtained from rainwater samples tolerate high salt concentrations and are homologs of known species isolated from very diverse terrestrial and marine ecosystems throughout the planet, in places as deep as the Mariana Trench sediments (10,898 m depth) in the Pacific Ocean, and as high as the Himalaya Mountains (8,849 m) (Table 2). Taxonomic identification and phylogenetic analyses of the atmospheric-derived Actinobacteria reported here, revealed Streptomyces as the most dominant genus, thus increasing the number of cultivable Streptomyces species able to survive and disperse via the atmosphere. Bioactive members of the rare actinobacterial genus Nocardiopsis were also isolated homologous to two species, Nocardiopsis alba and Nocardiopsis synnemataformans. The global number of Nocardiopsis species described so far on Earth is estimated in 50–53.2

The most relevant feature of the atmospheric Actinobacteria strains studied is that they are producers of multiple chemically diverse secondary metabolites, as analyzed by LC-UV-MS. Ten of the strains produced more than ten compounds each, up to a maximum of 15 (Table 5). From a total of 169 compounds detected after LC/MS dereplication, 82.25% were identified in the Dictionary of Natural Products, whereas, remarkably, the remaining 17.75%, not found in DPN, might be new molecules and deserve further research. After a literature search, 55% of the identified compounds were found to be biologically active as antibiotics (both against Gram-positive and Gram- negative bacteria and against fungi) and 23% have antitumor or cytotoxic activities; compounds with antiparasitic, anti-inflammatory, immunosuppressive, antiviral, insecticidal, neuroprotective, antiarthritic and other diverse biological activities were also detected in the extracts. The number of the compounds produced by these strains is estimated to be much higher than the one presented here, since only diffusible apolar molecules produced in a single culture conditions were analyzed, and possible diffusible polar or volatile molecules were not studied.

Meteorological analyses of the air masses involving 5 days HYSPLIT backward trajectories indicate a main oceanic source from the North Atlantic Ocean and also terrestrial sources from continental North America and Western Europe. In some events even long-range transport from the Pacific and the Arctic Oceans were also estimated. These bacteria remain viable after their atmospheric transport by winds across oceans and continents at planetary level. They could travel downwind and be dispersed via the atmosphere during long periods of time before they fall down to earth by precipitation. These findings provide further support for the Streptomyces atmospheric dispersal cycle (Sarmiento-Vizcaíno et al., 2016), which is herein extended to other members of the phylum Actinobacteria, such as Nocardiopsis genus.

The Streptomyces species herein identified are different from the ones previously isolated in a North-western wind precipitation event, sampled in North Spain and sourced in West Greenland and North Iceland and Canada (Sarmiento-Vizcaíno et al., 2018), thus indicating the relevance of winds in Streptomyces biogeographical distribution. Also, different Nocardiopsis species were isolated in different sampling places, which approximately differ in 6 latitudinal degrees, 37° N in South Spain to 43° N in North Spain sampling place. Latitude has been shown to delineate Streptomyces biogeography patterns in North America terrestrial environments (Choudoir et al., 2016).

Our findings make evident that across time, during different precipitation events, and space, by changing the latitude of the sampling place, we can have access to a striking diversity of Actinobacteria producing an extraordinary reservoir of bioactive natural products from remote and very distant origins, thus highlighting the relevance of the atmosphere as a here and now stablished source for the discovery of novel compounds of relevance in medicine and biotechnology.



CONCLUSION

Results here obtained on Actinobacteria isolated in rainwater from storm clouds transported by Western winds in Spain highlights the relevance of the atmosphere as a main source of diverse Streptomyces and Nocardiopsis species, and increases our knowledge of the biogeography of these Actinobacteria genera on Earth. Our findings included also an amazing reservoir of bioactive molecules produced by these Actinobacteria, and take another step forward on the potential of atmospheric precipitations for the discovery of natural products active as antibiotic and antitumor agents, among others.
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FOOTNOTES

1http://ready.arl.noaa.gov/hypub-bin/trajtype.pl?runtype=archive

2https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
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Antitumor human melanoma
and leukemia (Kanou et al.,
1998), Antifungal (Garcez

et al., 2000), radical
scavenging (Heidari and
Mohammadipanah, 2018)
Antiviral (Henkel et al., 1991)
Unknown

Antiplasmodial (Gomes et al.,
2019

Quorum-sensing signal
molecule in Gram-negative
bacteria (Chan et al., 2011)
Inhibitor of AKT signaling in
lung cancer cell lines (Vaden
etal., 2017)

Antibiotic and antitumor
(Meyers et al., 1965)
Ammonium ionophore,
antibacterial, antiviral,
antitumor (Zhan and Zheng,
2016)

Unknown

Antibiotic (Cocito, 1979)
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Strain Escherichia coli Micrococcus luteus Streptomyces 85E omy cer

Nocardiopsis sp. A-43 - 1719 ND -
Streptomyces sp. A-50 - 20/19 ND -
Streptomyces sp. A-53 —/8 14/22 ND —
Streptomyces sp. A-69 - 9/— ND -
Streptomyces sp. A-87 109 24/24 ND 18/15
Streptomyces sp. A-139 -/18 -9 ND -
Streptomyces sp. A-167 13/— 11/— — —
Nocardiopsis sp. A-169 - - - 11/11
Streptomyces sp. A-171 18/— 13/— 25/26 -
Streptomyces sp. A-178 9/10 24/19 34/21 —
Streptomyces sp. A-179 — 10/— — —
Streptomyces sp. A-241 - 30/25 - -
Streptomyces sp. A-249 ND 25/19 -/10 21/19
Streptomyces sp. A-250 ND 44/38 41/45 38/40
Streptomyces sp. A-254 ND 22/21 28/28 -
Nocardiopsis sp.A-256 ND 23/27 - 10/13
Nocardiopsis sp. A-257 ND 13/14 - 10/11
Streptomyces sp. A-258 ND 44/44 — —
Nocardiopsis sp. A-260 - /12 —/13 -
Streptomyces sp. A-261 - 32/30 —/11 -
Streptomyces sp. A-262 ND /12 — —
Streptomyces sp. A-263 1718 /12 —/10 -
Streptomyces sp. A-265 - 10/15 - -/9
Streptomyces sp. A-266 - 1917 - -
Streptomyces sp. A-268 — 2417 — 17/15
Streptomyces sp. A-269 - 30/31 - -
Streptomyces sp. A-271 -2 23/28 30/22 -

Extracts obtained from 7 mL of culture, obtained in neutral and acidic conditions, were resuspended in 50 pL of DMSO-methanol (1:1) from which 15 pL were loaded
onto AA discs. The discs were allowed to fully dry before applying to the indicator strain culture.
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O-ryaroxy-o-
(hydroxymethyl)hexadecanoic
acid
6-(3-Methyl-2-butenyl)-1H-indole-
3-acetaldehyde

oxime

8,10,12-Trihydroxy-2,4-
dodecadienoic
acid/4-(5-Formyloxy-3-
hydroxyheptyl)-3-methyl-2-
oxetanone/8,10,12-Trihydroxy-
2,4-dodecadienoic

acid*

A 88696F/Jerangolide
E/3,4-Dihydro-6,8-dihydroxy-3-
tridecyl-1H-2-benzopyran-1-one*
Actinonin

Actiphenol
Aggreceride A

Aggreceride B

Alaninolysine
Albocycline

Albocycline M1/M2/M4/M5/MT7*
Albocycline M3/M6*
Albonoursin

Alkyldihydropyrone
B/Alkyldihydropyrone
A/Cyclohomononactic
acid/1,3-Dihydroxy-4-methyl-6,8-
decadien-5-one*

Alteramide A

Alteramide B

Angumycinone A/Boshracin
D/Aranciamycin H/Antibiotic YT
127/Gaudimycin
A/Hatomarubigin
F/Ochracenomicin A*
Anhydrocycloheximide

Antibiotic AKD 2A

Antibiotic DC 81/Caerulomycin
G
Antibiotic FD 991

Antibiotic L 156588

Antibiotic LL-BH872a/Geralcin
E/5-Methyl-2-0x0-4-
imidazolidinehexanoic

acid*

A-202

A-69

A-271

A-262

A-87

A-250

A-262

A-262

A-260
A-269

A-269

A-269

A-263

A-261

A-249,
A-268

A-268
A-249

A-250

A-262

A-262

A-250

A-258

A-171

unknown

Unknown

Unknown

Antifungal (Hans et al., 1997)

Anti-Gram-positive and
Gram-negative foodborne
pathogens (Jung et al., 2017)
Antibiotic (Schrey et al., 2012)
Platelet aggregation inhibitor
(Omura et al., 1986)

Platelet aggregation inhibitor
(Omura et al., 1986)
Unknown

Antibiotic (Nagahama et al.,
1967)

Antibiotic (Managamuri et al.,
2017)

Antibiotic (Bycroft and Payne,
2013)

Antibiotic, antitumor
(Fukushima et al., 1973)
Cytotoxic against the
leukemia cell lines (Aizawa

et al., 2014); antifungal
(Stadler et al., 2001)

Cytotoxic (Shigemori et al.,
1992); antifungal (Moree
etal., 2014)

Antifungal (Ding et al., 2016)
Antibiotic (Igarashi et al.,
1995; Kharel et al., 2012;
Park et al., 2014); anticancer
(Luzhetskyy et al., 2008)

Antifungal (Sullia and Griffin,
1977)

Antibiotic, both antibacterial
and antifungal (Akeda et al.,
1995)

Antibiotic (Kim, 2013);
Cytotoxic (Fu et al., 2011)
Antibiotic (Bycroft and Payne,
2013)

Gastrin and brain
cholecystokinin antagonists
(Lam et al., 1991)

Antibiotic (Bianchi et al.,
2003)
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Strain

Nocardiopsis sp. A-43

Streptomyces sp. A-50

Streptomyces sp. A-53

Streptomyces sp. A-69

Streptomyces sp. A-87

Streptomyces sp. A-139

Streptomyces sp. A-167

Nocardiopsis sp. A-169

Streptomyces sp. A-171

Streptomyces sp. A-178

Streptomyces sp. A-179

Streptomyces sp. A-241

Streptomyces sp. A-249

Streptomyces sp. A-250

Streptomyces sp. A-254

Nocardiopsis sp. A-256

Nocardiopsis sp. A-257

Streptomyces sp. A-258

Nocardiopsis sp. A-260

Streptomyces sp. A-261

Streptomyces sp. A-262

Streptomyces sp. A-263

Streptomyces sp. A-265

Streptomyces sp. A-266

Streptomyces sp. A-268

Streptomyces sp. A-269

Streptomyces sp. A-271

EMBL A. N.

LR702033

LR702034

LR702035

LR702036

LR702037

LR702038

LR702039

LR702040

LR702041

LR702042

LR702043

LR702044

LR702045

LR702046

LR702047

LR702048

LR702049

LR702050

LR702051

LR702052

LR702053

LR702054

LR702055

LR702056

LR702057

LR702058

LR702059

NaCl%

3.5

3.5

3.5

10.5

35

3.5

3.5

3.5

3.5

10.5

3.5

3.5

3.5

35

Closest homolog

Nocardiopsis alba DSM
43377

Streptomyces
spinoverrucosus NBRC
14228
Streptomyces
phaeofaciens NBRC
13372
Streptomyces
sannanensis NBRC
14239
Streptomyces cacaoi
NBRC 12748

Streptomyces
daqingensis
NEAU-ZJC8

Streptomyces

heliomycini NBRC
15899
Nocardiopsis
synnemataformans
IMMIB D-1215T
Streptomyces griseolus
NBRC 3415

Streptomyces
cyaneofuscatus 2—-6

Streptomyces
lateritiusLMG 19372
Streptomyces collinus
NBRC 12759
Streptomyces griseolus
11-11
Streptomyces floridae
NBRC 15405
Streptomyces
durmitorensisMS405
Nocardiopsis
synnemataformans
IMMIB D-1215T
Nocardiopsis
synnemataformans
IMMIB D-1215T
Streptomyces
graminofaciens NBRC
13455
Nocardiopsis
synnemataformans
IMMIB D-1215T
Streptomyces
albogriseolus DSM
40003
Streptomyces
griseorubens NBRC
12780
Streptomyces albus
NRRL B-1811

Streptomyces
heliomycini 173574
Streptomyces
cellulosae NRRL
B-2889T
Streptomyces griseolus
NBRC 3415
Streptomyces
sannanensis NBRC
14239
Streptomyces griseus
TBGT

A.N.

X97883

AB184578

AB184360

AB184579

AB184115

KF982696

AB184712

Y13593

AB184768

KJ571029

AJ781326

AB184123

KJ571072

AB184656

DQO67287

Y13593

Y13593

AB184416

Y13593

AY177662

AB184139

NR118467

EU593729

DQ442495

AB184768

AB184579

KX269853

% homology (bp)

100 (685/685)

99.8 (985/987)

99.7 (765/767)

99.7 (971/974)

100 (993/993)

99.5 (764/768)

99.8 (988/990)

99.3 (987/994)

100 (964/964)

99.7 (959/962)

99.8 (969/971)

99.9 (710/711)

99.9 (961/962)

99.8 (950/952)

99.9 (974/975)

99.3 (987/994)

100 (1002/1002)

100 (968/968)

100 (978/978)

100 (977/977)

100 (965/965)

100 (990/990)

99.7 (978/981)

99.9 (991/992)

99.9 (963/964)

99.3 (949/956)

99.7 (950/953)

Homolog isolation
source

Honeybees gut,
United States;
mushroom compost
bioaerosol, Poland

Marine

Soil, Japan

Fresh water lake
habitat, India

Cacao beans

Saline-alkaline soil,
China

Marine-derived,
Saudi Arabia

Marine, terrestrial

Soil, Russia
Marine, terrestrial and
atmospheric, Spain
Soil
Soil, Germany
Soil
Soil, Himalaya
Soil, Serbia and

Montenegro
Marine, terrestrial

Marine, terrestrial

Soil, Japan

Marine, terrestrial

Sea sediment, China
Sea

Soil, China

Atmosphere, soil,
marine sediment,
Spain

Marine-derived
Saudi Arabia

Soybean root

Soil, Russia

Fresh water lake
habitat, India

Soil; Mariana
Trench sediment
(10,898 m), Pacific
Ocean

References

Qiao et al., 2012;
Pasciak et al., 2014

Hu et al., 2012;

Okamoto et al.,
1986

Singh et al., 2014

Shirling and
Cottlieb, 1968

Pan et al., 2016

Wang et al., 2017

Bennur et al., 2015

Grammatikova
et al., 2003

Sarmiento-Vizcaino
etal., 2016; 2018
Elson et al., 1988
Rather et al., 2013
Harder et al., 1991
Hussain et al., 2018

Savic et al., 2007

Bennur et al., 2015

Bennur et al., 2015

Fukuchi et al., 1995

Bennur et al., 2015

Cui et al., 2007

Xu and Yang, 2010

Sarmiento-Vizcaino
etal., 2018;
Schleissner et al.,
2011; Labeda
etal, 2014

Wang et al., 2017

Liu et al., 2013

Grammatikova
et al., 2003

Singh et al., 2014

Goodfellow and
Williams, 1983;
Pathom-Aree et al.,
2006
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Antibiotic TMC 1A/B ™

Antibiotic TMC 1F

Antibiotic WS 7338A

Antibiotic WS 9326A
Antibiotic WS 93268

Aranciamycin E/1-Butyl-3,6,8-
trihydroxyanthraquinone-2-
carboxylic acid/Fridamycin
E/Gaudimycin B/C/p1-
Rhodomycinone/Komodoquinone
B/2-O-Demethyl-8-demethoxy-
10-deoxysteffimycinone*
Aranciamycin H/Boshracin
D/Angumycinone
A/Hatomarubigin F/Gaudimycin
A/Antibiotic YT
127/Ochracenomicin A*

Aureusimine B

Bafilomycin A1

Bafilomycin A1/C1*

Bafilomycin B1/E*

Bafilomycin C1

Bafilomycin D

Benzylcarbamic
acid/Streptokordin/2-
Acetamidophenol/4-
hydroxyphenylacetaldoxime*
Christolane
C/9-Hydroxystreptazolin/13-
Hydroxystreptazolin/Cytoxazone*
Cyclo(isoleucylprolyl)

Cyclo(leucylprolyl)
Cyclo(phenylalanylprolyl)
Cyclo(prolyltryptophyl)
Cyclo(prolyltyrosyl)
Cyclo(prolylvalyl)

Cyclo(valylprolyl)

A-241

A-241

A-87

A-50
A-50

A-249

A-268

A-69

A-249

A-268

A-249,
A-268

A-249
A-268

A-260

A-262

A-178,
A-241
Several
strains®
A-178
Several
strains®

A-261
Several

strains®
A-139

Antibiotic, moderate
cytotoxicity (Kohno et al.,
1996)

Antibiotic, moderate
cytotoxicity (Kohno et al.,
1996)

Antibiotic, endotelin receptor
antagonist (Miyata et al.,
1992

Tachykinin antagonist
(Hashimoto et al., 1992)
Tachykinin antagonist
(Hashimoto et al., 1992)
Antitumor (Luzhetskyy et al.,
2008); antibiotic (Chen et al.,
2011; Bycroft and Payne,
2013)

Antitumor (Luzhetskyy et al.,
2008); antibiotic (Igarashi

et al., 1995; Kawasaki et al.,
2010)

Antibiotic, against
Staphylococcus aureus
biofilms (Secor et al., 2012)
Vacuolar-type ATPase
inhibitor, apoptosis (Tan et al.,
2018)

Vacuolar-type ATPase
inhibitor, apoptosis (Tan et al.,
2018); antifungal (Frandberg
et al., 2000)

Antifungal (Frandberg et al.,
2000)

Antifungal (Frandberg et al.,
2000)

Antibiotic, cytotoxic (Vu et al.,
2018)

Cytotoxic (Jeong et al., 2006);
antifungal, anti-inflammatory,
antitumor, anti-platelet,
anti-arthritic (Guo et al., 2020)
Antibiotic (Gomez et al.,
2012); cytokine modulator
(Kakeya et al., 1998)
Unknown

Antibiotic, cytotoxic (Santos
etal., 2015)

Antibiotic (Santos et al., 2020)
Broad spectrum antibacterial
activity (Blunt and Munro,
2008)

Cytotoxic (Blunt and Munro,
2008)

Antifungal (Kumar et al.,
2014)

Antibacterial (Alshaibani et al.,
2017)
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Strain  Escherichia Micrococcus Streptomyces Saccharomyces

coli luteus 85E cerevisiae
A-43 — 12 11 -
A-50 — 22 10 —
A-53 — 13 18 —
A-69 — — 10 —
A-87 11 24 by 16
A-139* 18 19 13 —
A-167 — 14 10 —
A-169 — — i —
A-171 — 11 12 13
A-178 — — 25 —
A-179 18 32 9 -
A-241 - 11 — —
A-249 — — — 24
A-250 22 30 29 43
A-254 — — 12 —
A-256 — 11 18 —
A-257 — — g -
A-258 — 33 - -
A-260 — — pi —
A-261 — 24 20 —
A-262 — 16 10 —
A-263 18 — - -
A-265 — 14 11 —
A-266 — 10 — -
A-268 — 10 il 21
A-269 — 15 26 —
A-271 — 33 28 -

The assays were initially performed with agar plugs from cultures and activities
were estimated as the zones of complete inhibition (diameter in mm). The asterisk
indicates that antibiotic activity was only detected in liquid cultures.
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Compound LC/MS

1-(2-Aminophenyl)ethanone/
Phenylacetamide*
1-(Hydroxymethyl)-1H-indole-3-
carboxylic

acid
1-Hydroxy-6-methoxyphenazine

10-Oxide-1,8-Phenazinediol/5-
Oxide-1,6-Phenazinediol/2,3,7-
Phenazinetriol*

1-Methoxyphenazine

1-Phenazinecarboxylic acid

1-Phenazinol/2-Phenazinol*

2,3,7-Phenazinetriol

2096D

2-(Acetoxymethyl)quinoline

2-Hydroxy-1-(1H-indol-3-
yl)ethanone/1H-Indole-3-carboxy
Me ester/3-Indolylacetic
acid/Skatole-2-carboxylic acid*
3-(Hydroxyacetyl)-1H-indole/1H-
Indole-3-acetic
acid/3-Methyl-1H-indole-2-
carboxylic acid/Methyl
1H-Indole-3-carboxylate*
35-Amino-32,33,34-
bacteriohopanetriol
3-Benzyl-6-isopropyl-2,5-
piperazinedione
3-Benzylidene-6-(3-hydroxy-2-
methylpropylidene)-1-methyl-2,5-
piperazinedione/Lansai

o

3-Benzylidene-6-(4-
methoxybenzylidene)-2,5-
piperazinedione

3-Indolylacetic acid
3-Isobutylidene-6-(4-
methoxybenzylidene)-2,5-
piperazinedione
4,5-Dihydrogeldanamycin
4-(5-Formyloxy-3-hydroxyhexyl)-
3-methyl-2-oxetanone
4-Hydroxy-2-methylquinazoline
5-(6-Methyloctyl)-2(5H)-
furanone/5-(6-Methyloctyl)-2(3H)-
furanone/2,4,6-Trimethyl-2,4-
decadienoic
acid/5-Methyl-3-(5-methylheptyl)-
2(5H)-furanone/11-Methyl-2,5-
dodecadienoic

acid*

Strain

A-50

A-263

A-256,

A-257
A-260

A-257
A-169,
A-256
A-260

A-257

A-263

A-179

A-241

A-69,
A169,
A-258
A-262
A-69

A-263

A-43,
A-256

A-260
A-43
A-120

A-266

A-169
A-265

Biological activities

Antibacterial (Lu et al., 2020)

Antifouling (Wang et al., 2020)

Antimicrobial? Cook et al.,
1971)

Antibiotic, antitumor,
antimalaria, and antiparasitic
activities (Laursen and
Nielsen, 2004)
Antichlamydial activity (Bao
et al., 2020)

Antifungal (Ye et al., 2010)

Antibiotic (Vivian, 1956; Lu
etal., 2013)

Antibiotic, antitumor,
antimalaria, and antiparasitic
activities (Laursen and
Nielsen, 2004)

Antiparasitic (Kelly et al.,
2020)

Potential photoprotective
(Sanchez-Suérez et al., 2020)
Antibacterial and antihelmintic
(Himaja et al., 2010)

Plant growth regulatory
(Arteca, 1996)

Sterol equivalent (Welander
Paula et al., 2009)
Unknown

Anti-inflammatory (Thongchai
etal., 2010)

Plant hormone (Arteca, 1996)
Antibiotic (Bycroft and Payne,
2013)

Anticancer (Wu et al., 2012)
Unknown

Unknown
Regulatory signal molecule
(He et al., 2010)
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Strain Number of products Sampling place Sampling date  Air masses backward trajectories analyses?
Unidentified Identified

Nocardiopsis sp. A-43 5 Gijon 04/11/2013 California, United States South states from West to the East, Labrador
(Canada), Atlantic Ocean.

Streptomyces sp. A-50 8 Gijon 19/12/2013 Northwest Passage (Artic Ocean), Atlantic Ocean, Spain

Streptomyces sp. A-53 2 3 Gijon 19/12/2013 Northwest Passage (Artic Ocean), Atlantic Ocean, Spain

Streptomyces sp. A-69 7 Gijon 15/12/2014 Pacific Ocean, Oregon, United States (from West to East), Terranova,
Atlantic Ocean.

Streptomyces sp. A-87 1 6 Gijon 15/12/2014 Louisiana, Missisipi, Alabama, Georgia, South Carolina (United States),
Atlantic Ocean, Labrador Terranova (Canada), Atlantic Ocean,
Greenland, United Kingdom, France, Cantabrian Sea

Streptomyces sp. A-139 4 3 Gijon 18/01/2015 Manitoba, Ontario, Quebec, Terranova, Labrador (Canada), Atlantic
Ocean, Arctic Ocean Iceland, Portugal, Spain

Streptomyces sp. A-167 2 3 Gijon 15/09/2015 Atlantic Ocean, Portugal, Spain

Nocardiopsis sp. A-169 2 9 Gijon 156/09/2015 Atlantic Ocean, Portugal, Spain

Streptomyces sp. A-171 1 8 Gijon 5/10/2015 Atlantic Ocean, Portugal, Mediterranean Sea

Streptomyces sp. A-178 4 Gijon 3/1/2016 Arctic Ocean (Baffin Bay), Hudson Bay, Quebec (Canada), Arctic
Ocean, Atlantic Ocean, Portugal, Spain

Streptomyces sp. A-179 1 Gijon 5/1/2016 Pacific Ocean, Alaska (United States), North East Canada, Atlantic
Ocean

Streptomyces sp. A-241 6 Gijon 27/02/2016 Michigan, New York, Maine (United States), Quebec (Canada), Atlantic
Ocean

Streptomyces sp. A-249 1 11 QOviedo 13/09/2016 Atlantic Ocean, Portugal, Spain

Streptomyces sp. A-250 11 Qviedo 13/09/2016 Atlantic Ocean, Portugal, Spain

Streptomyces sp. A-254 3 9 Oviedo 15/09/2016 Arctic Ocean, Atlantic Ocean, Cantabrian Sea

Nocardiopsis sp. A-256 10 Seville 13/09/2016 Atlantic Ocean, Spain

Nocardiopsis sp. A-257 6 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp. A-258 3 10 Seville 13/09/2016 Atlantic Ocean, Spain

Nocardiopsis sp. A-260 7 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp. A-261 4 9 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp. A-262 2 13 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp.A-263 6 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp. A-265 4 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp. A-266 1 12 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp. A-268 b | Oviedo 13/09/2016 Atlantic Ocean, Portugal, North Spain

Streptomyces sp. A-269 2 7 Oviedo 15/09/2016 Arctic Ocean, Atlantic Ocean, Cantabrian Sea

Streptomyces sp. A-271 2 11 Oviedo 15/09/2016 Arctic Ocean, Atlantic Ocean, Cantabrian Sea

aSummary of the backward trajectories estimated with a 5-day NOAA Hyspli Model as shown in Figure 3.
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Streptomyces heliomycini NBRC 15899' (AB184712)

Streptomyces sp. A-265 (LR702055)
Streptomyces sp. A-167 (LR702039)

Streptomyces collinus NBRC 127597 (AB184123)
Streptomyces griseorubens NBRC 127807 (AB184139)

91 Streptomyces sp. A-262 (LR702053)

Streptomyces cellulosae NRRL B-2889" (DQ442495)
Streptomyces sp. A-266 (LR702056)
Streptomyces olivaceus NBRC 32007 (AB184743)
Streptomyces sp. A-261 (LR702052)

Streptomyces spinoverrucosus NBRC 142287 (AB184578)
Streptomyces sp. A-50 (LR702034)

Streptomyces albogriseolus DSM 40003T (AY177662)
Streptomyces sp. A-241 (LR702044)

Streptomyces puniceus NRRL B-2895" (DQ442542)
Streptomyces phaeofaciens NBRC 133727 (AB184360)
Streptomyces sp. A-53 (LR702035)

Streptomyces heilongjiangensis NEAU-W2T (JF431459)
Streptomyces durmitorensis MS405" (DQ067287)

100 L Streptomyces sp. A-254 (LR702047)

Streptomyces lateritius LMG 193727 (AJ781326)
Streptomyces sp. A-179 (LR702043)

Streptomyces graminofaciens NBRC 134557 (AB184416)

100! Streptomyces sp. A-258 (LR702050)

Streptomyces sannanensis NBRC 142397 (AB184579)

Streptomyces sp. A-269 (LR702058)
Streptomyces sp. A-69 (LR702036)

Streptomyces mauvecolor NBRC 13854 (AB184532)
Streptomyces cavourensis NRRL 27407 (DQ445791)
Streptomyces sp. A-271 (LR702059)

Streptomyces sp. A-178 (LR702042)
54 streptomyces sp. A-249 (LR702045)

Streptomyces sp. A-250 (LR702046)
L Streptomyces floridae NBRC 154057 (AB184656)
— Streptomyces parvus NRRL B-14557 (DQ442537)

5?& Streptomyces mediolaniNBRC 154277 (AB184674)

Streptomyces globisporus NRRLB-2872T (EF178686)
Streptomyces griseus JCM 46447 (AY207604)
rStrepromyces cyaneofuscatus NBRC 131907 (AB184860)
Y- Streptomyces flavogriseus CBS 101.347 (AJ494864)

r Streptomyces halstedii NRRL B-1238T (EF178695)
Streptomyces cinereorectus NBRC 153957 (AB184646)
Streptomyces griseolus NBRC3415T (AB184768)
Streptomyces sp. A-268 (LR702057)

Streptomyces sp. A-171 (LR702041)

o

Streptomyces dagingensis NEAU-ZJC8T (KF982696)

Streptomyces sp. A-139 (LR702038)

Streptomyces sp. A-87 (LR702037)

1001 streptomyces cacaoi NBRC 127487 (AB184115)

Streptomyces albus DSM 403137 (AJ621602)

Streptomyces gibsoniiNBRC 154157 (AB184663)

100} streptomyces sp. A-263 (LR702054)

Streptomyces rangoonensis NBRC 13078 (AB184295)
Nocardiopsis sp. A-169 (LR702040)

Nocardiopsis sp. A-43 (LR702033)

100 9 | Nocardiopsis alba DSM 433777 (X97883)
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