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The aim of this review was to provide an update on the complex relationship between
manure application, altered pathogen levels and antibiotic resistance. This is necessary
to protect health and improve the sustainability of this major farming practice in
agricultural systems based on high levels of manure production. It is important to
consider soil health in relation to environment and land management practices in
the context of the soil microflora and the introduction of pathogens on the health of
the soil microbiome. Viable pathogens in manure spread on agricultural land may be
distributed by leaching, surface run-off, water source contamination and contaminated
crop removal. Thus it is important to understand how multiple pathogens can persist in
manures and on soil at farm-scale and how crops produced under these conditions
could be a potential transfer route for zoonotic pathogens. The management of
pathogen load within livestock manure is a potential mechanism for the reduction
and prevention of outbreaks infection with Escherichia coli, Listeria Salmonella, and
Campylobacter. The ability of Campylobacter, E. coli, Listeria and Salmonella to combat
environmental stress coupled with their survival on food crops and vegetables post-
harvest emphasizes the need for further study of these pathogens along with the
emerging pathogen Providencia given its link to disease in the immunocompromised
and its’ high levels of antibiotic resistance. The management of pathogen load within
livestock manure has been widely recognized as a potential mechanism for the reduction
and prevention of outbreaks infection but any studies undertaken should be considered
as region specific due to the variable nature of the factors influencing pathogen content
and survival in manures and soil. Mediocre soils that require nutrients could be one
template for research on manure inputs and their influence on soil health and on
pathogen survival on grassland and in food crops.
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INTRODUCTION

With the global population continuing to rise, there is an ever-
increasing pressure placed on soil to support the intensification
of agriculture (Waggoner, 1995; Tilman et al., 2002; Tomley and
Shirley, 2009; Blaiotta et al., 2016; Manyi-Loh et al., 2016; Struik
and Kuyper, 2017; Chaudhari et al., 2021). Agricultural demands
vary from primary food source crop production to production of
fodder crops and direct grazing used in livestock production. This
demand, combined with a migration toward monoculture crop
production systems, results in increasing amounts of manure,
essentially a waste product, produced by livestock (Aarons et al.,
2009; Plourde et al., 2013; Attwood et al., 2019). However,
manures are now considered as organic fertilizer which is
an essential resource to aid the intensification of agricultural
production (McLaughlin et al., 2011; Mazur and Mazur, 2015;
Chaudhari et al., 2021). Manures are routinely applied to
grassland and arable sites, with multiple studies indicating
an array of benefits such as provision of essential nutrients
(e.g., potassium, phosphorous, nitrogen) for plant growth,
increased soil carbon content, greater carbon sequestration and
neutralization of soil acidity (Boateng et al., 2006; Risse et al.,
2006; Zhang and Fang, 2007; Wortmann and Shapiro, 2008;
Loss et al., 2019; Ekman et al., 2021). A study by Anwar
et al. (2005) highlighted the benefits of manure utilization in
tandem with inorganic fertilizers as an approach to sustainably
improve both soil productivity and quality. Increasing reliance
on manure as a soil enhancer, coupled with the need to dispose
of snowballing waste production, has raised many questions
regarding the safe use of manures to achieve and maintain
sustainable agriculture (Pratt, 1979; Adegoke et al., 2016; Manyi-
Loh et al., 2016). Sustainable agriculture is defined as agricultural
practices which can “meet current and future societal needs,
for ecosystem services, and for healthy lives” (Tilman et al.,
2002) and relies on the safe use of manures from a soil, crop,
environment and human consumption perspective. The idea
of Planetary Health identifies a link between human health,
biodiversity and ecosystems, where nutrients and organisms
introduced to the soil microbiome interact with the associated
ecosystems (Zhu et al., 2019). The interaction with the associated
ecosystems is dependent on human activity as it could place
soil at the center of antimicrobial resistance spread due to
the presence of pollutants which can include antimicrobials
and antimicrobial resistant pathogens. The spread of animal
manure as a soil amendment (Zeng et al., 2017) intensifies the
spread of antimicrobial resistance genes (ARGs) as they are
prominent in the animal gut due to the overuse of antibiotics
in farming or due to the intensive use of in-feed antibiotics
(Zhao Q. et al., 2018). This evidence clearly requires an
understanding of the role of soil aligned with the use of manure
to understand the dissemination of ARGs and pathogens within
the environment.

Agriculture in Northern Ireland (NI) has changed
considerably in the past 80 years with expanding livestock
sectors, such as cattle and sheep production, resulting in a shift
toward a predominantly grassland agriculture. Approximately
93% of the total area farmed in NI is grassland (EARA, 2020).

Livestock farming is dominant in NI having doubled between
1940 and 2016 (EARA, 2020). Northern Ireland produces
approximately 13 and 25%, respectively, of the total manure
output and total slurry output across the United Kingdom (UK)
(Smith and Williams, 2016). This contribution of undiluted
slurry production is high as the relative total land area of NI is
approximately 5% that of the rest of the United Kingdom. The
high ratio of slurry produced to area farmed, in tandem with
slurry restrictions such as application limits of 30–50 m3 per
hectare in one application, results in the need to control and
balance the spreading of slurry on land as there is potential for
excessive applications and misuse. In addition to cattle slurry,
the NI livestock sector produces pig and poultry manures and
additional manures in the form of digestates are produced from
an increasing number of anaerobic digesters, which are often
fed pig, poultry, and cattle waste (EARA, 2020). The Sustainable
Agricultural Land and Management Strategy (SALMS) report
(EARA, 2020) advises that the performance of NI soils is,
mediocre with only 18% of analyzed soils at optimum fertility
and only 36% of soils were reported as optimal pH for grass
production. These low statistics for optimum soil health from
a sector of high economic importance suggests NI soil systems
could be a good template for research with regards to the
influence of agricultural practices on soil health, particularly on
grassland farming in a temperate setting. The heavy reliance
on the livestock industry, increasing shifts toward intensive
production systems (e.g., zero grazing systems) along with large
livestock/area farmed ratios makes NI a key example of the
potential influence of spreading of manure onto agricultural
land. There is a possibility of designing and implementing
changes with the aim of improving these statistics as soil health
relationships are context-dependant (Yang et al., 2020).

The aim of this review was to provide an update on the
complex relationship between manure application and altered
pathogen levels. This is necessary to protect health and improve
the sustainability of this major farming practice in the context of
Northern Ireland, a useful model system for agricultural systems
based high levels of manure production.

Soil health has been recognized as the ability of the soil
to cope with anthropogenic factors associated with agricultural
production, whilst maintaining the provision of ecosystem
services (Kibblewhite et al., 2008; Larney et al., 2016). According
to Kibblewhite et al. (2008), soil health is reliant on nutrient
cycling, soil structure, transmission of carbon and pest/disease
regulation (Kibblewhite et al., 2008). It is important to consider
soil health in relation to environmental and land management
practices. As soil fertility encompasses chemical, physical and
biological properties, it can be considered a measure of soil
health (Kibblewhite et al., 2008). Agricultural practices impact
soil health in various ways (Bore et al., 2017; see Table 1). As
common agricultural practices have the ability to influence these
values, it is important to consider their role in achieving optimum
production capacity from farmland. The application of fertilizers
can have an indirect influence on soil bacterial communities by
first altering the pH (Zhang et al., 2017). Changes in pH have been
shown to alter the structure of the bacterial community present,
and therefore have the potential to reduce soil health through
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TABLE 1 | Examples of the impact of common agricultural practices on soil health.

Common practices Example of impact on soil health / fertility References

Monoculture cropping Over
grazing Tillage

Reduced and/or altered biological diversity Mikha and Rice, 2004; Zhao Y. et al., 2018;
Salaheen and Biswas, 2019; Yang et al., 2020

Reduced organic carbon content

Soil nutrient depletion

Decreased pH levels

Soil structural change

Addition of artificial fertilizer
Addition of manure

Altered nutrient availability Mikha and Rice, 2004; Bünemann et al., 2006

Altered pH levels (e.g., soil acidification by added N)

Altered biological diversity

Soil structural change

knock on effects of reduction of soil services such as nutrient
cycling (Zhang et al., 2017).

To date, very little work has been carried out on the persistence
of multiple pathogens in manures and on soil at farm-scale
and the impact of both long and short term use of these
manures on the soil microbial dynamics is not well understood
(Wimalarathna et al., 2013; Li et al., 2017). Crops produced under
these conditions have the potential to contain organisms found
within the soil microbiome, therefore creating a potential route of
transfer of pathogens into the food chain causing illness (Tilman
et al., 2002; Larramendy and Soloneski, 2016; García-Sánchez
et al., 2018). Some of the major zoonotic bacterial pathogens
found in soil and manures are considered herein (Table 2).

BACTERIA, MANURE, AND SOIL

Bacteria can survive in varying oxygen concentrations,
temperatures, pH levels and moisture contents. Significant
correlations between bacterial diversity and annual precipitation
and pH levels were found in a study of maize cropping systems
in China (Tan et al., 2020). If microorganisms are incapable of
coping with changing soil conditions they face competition and
removal in the contest for nutrients (Ratzke and Gore, 2018). The
newly arrived microorganisms find the new conditions favorable
and will survive better than the native communities (Sharma
and Reynnells, 2016). Predatory activity by organisms such as
protozoans can also influence bacterial survival which is an
important regulator of population levels (England et al., 1993).

The microbial populations associated with manure varies
due to numerous influential factors, including the producing
animal, its feeding regime and the waste management practices
(Albihn and Vinnerås, 2007; van Vliet et al., 2007; Jokinen et al.,
2012; Lopatto et al., 2019). Manure application can inadvertently
spread zoonotic diseases to humans while both animal and
plant populations can also be vulnerable to disease (Albihn
and Vinnerås, 2007; Spiehs and Goyal, 2007; Longhurst et al.,
2019; Tran et al., 2020). In addition to health implications for
humans, livestock and crops, bacterial pathogens can also be
costly to the economy. Effects encompass the direct costs and
food sales effected by microbiological quality and production
quantity concerns stemming from poor soil health and outbreaks

of illness caused by bacterial pathogens (Swanenburg et al.,
2001; Chlebicz and Śliżewska, 2018). Bacteria found in manures,
e.g., E. coli and Salmonella, have often been implicated either
directly or indirectly to outbreaks of human illness (Pell, 1997;
Bicudo and Goyal, 2003; Guan and Holley, 2003; Hutchison
et al., 2004). Viable pathogens contained within manure spread
on agricultural land may be distributed by leaching, surface
run-off, water source contamination and contaminated crop
removal (Fenlon et al., 2000; Albihn and Vinnerås, 2007;
Semenov et al., 2009; dikovic-Kolic et al., 2014; Alegbeleye and
Sant’Ana, 2020; Mügler et al., 2021). A relationship therefore
exists between agricultural practices and subsequent pathogen
transfer to multiple ecosystems. For example, transfer of E. coli
was shown from untreated poultry manure to fresh produce
(Atidégla et al., 2016). Protecting food and water supplies
from animal fecal contamination is of high importance in an
attempt to preserve human health, animal health and agricultural
sustainability (Pell, 1997; Kudva et al., 1998; Olson, 2001).
Altered products may have a detrimental impact on human and
livestock populations, particularly when contamination reaches
areas beyond the agricultural land itself (Tilman et al., 2001, 2002;
Sharpley et al., 2013; Ekman et al., 2021). There is a relationship
between the source of manures and the pathogen content of
the manure (Larramendy and Soloneski, 2016). Prevention of
zoonosis within livestock populations is essential in order ensure
high biosecurity standards (Albihn and Vinnerås, 2007; Layton
et al., 2017) and the reduction of pathogen presence in manures
will increase their sustainability and safe use in the environment
(Barbour et al., 2002; Albihn and Vinnerås, 2007; Jung et al.,
2014). Any studies undertaken should be considered as region
specific due to the variable nature of the factors influencing
pathogen content and survival in manures and soils (e.g., feed
regime, climate, soil, and precipitation) (Bradford et al., 2013).

Soil is influenced by manure, with application reported to
have positive impacts on the physical and chemical properties
associated with soil health and fertility such as increased soil
carbon content, water retention and nutrient supplies (Barbour
et al., 2002; Wilson et al., 2008; Bradford et al., 2013; Jung
et al., 2014). Large applications have the capacity to increase
dispersion of soil particles by introducing high saline ion contents
(Barbour et al., 2002). The apparent differences in the effect of
manure application on soil structure and composition has been
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TABLE 2 | Background information for examples of zoonotic pathogens which occur in manure (CFU, Colony Forming Units; VNBC, Viable but non-culturable; STEC, Shiga toxin-producing Escherichia coli).

Pathogen Characteristics Infective dose CFU Common agricultural
settings

Common pathogenic
species

Examples of survival
responses to
environmental
stresses

References

Campylobacter
spp.

Helical microaerophilic,
Gram-negative

500–800 Poultry, cattle, pigs,
waterbodies

C. jejuni Biofilm formation VBNC
bacterial co-habitation
Attachment to biotic
and abiotic surfaces
through biofilm
formation Drug
resistance Host
invasion

Stanley and Jones,
2003; Murphy et al.,
2006; Bronowski et al.,
2014; Chlebicz and
Śliżewska, 2018;
Sibanda et al., 2018

Escherichia coli Rod shaped, facultative
anaerobe,
Gram-negative.

Extremely low e.g., 10
CFU

Cattle, pigs and sheep,
soil, water bodies

STECs e.g., O157 Tuttle et al., 1999;
Fremaux et al., 2008;
Segura et al., 2018;
Capellini et al., 2020

Salmonella spp. Rod shaped, facultative
anaerobe,
Gram-negative.

Debated, comparatively
higher than that of
Campylobacter and
E. coli

Pigs, cattle, soil, water
bodies

Salmonella typhimurium Waldner et al., 2012;
Dar et al., 2017

Providencia spp. Rod shaped,facultative
anaerobe,
Gram-negative.

Suggested to be high Soil, water, livestock
intestines

Providencia stuartii Multi-drug resistance
Biofilm formation

O’Hara et al., 2000;
Wie, 2015; El Khatib
et al., 2017;
Kurmasheva et al.,
2018
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attributed to varying climatic conditions. Greater soil leaching
removed excess sodium ions from the soil, eliminating the
negative impact seen in semi humid and arid soils (Wagenaar
et al., 2013). Any changes to soil properties can lead to alterations
of biological properties with potential to restructure the soil
microbiome. Microorganisms included in manure are introduced
to the soil during application (Murphy et al., 2006; van Vliet
et al., 2007; Costa and Iraola, 2019). The introduction of foreign
microbe populations, and changing environmental conditions
(such as pH and salinity) may favor different microbes to the
resident population and have the potential to influence the
biodiversity and overall structure of the soil microbiome (Wallis,
1994; Kothary and Babu, 2001; Albihn and Vinnerås, 2007;
Epps et al., 2013). For example, long term artificial fertilizers
containing N, K and P have been shown to reduce soil pH while
composted cattle manures have been shown to increase pH, crop
yield and microbial activity in a flooded rice cropping system
(Bronowski et al., 2014). Manure treated soils were found to
have enhanced microbial activity with dominant bacteria such as
Proteobacteria preferring high nutrient environments resulting
from the breakdown of complex compounds. Soil which received
no manure had dominant bacteria such as Acidobacteria,
commonly found in nutrient limited soils (Stanley and Jones,
2003). However, Fernandez et al. (2020) found little direct
influence of management practices on soil bacteria community
structure, attributing variations in diversity to site locations
instead (Szott and Friese, 2021). Increased crop yields could be
linked to conditions, such as increased pH, providing optimum
conditions for bacteria associated with the provision of available
nutrients for crop growth, in turn enhancing plant growth.

BACTERIAL PATHOGENS IN MANURE

Pathogen prevalence within different manures is subject to
variables including producing animal species, feeding regimes
and antimicrobial additives. Feeding regimes such as increased
feed acidity has been proven to reduce Salmonella in fattening
pigs (Bui et al., 2011). Manure application to soil may assist
integration of pathogens with other environments through
general pathways such as direct contact with livestock, contact
with fresh produce and water bodies (dikovic-Kolic et al., 2014;
Attwood et al., 2019; Rukambile et al., 2019). Pathogens react
differently to stress and non-optimum conditions e.g., Listeria
spp., are highly adaptable in low water availability, low pH
and low temperature soil environments (Morita et al., 2004).
Application of poultry and pig manure to arable lands has the
potential to disseminate E. coli to soil and beyond (Murphy et al.,
2006) and Salmonella have been identified in environments with
little or no oxygen, e.g., slurry pits, and at low temperatures
(Colles et al., 2008). The repetitive nature of modern farming,
monoculture crops and similar livestock populations (i.e., hosts)
in particular areas, allow pathogens to adapt and specialize
in the survival and reinfection of existing host populations
(Wesley et al., 2000). The impact of monoculture on bacterial
diversity in soils is dependent on crop rotations (An et al.,
2018). Pathogens are less likely to thrive in genetically diverse

ecosystems which supports the theory that repetitive farming may
cause pathogen populations to become established within the
farming environment (Harvey et al., 1999).

Bacterial pathogens found within manure and associated
with bacterial outbreaks include, but are not limited to,
Campylobacter, Salmonella and strains of pathogenic E. coli such
as O157:H7 (Swanenburg et al., 2001; Indikova et al., 2015;
Manyi-Loh et al., 2016; Zhong et al., 2020). An example of an
emerging pathogen found in manure and soil is Providencia
spp. and it is an important reminder of the need for ongoing
surveillance in an area that is likely to experience change as
agricultural practices evolve. Campylobacter spp.

Campylobacter spp.
Campylobacter is one of the most common causes of food-borne
diseases in the United States of America and Europe (Murphy
et al., 2006; Wilson et al., 2008; Wagenaar et al., 2013; Costa and
Iraola, 2019). Humans can develop campylobacteriosis from a
low infective dose of only 500–800 CFU (Wallis, 1994; Kothary
and Babu, 2001; Epps et al., 2013). and Campylobacter jejuni
is responsible for most cases of infection (Epps et al., 2013;
Costa and Iraola, 2019). Campylobacter spp. have been reported
in unpasteurized dairy products, untreated water and manures
(Stanley and Jones, 2003; Wagenaar et al., 2013; Bronowski
et al., 2014; Szott and Friese, 2021) and are prevalent in many
food-producing animals including poultry, cattle, sheep and pigs
(Szott and Friese, 2021). It has been reported that 100% of
Campylobacter isolates from poultry and cattle fecal samples
are C. jejuni while 97% of pig fecal isolates were identified as
C. coli (Morita et al., 2004; Colles et al., 2008; Bui et al., 2011;
Rukambile et al., 2019). Other studies have shown that cattle are
common reservoirs of C. jejuni and C. lari (Wesley et al., 2000;
An et al., 2018). Harvey et al. (1999) highlights the prevalence
of C. jejuni in pigs, albeit a lower rate than C. lari. Morita
et al. (2004) determined prevalence of Campylobacter spp. in
cattle, and pig and poultry fecal samples of 76.0, 63.8, and
50.0%, respectively which could potentially represent a source
of contaimination in soils via manure application as C. jejuni
can adapt to non-ideal environments tolerating higher oxygen
levels and reduced nutrient availability (Bronowski et al., 2014).
It has been suggested that Campylobacter can increase biological
diversity, by lowering of oxygen concentrations thereby reducing
oxygen stress with C. jejuni having been shown to contribute to
mixed culture biofilm under aerobic conditions (Zhong et al.,
2020). Increased survival success has been demonstrated in
cultures containing Pseudomonadaceae as Campylobacter possess
the ability of to attach to their biofilms (Indikova et al.,
2015). Their ability to enter the viable but non-culturable state
(VBNC) in response to high oxygen levels has been recognized,
however, the infectiveness of the VBNC is not well documented
(Bronowski et al., 2014; Zhong et al., 2020; Szott and Friese,
2021). Temperature has been suggested as a key factor in
the ability of Campylobacter to survive in the environment.
An investigation by Bui et al. (2011) determined that C. coli
was more sensitive to aerobic conditions at temperatures of
15◦C or more compared to temperatures of 4◦C, suggesting
temperature is a key factor in the response to stresses such
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as oxygen content (Bui et al., 2011). A study by Brandl et al.
(2004) demonstrated better C. jejuni survival on plant roots
and leaves at lower temperatures (10 and 16◦C), than at higher
temperatures (33 and 37◦C). The same study identified a relative
increase in survival of C. jejuni on wounded plant leaves at 10◦C,
suggesting potential for amplified survival during harvest and
food preparation. It has been suggested that the frequency of
campylobacteriosis is due to the prevalence of the organism in
different environments, such as meat plants, once shed from
animal hosts (Li et al., 2017). Campylobacter are thought not
to multiply outside of a host due to environmental stresses and
lack of survival at oxygen concentrations above 5% (Brandl et al.,
2004; Wimalarathna et al., 2013; Li et al., 2017; García-Sánchez
et al., 2018; Gundogdu and Wren, 2020).

Escherichia coli
The facultative anaerobe E. coli is diverse with a wide range of
pathotypes (such as O157) that have an assortment of impacts
on humans which range from harmless to lethal (Maule, 1997;
Winfield and Groisman, 2003; Yan and Polk, 2004; Delmas
et al., 2015). Specific pathogenic strains cause gastrointestinal
disease in humans (Kaper et al., 2004), including Shiga-toxin
producing E. coli (STEC)—e.g., E. coli O157 (Williams et al.,
2005; Pennington, 2010). Food-producing animals are sources of
pathogenic E. coli and may be symptomatic or asymptomatic and,
while the infective dose is currently being debated, the general
consensus is that a low dose will cause infection (Kirk, 1998;
Tuttle et al., 1999; Schmid-Hempel and Frank, 2007). Oporto
et al. (2008) determined that 50.8% and 35.9% of sheep and cattle
herds, respectively, were carriers of shiga toxin producing strains
of pathogenic E. coli (Oporto et al., 2008).

Pathogenic E. coli, and STEC strains in particular, is a hardy
bacterium which can survive for extended periods in water, soil
and manure (Maule, 1997; Kirk, 1998; Olson, 2001; Williams
et al., 2005; Wiles et al., 2008; Chekabab et al., 2013; Iwu et al.,
2021). E. coli O157 is sensitive to dehydration/desiccation (Jiang
et al., 2002; Williams et al., 2005; Vidovic et al., 2007). E. coli
persistence was shown at 59.1% of chicken litter samples taken
from urban poultry farms in Cameroon (Ngogang et al., 2021).
Xing et al. (2019) showed that diverse microbial populations
reduced the invasive capacity of E. coli (van Elsas et al., 2012). In
non-autoclaved soils, survival was higher at 5◦C than 15◦C which
may be attributed to the ability of E. coli to adapt and survive
at lower temperatures and could play a part in survival within
soil (Jiang et al., 2002). A study by Yao et al. (2015) focused on
E. coli O157 survival in microbial active soils in southeast China.
They reported a reduction from 106 CFU g−1to 100 CFU g−1

at a temperature of 25◦C in chicken manure amendments after
2.57± 6.57 days. Pig manure amendments required 25.65± 7.12
days for a similar level of reduction. E. coli O157 survival in
soil has been shown to increase in soils of higher pH and lower
diversity. Studies linking the influence of environmental factors
such as soil pH and microbial diversity to E. coli survival in
soil, in tandem with the influence anthropogenic factors such as
manure amendments, could allow for greater transmission across
the environment (Jiang et al., 2002; van Elsas et al., 2012; Yao
et al., 2015). The high prevalence of E. coli in soils highlights the

need for proper management of manure resources, particularly
prior to spread on agricultural soils (Sobur et al., 2019).

Salmonella spp.
Salmonella is a facultative anaerobe with many serotypes
capable of causing gastroenteritis in humans. Some serotypes of
Salmonella can cause infection and fatalities in livestock (e.g.,
some Salmonella Typhimurium and Salmonella Choleraesuis
strains in pigs) but can also exist as a subclinical infection where
no symptoms are detected (Smith et al., 2018). The infective dose
is debated throughout the literature, but most agree that the dose
required is comparatively higher than for that of Campylobacter
and E. coli (Blaser and Newman, 1982; Kothary and Babu, 2001;
Vernozy-Rozand et al., 2002; Hara-Kudo and Takatori, 2011).
An increase in the occurrences of antimicrobial resistant strains
of Salmonella has been reported (Monack, 2012; Williamson
et al., 2018), where S. Typhimurium has been the most frequently
encountered (Glenn et al., 2011).

Salmonella survival in soil is dependent on variables such as
temperature, predation and introduction method (Jacobsen and
Bech, 2012). Guo et al. (2002) reported Salmonella transmission
to tomatoes from inoculated soils (Guo et al., 2002). Tomatoes
placed with cut stem facing topsoil, saturated with sterile water
saw population increases of 2.5 log10 CFU over an initial 4-day
period following inoculation and this remained constant up to
10 days at a storage temperature of 20◦C and high humidity.
The same study determined that Salmonella levels remained
constant within the soil over an initial 14-day period with only
a small decline over a 45-day period. This suggests that in
certain conditions, fruits such as tomatoes exposed to Salmonella
contaminated soils may be enablers of bacterial population
growth/maintenance, as well as a vehicle for transmission to
human populations. Elimination of such bacteria prior to manure
spreading could greatly reduce this risk. Salmonella spp. were
observed to invade the flesh of tomatoes (Guo et al., 2002),
lettuce and whole green onion (Ge et al., 2012) a process referred
to as Salmonella internalization—which suggests that typical
washing techniques may fail to remove the bacteria and reduce
the risk of infection. Ge et al. (2012) determined that weather
events have the potential to aid internalization. This highlights
the need for area specific studies and legislation as climate and
weather events are variable depending on location (Ge et al.,
2012). Salmonella spp. are reported to survive for prolonged
periods outside of a host should environmental conditions be
favorable—for example, moisture, temperature, predation and
soil type as reviewed by Jacobsen and Bech (2012). Semenov
et al. (2009) reported longer survival times of S. typhimurium
in surface applied manure (estimated 60 days) compared to
10 cm injected slurry (estimated 28.6 days) showing a clear
influence of the application method (i.e., surface spreading or
injection) and type of material applied (i.e., manure or slurry)
(Semenov et al., 2009). Survival of Salmonella within the soil
is also influenced by the ability to respond rapidly to stress
such as entering harsh, non-optimal environments such as soil
(Waldner et al., 2012). Spector and Kenyon (2012) explain
that by entering the VNCS quickly, the organism allows for
survival in a dormant state in under conditions that could
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otherwise be lethal (Spector and Kenyon, 2012). In both soil and
manure-amended soil S. typhimurium has been shown to persist
longer at lower temperatures. It has been suggested that notably
reduced survival rates of S. Typhimurium in manure-amended
soils at any temperature is related to protozoan predation
(Garcia et al., 2010).

Providencia spp.
Providencia spp. are Gram negative, rod shaped, and facultative
anaerobic bacteria which are part of the family Enterobacteriaceae
(Beattie et al., 2020; Esperón et al., 2020; Massé et al., 2021).
The well-studied species include P. stuartii, P. alcalifaciens, and,
P. rettgeri with these bacteria linked to gastroenteritis, Urinary
Tract Infections (UTIs) and bacteraemia (Holman et al., 2016;
Chuppava et al., 2019; Esperón et al., 2020; Yoshizawa et al.,
2020; Congilosi and Aga, 2021). Providencia spp. are considered
opportunistic (Massé et al., 2021) and often have the greatest
impact on those with weakened immune systems such as the
elderly, young children and patients whose immune system
was compromised by surgery or burns (Blaiotta et al., 2016;
Checcucci et al., 2020; Miller et al., 2020). Infections caused
by this genus are less common than other bacterial pathogens
such as Salmonella and E. coli, however, they are associated with
high mortality rates, particularly in instances where infection of
a urinary catheter occurs (Esperón et al., 2020). P. rettgeri and
P. stuartii are frequently found in soil, water and animal hosts
(Agga et al., 2020; Esperón et al., 2020). A study by Resende
et al. (2014) identified the presence of Providencia spp. albeit
at low incidence in the investigation of cattle manure following
anaerobic digestion (Laconi et al., 2021). Isolation of this bacteria
is often unintentional where presumptive positives for other
bacteria are determined to be Providencia spp. e.g., a report by
Blaiotta et al. (2016) found many isolates obtained from cattle
manure were in fact Providencia spp. as identified by 16S rDNA
sequencing and not presumptive species such as Shigella (Blaiotta
et al., 2016). Information as to their infection of farm animals
is limited, however, the genus has been cited as exhibiting high
levels of antimicrobial resistance (AMR) (Esperón et al., 2020)
and while infection by Providencia spp. is rare, there are potential
reservoirs of ARGs in the wider environment (Beattie et al.,
2020). It would be beneficial for future studies to investigate the
prevalence the impact of Providencia spp. within manure and
soil microbiomes.

Listeria spp.
Listeria monocytogenes was isolated from the soil samples in
multiple studies indicating the ubiquity of the pathogen in the
natural environment and it was detected as being involved in
a series of agricultural and food product-associated outbreaks
(Falardeau et al., 2018). Its presence in soils is probably related to
its increased resistance harsh temperatures and oxidative stress,
increased saline concentrations, acid and desiccation stress (Iwu
and Okoh, 2020). Soils characteristics such as a high content
of molybdenum were reported to carry higher concentrations
of L. monocytogenes (Liao et al., 2021) suggesting that such
conditions can lead to increased surviability. This bacterium
can survive for up to 84 days in soils but higher survival

rates for up to 295 days were also detected (Welshimer, 1960;
Locatelli et al., 2013). Its persistence in soil depends on intrinsic
factors such as physiological state, abiotic factors (physical and
chemical conditions), precipitation and temperature, and its
also highly depenedent on biotic environmental factors such
as inhibitory molecules, protozoan grazing and competition for
substrate (Vivant et al., 2017).

Understanding of how Listeria adapts to different
environmental settings is very important, and the adaptation
to the new types of matrices necessitates a genetic adaptation
(Vivant et al., 2017). In farm environments the causative
agent of listeriosis, L monocytogenes, was reported to express
high resilience to different waste treatments, plus was still
present for more than a month in amended soils even without
livestock effluents (Hutchison et al., 2005; Moynihan et al.,
2015). It has been shown that the bacterium’s adaptability to
soil environments can be reduced through the impairment of
AgrA gene expression, which regulates motility, chemotaxis,
transport and metabolism of amino acids (Marinho et al., 2020).
Specifically, AgrA and σB factors control the general stress
response and can cooperatively modulate the L. monocytogenes
transcriptome to induce a more precise adaptation and an
optimal growth and survival rate. Another similar example of
genetic adaptation in a soil environment is represented by the
two-component systems recently identified as LisRK (Brunhede
et al., 2020). This system controls tolerance to several stresses
and is important for pathogen growth and survival in sterile and
non-sterile soils (Brunhede et al., 2020).

The high virulence potential of Listeria, specifically of the
strain monocytogenes, is attributed to several molecular factors
which are associated with multiple phases of the infection. At
the onset of infection, genes such as inlA, inlB, inlF, and inlJ
are responsible for adhesion and invasion and are followed by
the expression of hly, mpl, prf A, actA, and plcB genes which are
responsible for the growth and spread of the bacterium (Iwu and
Okoh, 2020). According to recent findings, such genes are present
in isolates collected from irrigation waters and agricultural soils
alongside multiple antibiotic-resistant factors such as aadA, tetA,
tetB, tetC, sulI, sulII, and aac(3)-IIa genes (Iwu and Okoh, 2020).

PREVALENCE

The management of pathogen load within livestock manure
has been widely recognized as a potential mechanism for the
reduction and prevention of outbreaks infection with E. coli,
Salmonella and Campylobacter (Wang et al., 1996; Vernozy-
Rozand et al., 2002; Lim et al., 2010; Larramendy and Soloneski,
2016). The importance of good hygiene practices so the manures
are safe for use, i.e., allowing for optimum production that
does not compromise environmental health has been outlined
(Alegbeleye and Sant’Ana, 2020). Manure handling methods
vary greatly across agricultural setups depending on the type of
livestock housing, amount of manure produced etc. For example,
manure produced in NI is handled mainly as slurry (Smith
and Williams, 2016) and many studies have identified different
management techniques as factors in pathogen load reduction
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(Table 3). Nicholson et al. (2005) reported 3-month maximum
survival times in stored slurries which frequent temperatures over
20◦C for E. coli O157 and Salmonella. These bacteria survived up
to 32 days in 7% dry matter dairy slurry, and up to 93 days 2%
dry matter dairy manure suggesting that manure with a greater
dry matter content reduces pathogen populations at a greater
rate with reference to temperatures, moisture content and pH.
Data from Nicholson et al. (2005) reported lower maximum
survival times of 1 month or less for the same inoculated
pathogens in manure composting heaps which commonly
reached temperatures above 55◦C, suggesting that handling of
manure as a solid is a feasible method of pathogen reduction due
to higher temperatures being reached. In contrast, a review by
Guan and Holley (2003) highlighted potential benefit in treating
manures as a liquid where possible, as less time is required to kill
pathogens at 25 and 37◦C as temperatures are easier to maintain
in the liquid state (Guan and Holley, 2003). Storage of manure
at 25◦C would reduce pathogen loading (e.g., E. coli O157,
Salmonella, and Campylobacter) below detectable levels after a
period of 90 days. In this context it is difficult to compare data as
many variables can influence the survival of pathogens within the
manures. For example, Wang et al. (1996) determined that larger
populations of inoculated enterohemorrhagic E. coli survived
longer at both 37 and 22◦C, which would infer that in inoculation
experiments, larger populations may react and survive differently
to smaller levels of initial inoculum used (Wang et al., 1996).
This report noted a more rapid decline in population at 37◦C
which is potentially linked to the desiccation at these prolonged
temperature exposures, hence the warmer temperature of 37◦C
showed higher reduction in population numbers. E. coli were seen
to survive for up to 8 weeks in the feces at 37◦C, where it was
possible the survival was sustained by non-uniform dehydration
across the feces. Maule (1997) showed a depletion of viable E. coli
O157 populations in cattle manure from levels of 108 CFU g−1

to less than 100 CFU g−1 after 9 days at 18◦C (Maule, 1997).
Kudva et al. (1998) reported better survival of E. coli O157 in
naturally occurring populations within manure than in artificially
inoculated populations within laboratory experiments (Kudva
et al., 1998). The same report showed depletion of viable numbers
of E. coli O157 in cattle slurry to undetectable levels within 5
days at temperatures of 23 and 37◦C, whilst a temperature of
4◦C saw detectable levels of 105 CFU g−1 after 28 days. For most
relatable impact, as pathogen survival is highly variable within
laboratory and field experiments, studies would benefit from a
focus on field experiments with reference to the ultimate location
of the manure application rather than to slurry microcosms
in the laboratory.

MANURE AS A VECTOR OF
ANTIMICROBIAL RESISTANCE

The carriage of resistant and pathogenic bacteria, ultimately
facilitating the spread of antimicrobial resistance in the
environment via animal manure as fertilizers, poses a latent
risk for transferring ARGs from animals and animal products
to the human microbiome (Zhang et al., 2019). An example

of ARG transmission to humans occurred via gene transfer
from manured soil to vegetables and was previously observed
in lettuce, which underlines the possible risks of transition
of plant modified resistome to the human food chain (Zhang
et al., 2019). Another illustration of ARG transmission in the
food chain was recently identified in fresh vegetables and fruits
from southern China, where Tet and ami genes were present
at a very high frequency displaying an average abundance of
3.08 and 1.18 copies per 16S rRNA gene copies (Xiong et al.,
2019). In addition, the presence of aadA, aph1, floR, sul1, intI1,
qacE, sul2, tetB, and tetM from the food samples displayed the
detection frequency above 90%, while cmlA and ermB depicted
slightly lower values.

Several classes of antibiotics are used in food-farm production
of which the main are considered tetracyclines which encodes
tet genes family, sulfonamides encompassed from three types of
sul genes, β-lactams are represented by blaTEM and blaCTX−M
genes, macrolides that carry erm and mef genes, colistins with
different mcr genes and quinolones which encodes a family
resistant qnr genes (Lima et al., 2020). The genes presented in
association with animal manure can also attribute resistance
to disinfectants in addition to aminoglycosides, tetracyclines,
sulfonamides and macrolide-lincosamide-streptogramin B
(MLSBs). Resistance genes are frequently linked on mobile
genetic elements (MGEs) such as specific plasmids, transposons
and insertion sequences/gene cassettes. The latter can capture
genetic material from various environmental sites and distribute
them amongst the other bacterial species via horizontal gene
transfer (Muurinen et al., 2017).

It has been suggested that the analysis of the animal manure
and soil resistomes can play a fundamentally important role
to underline necessary antimicrobial resistance mechanisms
and evaluate the public health risks that might be caused
by livestock effluents (Noyes et al., 2016). Moreover, manure-
soil microcosms may be reproduced to investigate the spread
process of ARGs from animal manure to humans and suggest
mechanisms to limit the expansion of ARGs (Wang et al.,
2017). First of all, ARG management could focus on eliminating
ARGs bearing a low natural reduction potential (e.g., sul1,
sul2, intl1, and tetM) prior to the manure being applied to
the soils. Changing some of the manure handling practices to
the novel manure handling methods can potentially reduce the
abundance of ARGs in manure utilized for land treatments
(Ruuskanen et al., 2016; Gurmessa et al., 2021). Processes
such as extending windrow composting and stockpiling have
previously been shown to reduce resistance determinants of
erythromycin, tetracycline and sulfamethazine between 0.5
and 3 logs in contrast to original cattle manure levels
(Xu et al., 2016).

The concentrations of ARGs from livestock waste are found
in much higher proportions than the human waste and manured
soil, with the reported levels of ARG approximately 28,000 times
higher than in un-manured soil (Lima et al., 2020). Within a
study, 109 ARGs related to the veterinary and human antibiotic
practices were recently identified from fresh poultry, swine
and cattle manure of 12 large production-scale Chinese farms
(Lima et al., 2020).
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TABLE 3 | Studies of manure pathogen load survival in agricultural soil.

Sample type Study location Detection method Pathogen Manure treatment Maximum survival
(days)

References

Inoculated dairy slurry
(7% dry matter)

Field study—
Nottinghamshire,
United Kingdom.

Selective agar plating
following selective
enrichment culturing
method

E. coli O157 Salmonella
spp. Campylobacter
spp.

On farm storage 32 185 32 Nicholson et al., 2005

Inoculated dairy slurry
(2% dry matter)

E. coli O157 Salmonella
spp. Listeria spp.
Campylobacter

93 93 185 32

Cattle manure added to
sterile soil

Laboratory, America. Direct plating method
of selective agar plaiting
of soil suspensions.

E. coli O157 Incubation 21◦C 5◦C 231 77 Jiang et al., 2002

Chicken manure
applied to non-sterile
soils

Laboratory, China., Direct plating method
of selective agar plaiting
of soil suspensions.

E. coli O157 Incubation 25◦C 2.57 ± 6.57 (reduction
from 106 to < 100 CFU
g−1)

Yao et al., 2015

Pig manure applied to
non-sterile soils

25.65 ± 7.12
(reduction from 106

to < 100 CFU g−1)

Pig manure Laboratory, Denmark. Direct plating method
of selective agar plaiting
of soil suspensions,
qPCR, RT-qPCR

Campylobacter coli Incubation 4◦C 15◦C
22◦C

24 7 6 Bui et al., 2011

Manure amended soils – Salmonella spp. – Up to 332 Jacobsen and Bech,
2012
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Fresh manure application was reported to induce more
ARGs in the land than stockpiled manure, which introduces
a lesser amount of ARGs (Xu et al., 2021). Previous studies
found that the dissipation of ARGs via composting of manure
enriched with antibiotics showed distinct differences in contrast
to the manure produced by cattle with the dietary inclusion of
antimicrobials (Xu et al., 2018). For example, the genes such
as ermX, sul1, sul2, and tetB were detected in cattle manure after
175 days of post-excretion, which may pose a pollution risk factor
of ARGs dissemination if such manure will be further applied
into the field. The most prevalent and highly proportional gene
set identified in the cattle manure is tetracycline resistance tetM
and tetW genes. During the composting process, the intensity
of erythromycin, sulfamethazine and tetracycline resistance
gene can be reduced. However, others can remain stable,
and prolonged thermophilic composting phases is suggested
to decrease the dissemination of ARGs into the encircling
environment upon field application of composted manure
(Xu et al., 2018).

It is also very important to evaluate persistence studies of
ARG from manure soil microcosms in order to understand
the environmental antimicrobial resistance status and the shifts
in resistance between bacterial communities. A recent study
investigated two sets of simulated manure-soil microcosoms
by sequencing 16S rDNA to observe bacterial community
diversity and directly measuring the fate of ARGs, including
cfr, ermB, ermF, fexA, intI1, sul1, sul2, tetB, and tetM and
revealed interesting differences in persistence (Wang et al., 2018).
Following 90 experimental days, the abundance of ARG from
poultry manure showed significant decreasing trends, while the
diversity and richness of species in soil were notably increased.
The decay rate of sul1, sul2, tetM, and intI1 within the soil
was lower for this set of genes whilst ermB and ermF genes
exhibited increased dissipation rates. Cattle manure contained
a more prominent macrolide ermB and sul1 resistant gene set
than the poultry litter (Gurmessa et al., 2021). The observation
of the wide distribution of erm genes was linked with erm
proteins accountable for the demethylation of singular adenine
base from the 23S rRNA, which is a region that encodes
targets for lincosamides, macrolides and streptogramins B that
explains the wide-spreading resistance potential of that gene.
Indoors to this study, the expression of the cfr abundance
was weaker expressed (Wang et al., 2018). The cfr is generally
associated with the plasmid presented in Staphylococcus isolates
and is collectively expressed with erm resistance genes. Similarly,
their study reported a decreased tetB abundance which is
usually connected with the presence of Gram-negative bacteria,
compared with tetM that is correlated with all types of
bacteria. Recently a total of 67 multi-drug methicillin-resistant
Staphylococcus sciuri were isolated from the 400 environmental
samples, of which 40 specimens were from manure, while 360
were from the soil. Strikingly, a major proportion of S. sciuri
isolates displayed a huge resistance with approximation above
90% against ampicillin, clindamycin, penicillin, cefoxitin and
ceftiofur, as well as 86.56% resistance against tetracycline and
50.74% for erythromycin (Kumar et al., 2017). Finally, the study
also identified major antibiotic-resistant genes such as ermA,

ermB, ermC, mecA, aac(6′), Ie-aph(2′′)Ia, tetM, tetK, and mphC
thereby highlighting the dissemination potential of such genes via
spreading of swine manure.

In a recent trial that aimed to decrease the pathogen load,
the residues of antibiotics and ARGs from poultry manure
via composting technique at a field scale were determined
and a 10-week intervention was shown to be sufficient to
achieve optimized results (Esperón et al., 2020). Firstly, from
the sixteen of ARGs, a larger proportion of them declined
from the initiation till the end of the experiment by showing
remarkable statistically reductions for tet genes (A, B, K, M, Q,
S, W), ermB, qnrS, and blaTEM . After 3 weeks of composting,
the antibiotic fraction of ciprofloxacin and doxycycline decreased
by approximately 90% and reduced the presence of pathogens
such as C. coli and E. coli. Furthermore, the addition of barley
straw influenced the OTUs at the phylum level by causing
increasing shifts as was noticed in the magnification of the
Flavobacteria class, which after 1 month was surpassed by the
class of Sphingobacteria and the composting application modified
the bacterial community in favor of the leading order of Bacillales
(Esperón et al., 2020).

E. coli isolated from manure and environmental samples
are considerably different from the clinical isolates,
which were reported to show resistance patterns against
ampicillin, ceftazidime, ceftriaxone, ciprofloxacin, gentamicin,
trimethoprim-sulfamethoxazole and levofloxacin (Beattie et al.,
2020). Compared to more virulent clinical E. coli isolates, those
isolated from manure and environmental samples also harbor
the plasmids and the potential to develop biofilms responsible for
producing a plethora of ARGs (Beattie et al., 2020). A Canadian
study isolated E. coli from fecal samples from cows, calves
and manure pits from dairy farms of Québec. These displayed
increased resistance levels toward streptomycin, sulfisoxazole
and tetracycline with the main responsible AMR genes aadA1,
aadA2, aadA5, aph(3′′)-Ib (strA), aph(6)-Id (strB), tetA, tetB,
sul1, sul2 and sul3 (Massé et al., 2021). The analysis of extended-
spectrum β-lactamase from E. coli samples showed two distinct
phenotypes as AmpC and ESBL that involved resistance genes
blaCMY−2 and blaCTX−M . The environmental dissemination
of ESBL and AmpC producing E. coli is considered a public
health risk factor (Massé et al., 2021). In a German study,
approximately 17% of E. coli isolates from poultry manure, and
excreta exhibited resistance to four antibiotics: Enrofloxacin,
Ampicillin, Tetracycline and Sulfamethoxazole-trimethoprim
(Chuppava et al., 2019). Antibiotic-resistant patterns were
probably attributed to the fattening practices that might be an
outcome of intensive farming.

A similar parallel was observed in a recent study for the
cattle manure where the fungal genus Kernia, along with
Proteobacteria and Bacteroidetes, were enriched from day 0,
while enrichment of the Firmicutes began at day 99 (Holman
et al., 2016). The AMR genes were significantly diminished
in concentration over time. The decreases of the 10 out of
the 12 antimicrobial resistance determinants and a decline
fungal richness by approximately 10-folds compared with
bacterial richness was associated with the composting operation
by raising the temperature above 55◦C (Holman et al., 2016).
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In a recent trial from Japan, spiked E. coli from manure
compost was reduced below the detection limit after 55◦C
incubation within 1 day (Yoshizawa et al., 2020). The
study concluded that proper composting could degrade the
concentrations of antibiotic-resistant pathogens and ARGs,
nevertheless, complete elimination is still difficult to achieve. For
instance, physicochemical treatment such as activated carbon
with microwave pre-treatment coupled with anaerobic digestion
successfully removed several manure contaminants, including
ARGs affiliated with macrolides, tetracyclines and sulfonamides
(Congilosi and Aga, 2021).

The thermophilic composting process of the poultry, cattle
and swine manure can reduce the ARG levels by up to 2.0 logs
depending on the type of operational treatment and type of
the manure (Checcucci et al., 2020). In another study, swine
manure application under 120-day simulated winter incubation
decreased the tetracycline resistance genes except for tetM
and tetO genes that persisted in the soil (Miller et al., 2020).
Another study concluded that mesophilic anaerobic digestion
of the cattle, poultry and swine manure could reduce the
proportion of tetracyclines but conversely increase tet and
methicillin resistance genes and increase the amounts of total
bacteria, E. coli, enterococci and S. aureus, therefore requiring the
need for additional optimizing of the post-digestion operation
(Agga et al., 2020). Some of the studies claimed that manure-
derived bacteria do not persist in soil for a long time, and
manure treatment does not radically affect the soil’s microbiome
(Laconi et al., 2021). However, flumequine can likely exhibit
selective pressure for oqxA and qnrS gene accumulation in
fertilized soils.

A study based on the investigation of antibiotic-resistant
pathogens from chicken litter manure sampled on site from
26 farms in Cameroon has recently detected multidrug-
resistant E. coli spp. and Salmonella spp. isolates (Ngogang
et al., 2021). The authors reported that all of the tested E.
coli isolates showed multi-drug resistant patterns, including
one isolate resistant to 9 antibiotics out of 11, and 28%
of E. coli isolated cultures were at least resistant to five
antibiotics (Ngogang et al., 2021). In parallel 36% of the
Salmonella spp. were multi-drug resistant and 27% of the
isolates were susceptible to all 11 of the antibiotics. Studies
conducted in US farms had earlier reported that Salmonella
spp. with an increased MDR frequency (58.73%) for at
least three or more classes of antibiotics that were isolated
from the pig manure application and consequently spread on
the land were able to persist for a minimum of 21 days
(Pornsukarom and Thakur, 2016). Lately, the same authors
found that antimicrobial-resistance plasmids between Salmonella
serotypes were able to persevere in the farm settings following
manure application (Pornsukarom et al., 2017). The authors
concluded that Salmonella antibiotic-resilient determinants of
95-kb conjugable plasmids showed a distinct transferability
amid Salmonella serotypes in North Carolina, highlighting the
evidence that manure deposition was capable of enriching the
environmental resistome.

Several animal manure samples from central Spain revealed
specific ARGs such as aadA, tetA, tetB, str, sul1, and sul2.

Additionally, the genes from chicken manure included genes with
clinical relevance, including blaCTX−M , blaTEM , mecA, vanA,
and qnrB (Esperón et al., 2018). Meanwhile, the pig slurry
samples showed highly expressed tetC and tetM levels, along
with the mecA gene. In conclusion, detecting a set comprising
11 ARGs from 18 in amended soil was suggested to support the
hypothesis that such a wide magnitude of genes could represent
an anthropogenic impact indicator of the environment.

A recent study showed a great prevalence of multi-drug
resistant Enterobacteriaceae, including their high resistance gene
set, observed in the livestock manure that belonged to different
farms and slaughterhouses in Portugal (Amador et al., 2019).
The authors identified that the most ARGs persistent isolates
(79%) were obtained from pig manure that also displayed a
resistance rate between 0.6 and 80.8%, and the main ARGs
genes were attributed to chloramphenicol (catI and catII),
ciprofloxacin (qnrS, qnrB, and oqx), tetracycline (tetA and
tetM) and trimethoprim/sulfamethoxazole (dfrIa and sul3),
respectively. A similar Enterococcal antibiotic-resistant trait was
recently mentioned by other researchers that identified a total
of 835 enterococci from soil and chicken litter with the most
prevalent species of E. casseliflavus and with the least infrequent
being E. gallinarum (Fatoba et al., 2021). Their results described
that approximately half of the isolates showed strong resistance to
at least one of the evaluated antibiotics with the highest resilience
against tetracycline (33%) at the same time, all of the isolates were
susceptible to gentamicin linezolid and tigecycline.

CONCLUSION

A complex relationship exists between soil health and agricultural
practices. Agriculturally induced soil property alterations have
the potential to influence the soil microbiome, directly and
indirectly, and subsequently impact on soil health. Application of
manure to agricultural land can influence physical, chemical and
biological soil properties. Microbiological contents of manure
have the potential to spread zoonotic pathogens and ARG’s
to the wider environment, where altered pathogen levels in
any instance may have a detrimental impact on human and
livestock populations. Understanding the relationship between
manure management, microbial content, land application, soil
and manure microbiome interaction and pathogen survival is key
in finding the sensitive and important balance between effective
and sustainable agricultural production.
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