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Campylobacter jejuni (C. jejuni) is the leading causative agent of gastroenteritis and
Guillain–Barré syndrome (GBS). Capsular polysaccharide (CPS) and lipooligosaccharide
(LOS) contribute to the susceptibility of campylobacteriosis, which have been concern
the major evaluation indicators of C. jejuni isolates from clinical patients. As a foodborne
disease, food animal plays a primary role in the infection of campylobacteriosis. To
assess the pathogenic characterizations of C. jejuni isolates from various ecological
origins, 1609 isolates sampled from 2005 to 2019 in China were analyzed using
capsular genotyping. Strains from cattle and poultry were further characterized by LOS
classification and multilocus sequence typing (MLST), compared with the isolates from
human patients worldwide with enteritis and GBS. Results showed that the disease
associated capsular genotypes and LOS classes over-represented in human isolates
were also dominant in animal isolates, especially cattle isolates. Based on the same
disease associated capsular genotype, more LOS class types were represented by food
animal isolates than human disease isolates. Importantly, high-risk lineages CC-22, CC-
464, and CC-21 were found dominated in human isolates with GBS worldwide, which
were also represented in the food animal isolates with disease associated capsular
types, suggesting a possibility of clonal spread of isolates across different regions and
hosts. This is the first study providing genetic evidence for food animal isolates of
particular capsular genotypes harbor similar pathogenic characteristics to human clinical
isolates. Collective efforts for campylobacteriosis hazard control need to be focused on
the zoonotic pathogenicity of animal isolates, along the food chain “from farm to table.”

Keywords: Campylobacter jejuni, capsular genotype, lipooligosaccharide class, multilocus sequence typing,
enteritis and Guillain–Barré syndrome, isolates from food animal
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INTRODUCTION

Campylobacter jejuni (C. jejuni) is the leading cause of acute
gastroenteritis in humans worldwide, posing potential risk
to susceptible human and animals due to their zoonotic
transmission. Watery or bloody diarrhea, abdominal pain,
headache, fever, chills, and dysentery are the main symptoms
of campylobacteriosis (Black et al., 1988). Gastroenteritis and
Guillain–Barré syndrome (GBS) are the two representative
diseases associated with human infection of C. jejuni
(Jackson et al., 2014). Over the last 10 years, the incidence
of campylobacteriosis has increased in both developed and
developing countries (Ruiz-Palacios, 2007), which has generated
significant threats to the public’s health. However, the precise
role of C. jejuni in the development of clinical condition is
largely unknown. Unlike other intestinal pathogens, C. jejuni
does not harbor pathogen-defining toxins that explicitly
contribute to the disease in humans. Moreover, the majority
of campylobacteriosis cases are self-limiting, which makes
the understanding of Campylobacter pathogenesis challenging
(Crofts et al., 2018).

Polysaccharide capsule is an important virulence factor of
clinical importance. Highly variable structures of C. jejuni
capsular are the basis of classical Penner serotyping scheme,
dividing isolates into 47 serotypes, which has been considered as
the gold standard for C. jejuni serotyping (Penner and Hennessy,
1980). The rise of molecular diagnostic method has promoted
the development capsular genotyping, re-enforcing the strong
correlation between capsular polysaccharide (CPS) and Penner
serotypes. This method is not sensitive to the variations in capsule
gene expression or influenced by genes or gene products outside
the capsule locus (Poly et al., 2011). Consequently, it has been
introduced as a fast, readily available and reliable method to
assess the serotypes in C. jejuni (Poly et al., 2015). Particular
serotypes in the antecedent infection of C. jejuni could contribute
to the development of GBS (Poly et al., 2011). HS19 (Kuroki
et al., 1993), HS23/36 c (Islam et al., 2009), and HS41 (Lastovica
et al., 1997; Zhang et al., 2010a) were the major serotypes
commonly represented by the isolates from GBS patients in
Japan, Bangladesh, South Africa, and China, respectively. HS4
(Saida et al., 1997), HS2, and HS1 were commonly prevalent
in human isolates from sporadic GBS cases all over the world
(Guerry et al., 2012). In contrast, HS4 complex, HS2, HS3,
HS5/31, and HS8/17 were consistently prevalent in enteritis cases
across all regions (Rojas et al., 2019).

Sialylated lipooligosaccharide (LOS) is another virulence
factor associated with C. jejuni associated GBS (Godschalk
et al., 2004). Molecular mimicry between sialylated C. jejuni
LOS and the ganglioside presented on human peripheral nerve
drives a cross-reactive immune response, which could result
into immune-mediated nerve damage (Yuki et al., 2004). The
variability of gene content in C. jejuni LOS biosynthesis locus has
led to the assignment of several LOS locus classes (A to S) (Parker
et al., 2008). Genes harbored in LOS A, B, and C classes are
involved in the synthesis of sialylated LOS. In particular, LOS A
class is highly dominant in GBS-associated C. jejuni populations,
whereas LOS B, C, and E classes show over-representation in

enteritis-associated C. jejuni populations (Ellström et al., 2016;
Hameed et al., 2020).

Currently, capsular genotype and LOS class are mainly used
to characterize human clinical isolates, but not animal isolates,
even though campylobacteriosis is a foodborne disease in which
foods of animal origin, especially poultry and cattle, play an
important role (Guirado et al., 2020). In this study, a collection of
animal strains sampled from a long time span and a wide range
of putative hosts was identified by capsular genotyping and LOS
classification, compared with the control isolates from enteritis
patients. Correlation between LOS class and disease associated
capsular genotype in food animal isolates were analyzed. Genetic
relationship between the animal isolates with disease associated
capsular genotypes and human clinical isolates worldwide were
further investigated.

MATERIALS AND METHODS

Bacterial Strains and Culture Condition
A collection of 1609 C. jejuni strains were isolated from the fecal
samples of animals and enteritis patients in Jiangsu province
in eastern China, between 2005 and 2019. Jiangsu province is
a community of approximately 29,910,849 households made-
up of 84,748,016 individuals. Cattle and poultry are the major
food-producing species. In detail, 181 cattle isolates were sourced
from two large-scale cattle farms, which were selected as the
suppliers for cattle slaughterhouses. A total of 1084 poultry
isolates were sampled from two large-scale poultry farms and four
medium-scale poultry farms. Approximately 150–200 chicken
were housed in each single pen in large-scale poultry farm, while
30–50 chicken were housed in each single pen in medium-scale
poultry farm. Household rearing of pet in this area is usual,
a total of 55 isolates were collected in the pets from different
citizen families from 2005 to 2019. Moreover, 52 monkey isolates
were sampled from the rhesus macaques (Macaca mulatta) at
a primate neurobiology research institute from 2017 to 2018.
A collection of 233 clinical isolates were sampled from the
enteritis patients in three representative hospitals from 2005 to
2006, as previously reported (Huang et al., 2009). The sampling
procedure was approved by the Research Ethics Committee of
Yangzhou University.

Campylobacter jejuni isolates were routinely cultured onto
Campylobacter selective agar base plates (modified CCDA,
Preston; Oxoid, United Kingdom) under microaerophilic
conditions (5% O2, 10% CO2, and 85% N2) at 42◦C for 48 h.
Isolate was identified at C. jejuni species level by PCR, and then
stored at −80◦C in brain heart infusion broth with 15% glycerol
until use (Zang et al., 2017).

Capsule Multiplex Typing Scheme
Template preparation (Huang et al., 2017) and capsule
genotyping (Poly et al., 2011; Liang et al., 2016) were performed as
previously described. Primers of 20 common capsular genotypes
were shown in Supplementary Table 1. Five GBS associated
capsular genotypes (HS19, HS41, HS23/36, HS4 c, and HS2)
and enteritis associated capsular genotypes (HS2, HS4 c, HS5/31,
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HS8/17, and HS3) were selected by searching the keywords of
“Campylobacter,” “serotype,” and “capsule genotype” in PubMed.1

Determination of Lipooligosaccharide
Class
A collection of C. jejuni isolates from China was randomly
selected for LOS typing, including 157 cattle isolates, 235 poultry
isolates, and 172 enteritis isolates. PCR assays targeted on LOS
classes A–E were conducted as previously reported (Parker et al.,
2008). The distribution of LOS classes as well as the correlation
between LOS classes and eight disease associated capsular
genotypes (mentioned in section “Capsule Multiplex Typing
Scheme”) among isolates from poultry and cattle were compared
with the corresponding data of isolates from enteritis patients.

Multilocus Sequence Typing
A total of 97 C. jejuni isolates with disease associated capsule
genotyes (HS19, HS4A c, HS8/17, HS2, and HS23/36) were
selected to analysis genotype diversity, including 37 animal
isolates and 28 enteritis isolates from China, as well as 32 GBS
control isolates worldwide (China, n = 3; Netherlands, n = 13;
United States, n = 2; Japan, n = 4; Africa, n = 3; Mexico, n = 2;
Peru, n = 4; and Thailand, n = 1). These GBS isolates belonged
to five kinds of capsule genotypes (HS41, HS19, HS41, HS2, and
HS4 Ac), which were assigned to 15 different sequence types (STs)
(such as ST-22, ST-362, ST-2993, and ST-19). MLST profiles of
GBS isolates were downed from PubMLST.2

Multilocus sequence typing was conducted as previously
reported (Dingle et al., 2001). STs and allele numbers were
analyzed on Campylobacter PubMLST website. Housekeeping
allelic profiles were analyzed by the goeBURST algorithm
implemented in PHYLOViZ 2.0 to created minimum spanning
tree (MST) and Neighbor Joining tree (Nascimento et al., 2017).

Statistical Analyses
Statistical analyses presented in this manuscript were calculated
using Chi-square test, including the proportional representations
of C. jejuni capsular genotype and LOS class among isolates
from different sources. Fisher’s exact test of SPSS Statistics 22
(SPSS Inc., Chicago, IL, United States) was used to test the
significance of the experimental data. Statistical significance was
set at P ≤ 0.05.

RESULTS

Capsular Genotype Diversity Among
Animal Isolates
A total of 950 isolates were serotyped, accounting for 59.04%
of 1609 C. jejuni isolates. The rest ones included the isolates
with uncommon capsular genotypes and the isolates with “non-
typable (NT)” capsular genotypes (Table 1). The most four
dominant capsular genotypes included HS2, HS4A c, HS1, and

1https://pubmed.ncbi.nlm.nih.gov/?
2http://pubmlst.org/campylobacter

HS8/17, all of which reached a proportional representation of
5%. The frequency of capsular genotypes was analyzed stratifying
at 3-year intervals (Figure 1A, including 2005–2008 (n = 576),
2014–2016 (n = 138), and 2017–2019 (n = 895). No significant
difference on genotype frequency was observed among isolates
from year interval 2005–2008 and 2017–2019. Notably, compared
with the genotypes identified from other year intervals, six
capsular genotypes were not represented by isolates from 2014
to 2016, including HS4A c, HS4B c, HS15/31, HS12, HS41, and
HS42. Moreover, HS21 and HS8/17 were over-represented in
isolates from 2014 to 2016, P < 0.05, which could be probably
affected by the limitted sample size and strain source.

Overall, the combined proportional representation of 20
identified capsular genotypes among C. jejuni isolates from
different sources ranged from 63.19 to 89.45% (Figure 1B).
A total of 89.45% of human isolates belonged to 19 capsular
genotypes, whereas 85.64% cattle isolates (155/181) belonged to
17 genotypes. Seven capsular genotypes were shared by animals
isolates and human isolates, including HS2, HS4A c, HS1,
HS23/36, HS3, HS31, and HS44, accounting for 40.58% of the
whole isolates. Notably, particular capsular genotypes reached the
representation of 5% threshold in animal isolates but lacked in
human isolates, such as HS4B c and HS19 in cattle isolates, HS9
in pet isolates, HS4B c, HS31, and HS41 in monkey isolates.

Characterization of Guillain–Barré
Syndrome Associated Capsular
Genotypes
Overall, GBS associated capsular genotypes accounted for 29.46%
(n = 474) of the whole isolates (Figure 2A). The most two
common genotypes were HS2 (12.74%, 205/1609) and HS4 c
(12.18%, 196/1609), the frequencies of which reached a 10%
threshold. In contrast, the proportional representations of the left
three genotypes did not reach 3% threshold.

Notably, GBS associated capsular genotypes accounted for
48.62% (88/181) of cattle isolates, which was statistically higher
than the corresponding data of isolates from other animal sources
(P < 0.05). Frequency of HS2 was the highest in cattle isolates
(25.97%, 47/181), followed by monkey isolates and human
isolates. Moreover, the representation of HS4 c was highest
among poultry isolates (13.10%, 142/1084), followed by human
isolates. HS23/36 was dominated in human isolates (6.44%,
15/237), followed by pet isolates. HS19 was statistically dominant
in isolates from cattle (9.94%, 18/181) compared to isolates from
other sources (P < 0.05). In particular, three C. jejuni isolates of
HS41 were only derived from monkey (100%, 3/3).

Characterization of Enteritis Associated Capsular
Genotypes
A total of 579 isolates were characterized as enteritis associated
capsular genotypes (Figure 2B), accounting for 35.99% of the
whole isolates. The most three prevalent ones included HS2
(12.74%, 205/1609), HS4 c (12.18%, 196/1609), and HS8/17
(6.71%, 108/1609). The proportional representation of HS3 and
HS5/31 all reached 3% threshold.
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TABLE 1 | Comparison of capsular genotype with proportional estimates by Campylobacter jejuni isolates source and collection year.

Capsular
genotype

Source of Campylobacter jejuni isolate Collection year Total
(n = 1609)

Poultry
(n = 1084)

Enteritis
patient

(n = 233)

Cattle
(n = 181)

Pet
(n = 55)

Monkey
(n = 52)

2005–2008
(n = 576)

2014–2016
(n = 138)

2017–2019
(n = 895)

HS2 10.42%
(113/1084)

13.08%
(31/237)

25.97%
(47/181)

12.73%
(7/55)

13.46%
(7/52)

10.07%
(58/576)

16.67%
(23/138)

13.85%
(124/895)

12.74%
(205/1609)

HS4A ca 13.10%
(142/1084)

11.81%
(28/237)

11.05%
(20/181)

5.45%
(3/55)

5.77%
(3/52)

15.45%
(89/576)

0.00%
(0/138)

11.96%
(107/895)

12.18%
(196/1609)

HS1 7.84%
(85/1084)

12.66%
(30/237)

3.31%
(6/181)

12.73%
(7/55)

1.92%
(1/52)

10.76%
(62/576)

16.67%
(23/138)

4.92%
(44/895)

8.02%
(129/1609)

HS8/17 6.64%
(72/1084)

7.17%
(17/237)

8.29%
(15/181)

0.00%
(0/55)

7.69%
(4/52)

6.60%
(38/576)

18.84%
(26/138)

4.92%
(44/895)

6.71%
(108/1609)

HS6 4.43%
(48/1084)

2.53%
(6/237)

1.10%
(2/181)

0.00%
(0/55)

5.77%
(3/52)

1.39%
(8/576)

5.80%
(8/138)

4.80%
(43/895)

3.67%
(59/1609)

HS53 3.87%
(42/1084)

2.11%
(5/237)

3.87%
(7/181)

1.82%
(1/55)

0.00%
(0/52)

5.73%
(33/576)

2.17%
(3/138)

2.12%
(19/895)

3.42%
(55/1609)

HS37 3.32%
(36/1084)

4.64%
(11/237)

3.31%
(6/181)

0.00%
(0/55)

1.92%
(1/52)

3.82%
(22/576)

2.17%
(3/138)

3.24%
(29/895)

3.36%
(54/1609)

HS4B cb 1.66%
(18/1084)

2.53%
(6/237)

9.94%
(18/181)

0.00%
(0/55)

5.77%
(3/52)

3.30%
(19/576)

0.00%
(0/138)

2.91%
(26/895)

2.80%
(45/1609)

HS23/36 1.38%
(15/1084)

6.33%
(15/237)

1.66%
(3/181)

5.45%
(3/55)

3.85%
(2/52)

3.65%
(21/576)

2.90%
(4/138)

1.45%
(13/895)

2.36%
(38/1609)

HS3 1.57%
(17/1084)

7.17%
(17/237)

1.10%
(2/181)

7.27%
(4/55)

1.92%
(1/52)

4.34%
(25/576)

2.90%
(4/138)

1.34%
(12/895)

2.55%
(41/1609)

HS10 2.12%
(23/1084)

2.11%
(5/237)

2.21%
(4/181)

0.00%
(0/55)

0.00%
(0/52)

2.43%
(14/576)

2.90%
(4/138)

1.56%
(14/895)

1.99%
(32/1609)

HS19 0.46%
(5/1084)

2.95%
(7/237)

9.94%
(18/181)

3.64%
(2/55)

0.00%
(0/52)

2.78%
(16/576)

2.17%
(3/138)

1.45%
(13/895)

1.99%
(32/1609)

HS9 1.85%
(20/1084)

1.69%
(4/237)

0.55%
(1/181)

7.27%
(4/55)

0.00%
(0/52)

2.95%
(17/576)

2.17%
(3/138)

1.01%
(9/895)

1.80%
(29/1609)

HS21 1.94%
(21/1084)

3.80%
(9/237)

0.00%
(0/181)

1.82%
(1/55)

1.92%
(1/52)

1.74%
(10/576)

10.14
(14/138)

0.89%
(8/895)

1.99%
(32/1609)

HS5/31 1.29%
(14/1084)

3.38%
(8/237)

1.66%
(3/181)

1.82%
(1/55)

5.77%
(3/52)

1.39%
(8/576)

2.90%
(4/138)

2.01%
(18/895)

1.80%
(29/1609)

HS44 0.92%
(10/1084)

0.42%
(1/237)

0.55%
(1/181)

3.64%
(2/55)

1.92%
(1/52)

0.69%
(4/576)

1.45%
(2/138)

1.01%
(9/895)

0.93%
(15/1609)

HS42 0.37%
(4/1084)

2.95%
(7/237)

0.00%
(0/181)

0.00%
(0/55)

0.00%
(0/52)

1.56%
(9/576)

0.00%
(0/138)

0.22%
(2/895)

0.68%
(11/1609)

HS12 0.00%
(0/1084)

1.69%
(4/237)

0.55%
(1/181)

0.00%
(0/55)

0.00%
(0/52)

0.69%
(4/576)

0.00%
(0/138)

0.11%
(1/895)

0.31%
(5/1609)

HS41 0.00%
(0/1084)

0.00%
(0/237)

0.00%
(0/181)

0.00%
(0/55)

5.77%
(3/52)

0.00%
(0/576)

0.00%
(0/138)

0.34%
(3/895)

0.19%
(3/1609)

HS15/31 0.00%
(0/1084)

0.42%
(1/237)

0.55%
(1/181)

0.00%
(0/55)

0.00%
(0/52)

0.17%
(1/576)

0.00%
(0/138)

0.11%
(1/895)

0.12%
(2/1609)

aHS4A complex, including HS4, HS13, and HS6.
bHS4B complex, including CG8486, HS16, and HS64.

Enteritis associated capsular genotypes combined accounted
for 48.07% (87/181) in cattle isolates, which was statistically
higher than the corresponding data of other animal isolates
(P < 0.05). In detail, HS8/17 reached the highest proportional
representation of 8.29% (15/181) among cattle isolates, followed
by monkey isolates, human enteritis isolates and poultry
isolates. Moreover, HS5/31 reached the highest frequency
in monkey isolates (5.77%, 3/52), whereas HS3 reached
the highest proportional representation in human isolates
(7.30%, 17/233).

Lipooligosaccharide Class Diversity
Lipooligosaccharide types A–E were identified among food
animal isolates (Figure 2C and Supplementary Table 2). The
proportional representation of LOS class A in cattle isolates
(26.75%, 42/157) was statistically higher than the corresponding
data of poultry isolates (1.70%, 4/235) and human isolates (4.07%,
7/172) (P < 0.05). Class B was the most common LOS class locus
among each source, which was mainly distributed among cattle
isolates, followed by poultry isolates and human isolates. Notably,
the combined frequency of LOS classes AB in cattle isolates
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FIGURE 1 | Proportional representation of capsular genotypes among Campylobacter jejuni isolates. (A) Frequency of capsular genotype among isolates from
different year intervals. Colors of the lines indicate isolates from different year intervals. (B) Frequency of capsular genotype among isolates from enteritis patient,
monkey, pet, cattle, and poultry. Colors of the bars indicate isolates from different sources.

(74.52%, 117/157) was significantly higher than poultry isolates
(32.34%, 76/235) and enteritis isolates (31.98%, 55/171), P< 0.05.

Lipooligosaccharide class C was represented by 8.72%
(15/172) human isolates, followed by cattle isolates (3.18%,
5/157) and poultry isolates (4.26%, 10/235). LOS class D did not
reached a proportional representation of 3.5% among isolates
from each source. In contrast, the proportional representation of
LOS E class in human isolates (20.35%, 35/172) was statistically
higher than the corresponding data of poultry isolates and cattle
isolates (P < 0.05).

Correlation Between Specific
Lipooligosaccharide Classes and
Disease Associated Capsular Genotype
Based on the same disease associated capsular genotype,
animal isolates were distributed in more LOS types, compared
with human isolates. Disease associated capsular genotypes

were dominated in isolates with sialylated LOS classes ABC
(Figure 2D). Among 117 cattle strains with LOS ABC classes,
61.48% isolates (n = 75) were identified as disease associated
capsular genotypes. HS2 (31.15%, n = 38), HS4 c (12.30%,
n = 15), and HS19 (11.48%, n = 14) were the top three prevalent
capsular genotypes, followed by HS8/17, HS23/26, and HS5/31.
Among the 86 poultry isolates with LOS classes ABC, the top
two prevalent capsular genotypes were HS4 c (30.23%, n = 26)
and HS2 (15.12%, n = 13), followed by HS8/17 (3.49%, n = 3),
HS5/31 (2.33%, n = 2), and HS23/26 (1.16%, n = 1), the combined
frequency was 52.33% (n = 45). In the control collection of 70
enteritis isolates with LOS ABC classes, HS2 (24.29%, n = 17) was
the most common genotype, followed by HS4 c (8.75%, n = 6),
HS19 (7.14%, n = 5), HS8/17 (7.14%, n = 5), and HS5/31 (1.43%,
n = 1), the combined frequency was 48.57% (n = 34).

Enteritis associated capsular genotype HS3 was the most
prevalent serotype among isolates with LOS E, indicating a
consistency between LOS class and capsular genotype. Among
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FIGURE 2 | Proportional representations of the disease related capsular genotypes and lipooligosaccharide classes among Campylobacter jejuni isolates from
different sources. (A) GBS associated capsular genotype. (B) Enteritis associated capsular genotype. (C) Lipooligosaccharide classes. (D) Heat map demonstrates
the correlation between lipooligosaccharide class and disease associated capsular genotype.

the 35 enteritis isolates with LOS class E, 60% (21/35) of human
isolates were identified as disease associated capsular genotypes,
including HS3 (10/35, 28.57%), HS23/26 (6/35, 17.14%), HS8/17
(2/35, 5.71%), HS4c (2/35, 5.71%), and HS19 (1/35, 2.86%).
In contrast, HS3 (1/9, 11.11%) and HS8/17 (1/9, 11.11%) were
represented by 9 cattle isolates with LOS E class, whereas 3
capsular genotypes (HS4c, HS23/26, and HS3) were present
among 29 poultry isolates with LOS E class (27.59%, n = 8).
In this study, only three monkey isolates were identified as
GBS maker serotype HS41 (mentioned in 3.2), all of which
belonged to LOS class A.

Sequence Type of Campylobacter jejuni
With Disease Associated Capsular
Genotype
Animal isolates (n = 37) were assigned to seven common clonal
complexes (CCs) representing thirteen known STs. CC-22 was
most dominant clonal complex (10/37, 27.03%), followed by
CC-21 and CC-464. Moreover, 7 animal isolates were typed as
novel STs, the MLST profiles of which did not match the known
STs in MLST database (Supplementary Table 3). A comparison
of MLST profiles between human isolates and animal isolates
was conducted to access genetic relatedness (Figure 3). Human
enteritis isolates (n = 28) clustered into 8 CCs represented by
16 STs and 1 novel ST. CC-464 (11/28, 39.2%) and CC-21 (6/28,
21.4%) were the most common ones. In contrast, regarding to 32

GBS isolates worldwide, 15 different STs were identified, which
were classified into seven CCs, the most common one was CC-
22 (15/32, 46.8%), followed by CC-362 (8/32, 25.0%) and CC-21
(4/32, 12.5%). These GBS strains of CC-22 were mainly isolated
from Netherlands, followed by Japan, China, United States, and
Mexico, whereas GBS isolates of CC-21 were all isolated from
Netherlands. Notably, although GBS isolates were sampled all
over the world, whereas animal isolates and enteritis isolates
were sampled in China, zero allele distance was observed among
isolates from different countries and species, using the seven
house-keeping genes in MLST, such as the isolates with ST-4253
from cattle and enteritis, isolates with ST-464 from cattle and
patients with enteritis, isolates with ST-22 from GBS patients,
poultry, and pet, as well as isolates with ST-362 from GBS patients
and monkey. Our result shown a close genetic relationship
between animal isolates and human disease isolates.

Clonal complex diversities among isolates from food animal
and human were showed in Venn diagram (Figure 4A and
Supplementary Table 4). ST-21 complex and ST-464 complex
were represented by isolates from all sources. ST-354 complex
and ST-45 complex were unique for animal isolates. Moreover,
four CCs (ST-1034 complex, ST-692 complex, ST-574 complex,
and ST-607 complex) were only observed among enteritis
isolates, whereas two CCs (ST-42 complex and ST-48 complex)
were only represented by GBS isolates. In particular, all of the
CCs represented by cattle isolates were also observed among
GBS isolates (Figure 4B and Supplementary Table 5). ST-354
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FIGURE 3 | Genetic diversity of Campylobacter jejuni isolates from animals and patients. (A) The minimum spanning tree shows population structure of C. jejuni
isolates. Circles correspond to different sequence types. The size of circle proportional to the number of isolates with a certain sequence type. Colors of the circles
indicate isolates from different sources. (B) A tree constructed by Neighbor Joinning algorithm. Saitou–Nei criterion was selected for tree branch-length minimization.

complex and ST-45 complex were unique represented by poultry
isolates. Notably, a definite correlation between C. jejuni capsular
genotype and CC distribution could be suggested by our study,
strains with HS19 could be genetically related to C. jejuni
population of ST-22 complex, whereas strains with HS41 could
be genetically related to C. jejuni population of ST-362 complex.

DISCUSSION

Campylobacteriosis is a worldwide public health problem
with numerous socio-economic impacts, ranging from mild
symptoms to fatal illness (Hansson et al., 2018), and it is
clear that not all C. jejuni strains are equally important as
human pathogens (Nichols et al., 2012). To our knowledge,
this is the first comprehensive genomic epidemiological study
to reveal the genetic diversity and pathogenic correlation of
C. jejuni isolates from various animals in China, within a
long sampling time span. The characterization of the genetic
pathogenicity of C. jejuni is essential for better infection control
practice and clinical treatment in humans. Here, we observed

that part of animal isolates shared disease associated capsular
genotypes with human clinical isolates. Notably, these zoonotic
isolates also belonged to the dominant CCs which were over-
represented in the clinical isolates from GBS and enteritis
patients, specifically CC-22 and CC-21. Notably, CC-21 is
among the most common causes of acute human infection
(Sheppard et al., 2009), while CC-22 isolates account for up
to a third of infections among patients who developed GBS
following campylobacteriosis (Islam et al., 2009). Notably, ST22
clonal complex has also been described as “high-risk” lineage,
which was also over-represented in isolates that lead to the
development of Campylobacter enterocolitis associated post-
infection-Irritable Bowel Syndrome in United States (Peters et al.,
2021). In this study, the same “high-risk” lineage was also
observed among the animal isolates from China and the GBS
isolates worldwide (Netherlands, United States, Mexico, Japan,
and China), indicating the pathogenic potential of zoonotic
isolates need to be highlighted.

Our current data revealed that disease associated serotype
reached the highest proportional representation in C. jejuni
isolates from cattle, which enhanced our understanding of the
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FIGURE 4 | Comparison of sequence types among Campylobacter jejuni isolates from different sources. These isolates include 37 animal isolates with disease
associated serotypes, 28 enteritis isolates, and 32 GBS isolates from PubMLST. (A) Venn diagram shows the sequence types of isolates from GBS patients, enteritis
patients, and animals. (B) Venn diagram shows the sequence types of isolates from GBS patients, enteritis patients, poultry, and cattle.

pathogenic potential from zoonotic isolates. Recently, human
isolates have been reported being closely related to cattle isolates,
although the epidemiological meta data necessary to determine
causality were unavailable (Hsu et al., 2020). Based on the
idea of “one health” (Wolfe et al., 2007), human infection of
zoonotic disease needs to be controlled from animals. The source
of human infection is thought to be the massive reservoir
of C. jejuni in animal population (Parker et al., 2005), since
C. jejuni isolates colonize in the intestines of various hosts.
While exposure to retail chicken meat has been reported as the
major risk factor of campylobacteriosis (Huang et al., 2017),
many isolates from poultry carcasses and products did not show
genetic relatedness to human pathogenic strains (Zhang et al.,
2010b). Notably, drinking of unpasteurized milk and contact with
domestic animals could be the other ways ofC. jejuni propagation
(Wilson et al., 2008). Our results showed that the frequency of
disease associated serotypes combined was statistically higher
in cattle isolates compared to isolates of other animals. HS19
was especially over-represented in cattle isolates, which has been
reported as the major serotype prevalent in C. jejuni isolates from
GBS patients (Heikema et al., 2015).

Capsular genotype and LOS class have been concerned the
two direct indicators of campylobacteriosis. Association between
LOS class and disease associated capsular genotype was of
considerable interest for a better understanding of C. jejuni
pathogenesis mechanism. Striking genetic correlation has been
found between human clinical isolates with GBS associated
serotypes and LOS classes (Penner et al., 1983). In our research,
this correlation was not only confirmed by human clinical isolates
but also observed among animal isolates. Specially, HS19 was
prevalent in the enteritis isolates with LOS classes AE, which was
also over-represented in cattle isolates with LOS AB classes. In
contrast, HS23/26 was dominant in enteritis isolates with LOS E
class, which was also present in cattle and poultry isolates with
LOS B class. Moreover, GBS maker serotype HS41 was only found
in the monkey isolates belonging to the LOS A class, indicating a
potential hazard of animal origin.

Although no evident genetic linkage between LOS
classification and capsular genotyping in enteritis cases has

been previously reported (Karlyshev et al., 2005), our results
showed that LOS E was the second dominated LOS class in
enteritis isolates, followed by LOS B. Enteritis associated serotype
HS3 was solely associated with enteritis isolates of LOS E class,
indicating a correlation attributed to the genes shared by LOS
and capsules. The bi-functionality of some enzymes involved
in polysaccharide biosynthesis may additionally explain why
particular LOS and capsule genotypes are linked, associated
genes included cj1152 and gmhA2 (Karlyshev et al., 2005). More
in-depth studies on gene functionalities of the biosynthesis genes
of LOS and capsule are needed to explain why certain LOS classes
and capsules are genetically linked together (Heikema et al.,
2015). Moreover, our results showed that, unlike the sialylation
of isolates with LOS class A could trigger GBS, LOS class E is not
characterized as sialylation, indicating sialylation is not required
for human diarrheal disease, which was is consistent with the
previously reported one (Hameed et al., 2020), both the sialylated
and non-sialylated LOS can be used for vaccine design.

Capsule multiplex PCR approach has been introduced as
a fast, readily available and reliable method, allowing high-
throughput genotyping of a large dataset of isolates within several
hours (Poly et al., 2015). In contrast, whole genome sequencing
(WGS) has emerged as an effective method to examine the
genomic characteristic of Campylobacter isolates with high-
resolution, novel types of “non-typable” isolates could be possibly
identified. Multiplex PCR approach and WGS analysis offer
complementary strengths for isolates identification. WGS could
provide isolates with huge genomic information, at present, it
takes at least 1 month for isolates sequencing, including the
preparation of bacterial DNA, establishment of DNA library,
sequencing, reads assembly, and genome annotation. In this
study, since we mainly focused on the prevalence of disease
associated genotypes among a large dataset of C. jejuni isolates,
we chose PCR approach for serotype characterization. Besides
of, the serotyped isolates, the left isolates could belong to the
uncommon serotypes exist in Penner serotyping scheme but not
be involved in this study, as well as the undiscovered serotypes.
In fact, non-typable isolates have been consistently reported
since Penner first introduced serotyping scheme. The phase
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variable nature of CPS expression in C. jejuni, especially the
exchange of capsular genes by horizontal gene transfer could
generate new capsular genotypes (Bacon et al., 2001; Karlyshev
et al., 2005; Clarke et al., 2021). In the future, isolates with
undiscovered genotypes will be sequenced, CPS gene clusters of
these isolates will be investigated using comparative genomics
techniques. Paralog or unique sequences in CPS gene cluster
could be extracted and be employed as the amplification target
for capsular genotypes identification.

Epidemiological data could provide accurate assessment of
the burden of campylobacteriosis. In this study, for a better
understanding of the pathogenic potential of food animal isolates,
C. jejuni isolates collected from representative putative animal
hosts within a long sampling time span were genotyped. One
drawback of this study is that the quantity of human isolates was
much smaller than animal isolates. Largely due to most of the
campylobacteriosis cases are self-limiting as well as the rigorous
cultivation condition of C. jejuni, disease associated human strain
has been still insufficient in Africa and Asia, not to mention
about the prevalence information of capsular types (Islam et al.,
2009). In view of the quantity of human isolates, the reported
human disease associated capsule and lipooligosaccharide types
were especially identified, domestic and foreign human isolates
from enteritis and GBS patients were involved in this study as the
control isolates. As C. jejuni associated food safety problems have
been increasingly highlighted, more and more human isolates
will be monitored and characterized through the collaboration
between hospitals and research institutes. More human isolates
will be identified in our future research to confirm or disprove the
assumption generated from this study. Moreover, animal isolates
from a wider geographically area (other regions in China and
other countries) will also be characterized using genotyping and
in vitro pathogenic experiment.

Campylobacteriosis is a mainly foodborne disease, food
animal plays a primary role. Firstly, this study contributed
to a better understanding of the pathogenicity potential of
representative food animal isolates, which were collected from
a long sampling time span and a wide range of putative
hosts. Secondly, distributions of disease associated capsular
genotypes and LOS classes in animal isolates were firstly studied.
Correlations between LOS class, capsular genotypes and CCs
were investigated. High-risk lineages were found dominated in
the isolates with disease associated capsular types, including
the isolates from GBS patients worldwide and food animals
in China, suggesting the possibility of clonal spread of the
disease associated capsular genotype isolates across different
regions and hosts. Last but not least, our results not only
confirmed the previously reported genetic relatedness between
cattle isolates and human pathogenic strains, but also indicated
that disease associated capsular genotypes and LOS classes
all reached a higher frequency in cattle isolates than poultry
isolates, providing genetic evidence for these food animal isolates
harbor human clinical isolates alike pathogenic characteristics.
Generally speaking, this study provided critical supporting
data to understand the hazard of C. jejuni isolates from food
animals, suggesting cattle isolate with disease associated capsular
genotypes is especially need to be eliminated for food safety

control, which will lay a foundation for the development of
campylobacteriosis biocontrol in animal sector.
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