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Objectives: Chlorhexidine digluconate (chlorhexidine) and Listerine R© mouthwashes
are being promoted as alternative treatment options to prevent the emergence of
antimicrobial resistance in Neisseria gonorrhoeae. We performed in vitro challenge
experiments to assess induction and evolution of resistance to these two mouthwashes
and potential cross-resistance to other antimicrobials.

Methods: A customized morbidostat was used to subject N. gonorrhoeae reference
strain WHO-F to dynamically sustained Listerine R© or chlorhexidine pressure for 18 days
and 40 days, respectively. Cultures were sampled twice a week and minimal inhibitory
concentrations (MICs) of Listerine R©, chlorhexidine, ceftriaxone, ciprofloxacin, cefixime
and azithromycin were determined using the agar dilution method. Isolates with
an increased MIC for Listerine R© or chlorhexidine were subjected to whole genome
sequencing to track the evolution of resistance.

Results: We were unable to increase MICs for Listerine R©. Three out of five cultures
developed a 10-fold increase in chlorhexidine MIC within 40 days compared to
baseline (from 2 to 20 mg/L). Increases in chlorhexidine MIC were positively associated
with increases in the MICs of azithromycin and ciprofloxacin. Low-to-higher-level
chlorhexidine resistance (2–20 mg/L) was associated with mutations in NorM. Higher-
level resistance (20 mg/L) was temporally associated with mutations upstream of the
MtrCDE efflux pump repressor (mtrR) and the mlaA gene, part of the maintenance of
lipid asymmetry (Mla) system.
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Conclusion: Exposure to sub-lethal chlorhexidine concentrations may not only
enhance resistance to chlorhexidine itself but also cross-resistance to other antibiotics
in N. gonorrhoeae. This raises concern regarding the widespread use of chlorhexidine
as an oral antiseptic, for example in the field of dentistry.

Keywords: Neisseria gonnorhoeae, antimicrobial resistance, mouthwash, Listerine R©, chlorhexidine, cross-
resistance

INTRODUCTION

The ongoing emergence of antimicrobial resistance (AMR) in
Neisseria gonorrhoeae has motivated research into antibiotic-
sparing treatment options to treat this pathogen (Chow et al.,
2021; Van Dijck et al., 2021b). These have included the use
of antiseptic mouthwashes to prevent and treat oropharyngeal
infection with N. gonorrhoeae (Chow et al., 2017, 2020, 2021;
Van Dijck et al., 2021a,b). The oropharynx is thought to play
an important role in both the transmission of N. gonorrhoeae
and the acquisition of AMR (Lewis, 2015). This is related to a
number of factors, including poor antimicrobial penetration and
horizontal gene transfer of AMR from commensal Neisseria at
this site (Lewis, 2015; Fiore et al., 2020).

Two mouthwashes have been evaluated in clinical and
in vitro studies thus far – Listerine R© and chlorhexidine
digluconate. Listerine Cool Mint R© (henceforth termed
Listerine R©) is a bactericidal mouthwash containing three
essential oils [eucalyptol (0.092%); menthol (0.042%) and
thymol (0.064%)], methyl salicylate (0.060%) and ethanol
(21.6%) (Supplementary Material 1). It exerts its bactericidal
effect via a number of pathways, including disruption of the
cytoplasmic membranes (Faleiro, 2011; Nazzaro et al., 2013).
In vitro, Listerine R© was effective against N. gonorrhoeae and in a
clinical trial, a single Listerine R© mouthwash and gargle reduced
pharyngeal culture positivity by 84% (Chow et al., 2017). Results
from subsequent studies suggest that this effect is transient. Two
large randomized controlled trials have found that the regular
use of Listerine R© in men having sex with men does not reduce the
incidence of N. gonorrhoeae or other STIs (Chow et al., 2021; Van
Dijck et al., 2021b). Resistance to essential oils has been reported
in several bacteria but never in N. gonorrhoeae. In Staphylococcus
aureus, resistance to Melaleuca alternifolia (tea tree oil) has
been detected (Nelson, 2000). After exposure to sub-inhibitory
concentrations of the essential oils Leptospermum scoparium
(manuka), Origanum majorana (marjoram) and Origanum
vulgare (oregano), S. aureus acquired resistance to a wide range
of antibiotics including ampicillin, erythromycin, neomycin
and sulfamethoxazole (Turchi et al., 2019). In Salmonella
senftenberg, exposure to the basil oil component, linalool,
resulted in adaptation to the basil oil mixture, as well as cross
resistance to the antibiotics trimethoprim, sulfamethoxazole,
chloramphenicol and tetracycline - increasing their MICs by 2-
to 32- fold (Kalily et al., 2017). At least one group of authors have
claimed that Listerine does not induce resistance to essential oils
but provided little experimental evidence to back this claim up
(Hughes and Dean, 2016).

Chlorhexidine digluconate (henceforth termed chlorhexidine)
is widely regarded as the gold standard oral antiseptic

(Balagopal and Arjunkumar, 2013). Its antibacterial mechanism
of action is based on damaging the bacterial cytoplasmic
membrane and subsequent leakage of cytoplasmic components
(Cieplik et al., 2019). In vitro studies have established that
N. gonorrhoeae is highly susceptible to killing by chlorhexidine
(Rabe and Hillier, 2000; Victoria et al., 2018; Van Dijck et al.,
2020). However, a recent clinical trial was ended early since twice
daily gargling with chlorhexidine for six days failed to eradicate
N. gonorrhoeae in the oropharynx (Van Dijck et al., 2021a).

To the best of our knowledge, decreased susceptibility to
chlorhexidine has never been reported in N. gonorrhoeae before.
It has, however, been reported in several other bacteria including
Enterobacter spp., Pseudomonas spp., Proteus spp., Providencia
spp., Enterococcus spp., and an array of oral bacterial species
(Emilson and Fornell, 1976; Wade and Addy, 1989; Kampf, 2016;
Kitagawa et al., 2016; Wang et al., 2017). One of the mechanisms
responsible for chlorhexidine resistance is alteration of bacterial
cell membranes (Kampf, 2018; Cieplik et al., 2019).

For example, in Pseudomonas aeruginosa and P. stutzeri,
alterations in the outer membrane and lipopolysaccharide
profiles can act as a barrier to prevent chlorhexidine from
entering the cell (Tattawasart et al., 2000; Guérin-Méchin et al.,
2004). Upregulation of efflux pumps has also been found to
confer resistance to chlorhexidine. For example, upregulation
of the resistance-nodulation-division (RND) efflux protein,
AdeABC, resulted in reduced chlorhexidine susceptibility in
Acinetobacter baumannii and Escherichia coli (Hassan et al.,
2013; Kampf, 2018; Cieplik et al., 2019). Upregulation of
RND pumps results in resistance to a number of clinically
important bacteria-antimicrobial combinations (Maris, 1991;
Knapp et al., 2013; Fernández-Cuenca et al., 2015). In Klebsiella
pneumoniae, for example, exposure to chlorhexidine led to
resistance to the last-resort antibiotic, colistin, mediated by
the major facilitator superfamily (MFS) efflux pump gene
(Wand et al., 2017).

The use of antiseptic mouthwashes remains widespread
(Walker et al., 2016). A representative sample of residents in
the Grampian region of Scotland, for example, found that 62%
reported using mouthwash, and 25.1% did so daily (Macfarlane
et al., 2010). These considerations provided the motivation for
the current study where we assessed if resistance to chlorhexidine
and Listerine R© could be induced in N. gonorrhoeae. We also
evaluated if these antiseptics could induce cross-resistance
to important antibiotics. Currently, N. gonorrhoeae infection
is treated with ceftriaxone mono therapy, or dual therapy
with ceftriaxone and azithromycin (Cyr et al., 2020; Unemo
et al., 2020). An important alternative potential treatment
option, when susceptibility has been confirmed, is ciprofloxacin
(Klausner et al., 2021).
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MATERIALS AND METHODS

Experimental Procedures
We exposed N. gonorrhoeae reference strain WHO-F to
increasing concentrations of Listerine Cool Mint R© (Johnson &
Johnson, New Brunswick, NH, United States) and Corsodyl
containing chlorhexidine (Supplementary Material 1) using
a continuous-culture device known as a morbidostat (Toprak
et al., 2013; Verhoeven et al., 2019). According to the EUCAST
(v11.0) breakpoints for antimicrobial susceptibility, WHO-
F is susceptible to azithromycin, cefixime, ceftriaxone and
ciprofloxacin with minimal inhibitory concentrations (MICs)
of 0.125, <0.016, <0.002, and 0.004 mg/L, respectively1

(Unemo et al., 2016).
The morbidostat was built following the detailed instructions

by Toprak et al., modified for N. gonorrhoeae according to
Toprak et al. (2013), Verhoeven et al. (2019). The experiment
was carried out exactly as previously reported in the context
of a N. gonorrhoeae morbidostat experiment selecting for
azithromycin resistance in our laboratory (Laumen et al., 2021).
In brief, N. gonorrhoeae cultures were put under sustained
Listerine R© (n = 6) and chlorhexidine pressure (n = 5), whereas
two negative control cultures where exclusively exposed to
gonococcal (GC) broth supplemented with 1% IsoVitaleX (BD
BBLTM) and vancomycin, colistin, nystatin and trimethoprim
selective supplement (VCNT), hereafter called GC medium. GC
broth contained per liter, 15 g of proteose peptone 3 (Carl Roth,
Karlsruhe), 1 g of soluble starch, 4 g of K2HPO4, 1 g of KH2PO4
and 5 g of NaCl supplemented with 1% IsoVitaleX (BBL). The
initial concentrations used in these experiments were based on
early in vitro experiments whereby the growth of N. gonorrhoeae
was investigated after 60 min of exposure to ten-fold dilutions
of the mouthwashes. The highest mouthwash concentration that
resulted in a lawn of N. gonorrhoeae growth after inoculation,
comparable to the control plate where no mouthwash was added,
was used as a starting dilution of the mouthwash.

The initial chlorhexidine concentration used was 0.2 mg/L
and was increased twice weekly until a concentration of 80 mg/L
was attained in the morbidostat reservoir. The Listerine R©

concentration was increased in steps from a 100-fold to two-fold
dilution. The antiseptics were diluted in GC medium.

Sampling and Agar Dilution
Twice a week, culture suspensions were inoculated on blood
agar plates and incubated for 24 h at 36.5◦C and 5-7% CO2.
Cultures were checked for purity and transferred in 1 mL of
skim milk supplemented with 20% glycerol and stored at –
80◦C. Once the morbidostat experiment was terminated, stored
samples were cultured, a single colony was taken and used for
MIC determination and whole genome sequencing.

Minimal inhibitory concentrations (MICs) were determined
using agar dilution for Listerine R©, chlorhexidine, azithromycin,
cefixime, ceftriaxone and ciprofloxacin according to the
guidelines of CLSI (Wayne, 2020). Isolates with an increase in
MIC for Listerine R© or chlorhexidine were subjected to WGS,

1www.eucast.org

as were an isolate from the previous, first and last sampling
occasion of the same morbidostat culture.

Spearman’s correlation was used to determine the correlation
between the MIC of each mouthwash and the MIC of
azithromycin, cefixime, ceftriaxone and ciprofloxacin. Only the
first sampling timepoint and each timepoint the MICs of the
mouthwashes increased were included for this analysis.

Whole Genome Sequencing and Analysis
Genomic DNA was isolated using MasterPure complete DNA
and RNA purification kit (Epicenter, United States) according
to the manufacturer’s instructions. The DNA concentration was
assessed using the Qubit ds DNA HS Assay Kit in a Qubit
Fluorometer 3.0 (Thermo Fisher Scientific, United States). Whole
genome sequencing of clones was performed via 2 × 250 bp
paired end sequencing (Nextera XT sample) preparation kit and
Miseq, Illumina Inc United States.

Genetic changes facilitated by the mouthwashes were
explored by comparing whole genome sequences against the
reference genome.

Reads were mapped against the reference WHO-F
(NZ_LT591897) and variants were extracted using the CLC
Genomics Workbench v20 (CLC Bio, Cambridge, MA,
United States). Variants were manually examined to establish
true variants, which were consequently confirmed by de novo
assemblies. In short, Shovill (v1.0.4) (Seemann, 2019) was used
for assembly which uses SPAdes (v3.14.0) (Prjibelski et al.,
2020) with the following parameters: –trim–depth 150–opts
“–cov-cutoff auto –careful.” The quality of the contigs were
verified with Quast (v5.0.2) (Gurevich et al., 2013) followed
by annotation using Prokka (v1.14.6) (Seemann, 2014). All
the sequences generated in this study were submitted to
Bioproject PRJNA756860.

RESULTS

Phenotypic Susceptibility Assessment of
Neisseria gonorrhoeae Isolates
Following Listerine R© Exposure
All six cultures exposed to Listerine R© lost viability within
18 days after the start of the experiment. This occurred
right after the Listerine R© concentration in the reservoir was
increased from a 5-fold to a 2-fold dilution. The Listerine R©

MICs did not increase during the course of the experiment
(Supplementary Material 2).

Phenotypic Susceptibility Assessment of
Neisseria gonorrhoeae Isolates
Following Chlorhexidine Exposure
For the five cultures under chlorhexidine selection pressure,
MICs of three cultures increased 10-fold (From 2 mg/L at baseline
to 20 mg/L after 40 days of exposure) (Figure 1: F7, F10 and
F11). For two other cultures, F8 and F9, exposure to GC medium
with a chlorhexidine concentration of 20 mg/L added from
day 21 revealed initial decreased growth (data not shown) and
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FIGURE 1 | Minimal Inhibitory Concentration of 5 Neisseria gonorrhoeae WHO-F cultures under chlorhexidine selection pressure over time. Filled circles depict the
timepoints that were sequenced. Variants observed in WGS data are indicated in the yellow boxes. Based on these data, the duration of their detection is depicted
via black arrows.

subsequent no growth after 37 days. The MICs of these cultures
increased 4-fold from 2 to 8 mg/L (Figure 1: F8 and F9). The
MICs of the two negative control cultures remained 2 mg/L.

The MICs of azithromycin, cefixime, ceftriaxone and
ciprofloxacin increased from 0.125, 0.002, <0.001 and
0.004 mg/L to 0.5, 0.004, 0.002 and 0.06 mg/L, respectively
(Supplementary Material 2). The MICs of azithromycin and
ciprofloxacin correlated positively with the chlorhexidine MIC:
rs = 0.743 (p = 0.003); rs = 0.620 (p = 0.018), respectively.

Whole-Genome Sequencing Analysis of
Chlorhexidine-Adapted Strains
All five cultures developed variants in the gene encoding
the multidrug efflux MATE transporter NorM (Figure 1 and
Table 1). In total, six different variants were observed related
to the norM gene: a single nucleotide polymorphism (SNP), a
one base pair (bp) insertion and a 22-bp repeat unit within the

putative –35 promoter element IV, a SNP and a 11-bp repeat unit
at the putative ribosome binding site (RBS) and a SNP in the
coding region (Figures 1, 2 and Table 1). In all except one culture
(F8), a SNP in the putative –35 promoter element was observed,
and in most cases this SNP arose at the timepoint before the MIC
started to increase and remained present when a MIC of 20 mg/L
was reached (Figure 1; F7, F10 and F11). In two of these cultures,
F7 and F10, an additional SNP at the RBS was observed at the
same timepoints. Once the MIC increased to 8 and 20 mg/L,
either the repeat insertion at the RBS or the SNP in the NorM
encoding region occurred.

All isolates with a MIC of 20 mg/L (10-fold increase compared
to baseline), carried variants in the promoter of the MtrCDE
multidrug efflux pump (Figure 1 and Table 1). In cultures F7
and F10, a C-to-T transition mutation 120 bp upstream of
the mtrC start codon (mtr120) was observed, resulting in a
consensus –10 element generating a novel promoter for MtrCDE
transcription (Ohneck et al., 2011). Culture F11 acquired a
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TABLE 1 | Variants occurring in at least 2 cultures of N.gonorrhoeae strain WHO-F exposed to chlorhexidine in the morbidostat set-up.

Locus tag Variants in WHO-F cultures by vial number

Gene WHO-F NZ_LT591897 F7 F8 F9 F10 F11

5′ UTR mtrR C7S05_RS08275 G131A*(Ohneck et al.,
2011)

G131A* delA57*(Hagman and
Shafer, 1995)

(5′ UTR) norM C7S05_RS02320 C104T*(Rouquette-
Loughlin et al., 2003),
Tyr294Cys,
A7G*(Rouquette-
Loughlin et al.,
2003)

Ins(GACGGCAC
GGTATTTTTTA
aCTA)102*

C104T* C104T*, A7G*,
insTTTTTATTG
AC20*

C104T*

mlaA C7S05_RS13185 Asn122del Pro144Ser

Ins: insertion del: deletion UTR: Untranslated Region.
* Indicates the number of base pairs upstream of the translated region. Variants located within the UTR are described as nucleotide changes, variants in the translated
region are described as amino acid changes. The numbers in superscript are references to previous studies that have found these same mutations in N. gonorrhoeae.

FIGURE 2 | All variants observed in the norM gene and its promoter. Insertions are indicated in blue while SNPs are indicated in red. The coding region of the gene is
colored yellow, and the promoter elements are green.

single base pair deletion within the 13-bp inverted repeat
sequence in the promoter of the MtrCDE repressor MtrR
(Hagman and Shafer, 1995).

In addition, variants in the mlaA gene, part of the maintenance
of lipid asymmetry (Mla) system were found in two of the three
isolates with a MIC of 20 mg/L (Figure 1 and Table 1). In culture
F7, asparagine at position 122 was deleted whilst in culture F11 a
transition of proline to serine was detected at position 144.

A comprehensive list of all variants detected is provided in
Supplementary Material 3. Variants found in only one culture
included two penicillin binding proteins (PBP1a and PBP3,
culture F7), an outer membrane porin (PorB, culture F11) and
protein (FetA, culture F10) and an ABC transporter substrate-
binding protein (SpuD, culture F9).

DISCUSSION

We report the first experimental evidence that sustained
chlorhexidine exposure can result in reduced susceptibility to
chlorhexidine and other antimicrobials in N. gonorrhoeae. In our

experiments, the first step in this pathway involved mutations in
the gene encoding NorM.

The NorM protein is a Na+-drug antiporter and member of
the multidrug and toxic compound extrusion (MATE) family
(Kuroda and Tsuchiya, 2009). Two point mutations upstream
of the norM gene have previously been reported to result in
increased expression of norM and hence decreased gonococcal
susceptibility to several cationic compounds and ciprofloxacin
(Rouquette-Loughlin et al., 2003; Sánchez-Busó et al., 2021).
These two variants were also observed in this current study: a
C-to-T mutation in the putative –35 promoter element and an
A-to-G mutation 7 bp upstream of the ATG codon resulting
in an alteration of the putative RBS. In N. gonorrhoeae strain
FA19, these mutations increased the MIC for ciprofloxacin 2 to
4-fold (Rouquette-Loughlin et al., 2003; Golparian et al., 2014).
In our experiments, two isolates acquired both mutations in
the absence of any other variants. The MIC for ciprofloxacin
increased 2-fold in one of these isolates but did not increase
in the other isolate. In both cases, the MICs for chlorhexidine
remained similar to baseline. Besides other variants (insertion
and repeat units) within the putative –35 promoter element and
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the RBS, one SNP was found in the coding region of norM. The
tyrosine to cysteine substitution at position 294 is located at the
cation-binding site.

Previous studies have found that sodium ion binding at
the cation-binding site causes a conformational rearrangement
which in turn leads to the disruption of the protein-drug
interactions and triggers the extrusion of the bound drug into the
periplasmic space (Lu et al., 2013; Leung et al., 2014). Residue
294 plays an important role in the stabilization of the sodium
ion at the binding site, which is crucial for the subsequent drug
extrusion stage (Supplementary Material 4) (Leung et al., 2014).
Further experimental work will be required to assess the effect
of this mutation.

Mutations in the mtrCDE efflux pump were also prominent.
In all three cultures that showed a 10-fold increase in
chlorhexidine MIC, a variant in the region between the
mtrCDE efflux pump and its repressor MtrR was observed. In
cultures F7 and F10 (Figure 1 and Supplementary Table 1)
this was the well-known SNP 120bp upstream of the mtrC
start codon, resulting in a consensus –10 element generating
a novel promoter for mtrCDE transcription (Warner et al.,
2008; Ohneck et al., 2011). In culture F11, a single-base pair
deletion in the inverted repeat sequence positioned within
the mtrR promoter was found (Hagman and Shafer, 1995).
This variant represses transcription of the repressor MtrR and
hence enhances expression of mtrC. Since mutations in the
MtrCDE efflux pump are well known determinants of resistance
to tetracyclines, macrolides and cephalosporins, it is plausible
that these mutations are responsible for the observed cross-
resistance to these antimicrobial classes in our experiment
(Unemo and Shafer, 2014).

Isolates with reduced susceptibility to chlorhexidine possessed
mutations in mlaA. Similarly, mutations in the mlaA gene
were previously identified in N. gonorrhoeae clones resistant
to the quaternary ammonium surfactant dodecyl-prydinium
bormide (C12PB) (Calado et al., 2021). The maintenance of lipid
asymmetry system (Mla) is responsible for retrograde transport
of phospholipids, which is crucial for maintaining and repairing
the outer membrane of Gram-negative bacteria, including
N. gonorrhoeae (Baarda et al., 2019). The asymmetry of this
membrane provides a more effective barrier to toxic lipophilic,
hydrophilic and amphipathic molecules than a phospholipid
bilayer would be (Baarda et al., 2019). By maintaining the lipid
asymmetry of outer membrane, MlaA, may thus play a role in
defense against compounds such as chlorhexidine that work by
disturbing membrane function. Deletion of the MlaA protein
has been shown to disrupt membrane asymmetry and increase
susceptibility to antibiotics that target the outer-membrane/cell
wall in N. gonorrhoeae (Baarda et al., 2019).

MlaA may also affect chlorhexidine susceptibility via its role
in membrane vesicle genesis. Experiments in Porphyromonas
gingivalis have found that membrane vesicles could bind to
chlorhexidine and thereby protect the bacteria (Grenier et al.,
1995). In N. gonorrhoeae, Haemophilus influenzae and Vibrio
cholerae, deletion of mlaA has been shown to increase the
production of membrane vesicles in vitro (Roier et al., 2016;
Baarda et al., 2019). A number of factors such as the availability

of iron, presence of human defensins and anatomical site
of infection in murines have been shown to influence the
expression of mlaA (Baarda et al., 2019). The complexity of this
system in addition to the recent emphasis on the role of outer
membrane vesicles in antimicrobial resistance in N. gonorrhoeae
suggests that further in vivo work will be required to establish
the phenotypic effects of the mutations we found in mlaA
(Supplementary Material 5) (Unitt et al., 2021).

Previous studies reported similar chlorhexidine MICs
in N. gonorrhoeae as in the current study (range 2–8mg/L)
(Waitkins and Geary, 1975; Rabe and Hillier, 2000; Victoria
et al., 2018). Here, we were able to effect a 10-fold increase
in chlorhexidine MIC and concomitant minor increases
in azithromycin, ciprofloxacin and cefixime MICs. One
of the major limitations of this study is that we have not
experimentally confirmed that specific genetic variants result in a
particular resistant phenotype. Furthermore, there are important
differences in the exposure of N. gonorrhoeae to antiseptic agents
between our in vitro model and what might transpire in vivo. The
10-fold increase in chlorhexidine MIC required a long period of
exposure (33–40 days) and considerably lower concentrations
of chlorhexidine (highest concentration 80 mg/L), than those
used in clinical practice (typically 2000 mg/L). This important
limitation means that our results are best conceptualized as
a worst-case scenario. We cannot conclude from our results
that even extensive clinical use of chlorhexidine would have
an influence on antimicrobial susceptibility. On the other
hand, in vivo, chlorhexidine concentrations and substantivity
in the oral cavity can be affected by food, drinks, pH, saliva
and serum (Waitkins and Geary, 1975; Rabe and Hillier, 2000;
Tomás et al., 2010; Abouassi et al., 2014; Cieplik et al., 2019).
Furthermore, chlorhexidine is unlikely to penetrate and kill
N. gonorrhoeae localized within pharyngeal epithelial cells
intracellularly or in crypts (Veien et al., 1976; Lewis, 2015; Chow
et al., 2020). Its penetration into biofilms is also likely incomplete
(Cieplik et al., 2019). These factors might create concentration
gradients of chlorhexidine that could in turn select for resistance.
Chlorhexidine may also select for resistance in commensal
Neisseria species. This resistance could then be passed on to
N. gonorrhoeae via transformation (Spratt et al., 1989; Ameyama
et al., 2002). Anticipating worst-case scenarios is vital for species
such as N. gonorrhoeae which are at risk of becoming untreatable
with antibiotics (Unemo and Shafer, 2014).

Increasing doses of Listerine R© did not result in resistance
to Listerine R© or cross-resistance to antibiotics. Our results
suggest that Listerine R© may be a better option in this regard
than chlorhexidine. One possible explanation for this difference
between Listerine R© and chlorhexidine is the number of active
ingredients – five in Listerine R© and one in chlorhexidine
(Balagopal and Arjunkumar, 2013; Van Dijck et al., 2021b).
Several targets need to be modified to hinder the effect of
essential oils, which could reduce the potential of resistance
induction (Yap et al., 2014). Overall, there is limited evidence
from studies suggesting the spontaneous occurrence of essential
oil resistance, and resistance to the combination of essential oils
used in Listerine R© has never been reported (Yap et al., 2014).
Gonococci remained highly susceptible even after prolonged
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exposure to sub-inhibitory concentrations, while in vivo an even
two times higher concentration of Listerine is used than the
final bactericidal dilution added in this experiment. A limitation
of this study was the use of VCNT, which was added to the
medium to prevent contamination (Verhoeven et al., 2019). It
may be possible that Listerine R© increased the susceptibility of
N. gonorrhoeae to VCNT.

If this occurred, it could have impeded the acquisition of
mutants that conferred decreased susceptibility to Listerine R©.

Although we cannot exclude this possibility, this study
suggests that it is unlikely that resistance to Listerine will occur,
making it an interesting antiseptic to use as a way to reduce
selection pressure for gonococcal AMR (Chow et al., 2021; Van
Dijck et al., 2021b). However, two large randomized controlled
clinical trials recently showed that Listerine does not significantly
reduce the incidence of oropharyngeal N. gonorrhoeae (Chow
et al., 2021; Van Dijck et al., 2021b). On the other hand, we
found that exposure to sub-lethal chlorhexidine concentrations
may not only enhance resistance to chlorhexidine itself but
also cross-resistance to other antibiotics. Intense exposure to
chlorhexidine may result in resistance associated mutations in
N. gonorrhoeae in three different efflux pumps: the MATE,
RND and ABC transporters. We identified a number of
mutations to assess in populations where the use of chlorhexidine
is intense. In ventilated patients for example, chlorhexidine
is used up to six times per day for the prevention of
pneumonia (Hutchins et al., 2009). Mouthwashes containing
chlorhexidine are used for over 40 years in the field of
dentistry to treat gingivitis, periodontitis and tooth decay
without being aware of the risk of bacterial resistance (Cieplik
et al., 2019; Varoni et al., 2021). These results provide a
cautionary note about the possible adverse effects of the excessive
use of chlorhexidine. It may thus be prudent to restrict
chlorhexidine mouthwash use to those indications with clear
evidence of benefit.
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