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A majority of microbial infections are associated with biofilms. Targeting biofilms

is considered an effective strategy to limit microbial virulence while minimizing the

development of antibiotic resistance. Toward this need, antibiofilm peptides are an

attractive arsenal since they are bestowed with properties orthogonal to small molecule

drugs. In this work, we developed machine learning models to identify the distinguishing

characteristics of known antibiofilm peptides, and to mine peptide databases from

diverse habitats to classify new peptides with potential antibiofilm activities. Additionally,

we used the reported minimum inhibitory/eradication concentration (MBIC/MBEC) of

the antibiofilm peptides to create a regression model on top of the classification

model to predict the effectiveness of new antibiofilm peptides. We used a positive

dataset containing 242 antibiofilm peptides, and a negative dataset which, unlike

previous datasets, contains peptides that are likely to promote biofilm formation. Our

model achieved a classification accuracy greater than 98% and harmonic mean of

precision-recall (F1) and Matthews correlation coefficient (MCC) scores greater than

0.90; the regression model achieved an MCC score greater than 0.81. We utilized our

classification-regression pipeline to evaluate 135,015 peptides from diverse sources for

potential antibiofilm activity, and we identified 185 candidates that are likely to be effective

against preformed biofilms at micromolar concentrations. Structural analysis of the top 37

hits revealed a larger distribution of helices and coils than sheets, and common functional

motifs. Sequence alignment of these hits with known antibiofilm peptides revealed that,

while some of the hits showed relatively high sequence similarity with known peptides,

some others did not indicate the presence of antibiofilm activity in novel sources or

sequences. Further, some of the hits had previously recognized therapeutic properties or

host defense traits suggestive of drug repurposing applications. Taken together, this work

demonstrates a new in silico approach to predicting antibiofilm efficacy, and identifies

promising new candidates for biofilm eradication.
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1. INTRODUCTION

Many microbes in their natural habitats are found not
as free-floating (planktonic) organisms, but as three
dimensional aggregates encased in a polymeric matrix called
biofilms (Costerton et al., 1987). Biofilms are responsible for
65–80% of recalcitrant infections in humans. Once established,
biofilms have the potential to initiate or prolong infections by
providing a safe sanctuary from which organisms can invade
local tissue, seed new infection sites and resist eradication efforts.
Both bacteria and fungi form biofilms on abiotic (e.g., catheters
and implants) or biotic (e.g., skin, wounds) surfaces (Torres et al.,
2018; Ramasubramanian and Lopez-Ribot, 2019). Cells within
the biofilms display high levels of resistance against clinically-
administered antibiotics, which often leads to morbidity and
mortality (Srinivasan et al., 2017). Therefore, there is an
urgent need to develop agents that are effective against biofilm
infections (de la Fuente-Núñez et al., 2013; Pierce et al., 2015).

The traditional antibiotic screening paradigm first established
during the “golden era” of antibiotics (1940–1960), which has
continued until very recently, was heavily biased toward the
discovery of “magic bullets” that have either bacteriostatic or
bactericidal properties but elicited waves of antibiotic resistance.
This approach has had little success against multidrug resistant
(MDR) highly virulent Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter spp (ESKAPE)
pathogens (De Oliveira et al., 2020). Antimicrobial peptides
(AMP) have emerged as a promising alternative or complement
to chemical compounds in treating microbial infections (Margit
et al., 2016). More than 4,700 such peptides have been identified
in all forms of life, and are deposited in the Antimicrobial peptide
database (APD) (Wang et al., 2015). Compared to chemical
antibiotics, AMPs are particularly attractive for several reasons:
(i) AMPs appear to have a lower rate of inducing bacterial
resistance and they continue to be developed clinically (Spohn
et al., 2019); (ii) AMPs appear to be the last resort for recalcitrant
infections as exemplified by Polymyxin B, colistin, daptomycin
against the MDR ESKAPE pathogens (Zavascki et al., 2007); (iii)
AMPs can work synergistically with antibiotics (Sheard et al.,
2019).

In the recent past, several Machine Learning (ML)-based
approaches have been developed for the characterization
and prediction of novel AMPs including AntiBP - for
predicting antibacterial peptides (Lata et al., 2007), iAMP-
2L-for identifying antimicrobial peptides (Xiao et al., 2013),
iAMPred-for predicting antimicrobial peptides by using physico-
chemical and structural properties (Meher et al., 2017), AmPEP-
for sequence based prediction of antimicrobial peptides (Bhadra
et al., 2018). These studies have clearly demonstrated that
pattern-based computational approaches to establish structure-
function relationships are a powerful alternative or augmentation
to experimental biochemical assays, which are inherently lower
throughput, and expensive. More importantly, ML approaches
have been used to discover new AMP sequences (Lee et al., 2016),
predict unknown peptides from known ones (Fjell et al., 2008),
identify peptides with multiple functions (Haney et al., 2018),

and to discover previously unknown interrelationships between
existing peptides (Lee et al., 2016).

While a vast majority of work has focused on AMPs
effective against microbial infections in general, relatively fewer
experimental or computational efforts have been invested on
discovering peptides that are effective against biofilm infections.
These peptides, called Antibiofilm peptides (ABP) are a subset
of AMPs that inhibit biofilm formation or eradicate previously
formed biofilms. Nearly 200–300 peptides have been identified
to be effective against biofilms and are listed in the antibiofilm
peptide database, BaAMPs (Luca et al., 2015). ABPs can
be particularly attractive as a strategy to limit microbial
virulence without necessarily killing the organisms, or risking
the development of antibiotic resistance. ABPs can be used as
an alternative to antibiotics in microbial infections (Pletzer and
Hancock, 2016).

PreviousML approaches have focused on establishing patterns
from existing antibiofilm peptides that enable the classification
of candidate peptides for potential antibiofilm activity (Gupta
et al., 2016; Sharma et al., 2016; Fallah Atanaki et al., 2020).
Gupta et al. developed sequence-based support vector machine
(SVM) and random forest (RF) models to predict antibiofilm
activity using the peptides listed in the BaAMP database.
Their model achieved reasonable success with a Matthews’s
correlation coefficient (MCC) score of 0.84 (Gupta et al., 2016).
Sharma et al. developed SVM- and Weka-based models using
BaAMP data as their positive dataset, and quorum-sensing
peptides as their negative set. They achieved an MCC of
0.91 (Sharma et al., 2016). Another web-based model, BIPEP,
was developed by Fallah Atanaki et al. (2020) wherein peptides
from the APD and BaAMP databases were used as the positive
set, along with a negative dataset consisting fewer quorum
sensing peptides that in the positive set. Their SVM model
achieved an MCC value of 0.89. While these studies developed
important quantitative structure and activity relationships in
ABPs, they suffered from some drawbacks which may affect
the model performance. The model of Atankai et al. did not
account for the lower abundance of ABPs in nature. The
model of Gupta et al. might have used the pattern recognition
sequences (“motifs”) as a privileged information prior in the
classification model, while the model of Sharma et al. considered
a smaller negative set compared to their positive data set.
Most importantly, these models can only classify ABPs but do
not provide any insights into the efficacy of these peptides
against biofilms.

The objectives of this work are 3-fold: first, we seek to
improve the classification algorithm for ABPs by using a more
realistic, curated negative dataset with mostly biofilm-favoring
peptides which is 10-fold larger than the positive dataset; our
model identifies themost useful amino-acid composition features
and short-repeating patterns (“motifs”) indicative of antibiofilm
activity; second, we seek to develop a regression model using
the minimum biofilm inhibitory concentration (MBIC) and
minimum biofilm eradication concentration (MBEC) of ABPs
to predict the effectiveness of the novel peptides classified
as antibiofilm candidates; third, we seek to understand the
putative mechanisms of action of the peptide hits using their
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previously known properties, secondary structure, and similarity
with known antibiofilm peptides.

2. METHODS

2.1. Dataset Preparation
In this work, we collected data with the aim to improve the
performance of antibiofilm prediction models. Since biofilm
eradication is a well-defined physiological phenomenon, any
peptide will have less than a random 50% chance to be
active against preformed biofilms. Therefore, instead of using
a balanced dataset consisting of equal amounts of ABP and
non-ABP, we used an imbalanced, operationally tractable dataset
consisting of ten times more non-ABP peptides in the negative
dataset compared to ABP peptides in the positive dataset. We
chose to work with real peptides instead of randomly generated
peptides so that a more realistic performance may be obtained
from our classifier models. Therefore, we collected peptides
which directly or indirectly could play a role in biofilm formation
as elaborated in section 2.1.1. For establishing the efficacy,
we performed an extensive literature search to obtain peptides
with minimum biofilm inhibitory concentration (MBIC), and
minimum biofilm eradication concentration (MBEC).

2.1.1. Dataset 1
We extracted ABPs from the Antimicrobial Peptide
Database (APD), and the Biofilm-active Antimicrobial
Peptide database (BaAMP). After removing duplicates, we
obtained 242 ABPs, which served as our positive dataset
(Supplementary Tables S14–S18 in Supplementary Note 6).
For the negative dataset, we curated peptides from different
databases such as UniProt (Consortium, 2020), Quorum Sensing
Peptide Prediction Server (QSPProd) (Rajput et al., 2015) and
NCBI protein database (Coordinators, 2016). The peptides
from the UniProt database were screened for their direct or
indirect contribution to biofilm formation, including regulation,
association with biofilm matrix polysaccharide or proteins, and
association with the cells themselves. For example, we added
protein Q59U10, which is a biofilm and cell wall regulator in
Candida albicans. We also screened the proteomic profiles of
different biofilm-forming bacteria like Staphylococcus aureus
and Escherichia coli, and included peptides from the NCBI
and UniProt databases that promote biofilm formation. For
example, we included fibronectin-binding protein B, which
promotes the accumulation and surface attachment of biofilm
by Staphylococcus aureus. We also included quorum sensing
peptides, which promote biofilm formation, from QSPProd in
our negative dataset. To have a sequence length distribution in
the negative dataset that is similar to the positive dataset, we
considered either only the signal peptide length of the original
protein, or we divided the whole sequence into several sequences
of length 70–75, depending on the protein length. One caveat
with this approach is that fragments from a biofilm-promoting
protein may not retain the property of the parent protein. The
negative dataset has peptides of length 4–75.

Eighty percent of the positive and negative datasets were used
for training and 10-fold cross-validation while the remaining

20% was kept aside as a test/validation set. The performances
of different machine learning algorithms were evaluated on this
out-of-scope test dataset.

2.1.2. Dataset 2
We curated the minimum biofilm inhibitory concentration
(MBIC), and the minimum biofilm eradication concentration
(MBEC) for our positive dataset against different gram-positive
and gram-negative bacteria from the source publications. In cases
where these values were not listed in the source publication,
the approximate values were obtained from images or graphs
in the respective articles. For example, for LL-37, we consider
the case where P. aeruginosa biofilm were grown previously and
then peptides were added in various concentration (Nagant et al.,
2012). The bacteria was tagged with green fluorescent protein
and the killed biofilm appeared as red in the result. We analyzed
the figures, which indicate that the killing starts at 20 µM
concentration. Therefore, we considered 20 µM as the MBEC
value of LL-37 against P. aeruginosa. Likewise we did the search of
all the ABPs from our positive dataset. Of the 242 peptides in our
positive dataset, we obtainedMBIC andMBEC values for 178 and
57 peptides (Supplementary Tables S19, S20 in Supplementary
Note 4), respectively.

We did not consider the peptides which showed
inhibition/eradication against fungal pathogens like Candida
and others.

2.1.3. Candidate Dataset
In addition to the labeled dataset we used to train and
evaluate the performance of our computational antibiofilm
prediction models, we constructed a large candidate dataset
from various sources, including 74 anticancer, 220 antiviral,
and more than 4,770 antimicrobial peptides from the Data
Repository of AntiMicrobial peptides (DRAM) (Kang et al.,
2019). Additionally, we collected all 202,716 peptides from
UniProt of sequence length 11–20. After removing duplicates,
our candidate dataset contains 109,807 unique UniProt peptides.
We also included peptides from the Swiss-Prot section of
UniProt (Duvaud et al., 2021) with sequence length 4–10 and 20–
80. In total, we tested our model against 135,015 unique peptides
from different data sources.

2.2. Feature Extraction
We used the “propy3” (Cao, 2020) and the “protParam” (Cock
et al., 2009) software packages to extract different peptide
features, which are numerical representations of the peptide
sequence, structure, and physicochemical properties as
described below.

2.2.1. Amino Acid Composition
The Amino Acid Composition (AAC) features represent the
percentage of each amino acid present in the peptide sequence.
The biopython package returns a 20-element vector of the
naturally occurring amino acids. Equation 1 provides the formula
for computing the AAC of a given amino acid i:

AAC(i) =
# amino acids of type (i)

# amino acids
× 100 (1)
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2.2.2. Dipeptide Composition
Dipeptide Composition (DPC) represents the percentage of the
dipeptides present in the peptide sequence. The DPC feature
returns 400 named vectors with a non-zero value for any amino
acid pair (dipeptide) present in the peptide.

DPC(i, j) =
# dipeptide (i and j)

# possible dipeptides
× 100 (2)

2.2.3. Composition, Transition, Distribution
The Composition, Transition, Distribution (CTD) descriptor
is a 147-element vector representing different physio-chemical
properties of the peptides (Xiao et al., 2015). The properties
of peptides that are part of the CTD descriptor include
“hydrophobicity,” “normalized van der Waals volume,”
“polarity,” “polarizability,” “charge,” “secondary structure,”
and “solvent accessibility.” The amino acids are divided into
three groups depending on their property and functionality. The
“composition” features represent the percentage of each group
of amino acids in the peptide. The “transition” features represent
the relative frequencies of a given amino acid from one group
being followed by an amino acid from a different group. Finally,
the “distribution” features represent the percentage residue of
each attribute present in the peptide in their first, 25%, 50%, 75%,
and 100% of residues, respectively.

2.2.4. Motif
“Motifs” are maximal length amino acid sequences present in
peptides which may represent a unique biological or chemical
function. We used the “MERCI” software (Vens et al., 2011) to
identify distinct patterns in ABPs that are not present in non
ABPs (non-antibiofilm peptides). The MERCI software provides
two scripts to extract motifs. One script can essentially find all the
motifs that are present in the positive dataset and absent in the
negative dataset, which was used to discover and store, in each
experiment, motifs found in our training dataset. We then used
the second script to identify which of those training set motifs
were present in the test samples. Finally, we used the number
of identified motifs found in a given peptide as the motif-based
single-variate feature.

2.2.5. Other Features
We extracted other critical, global features, such as sequence
length, molecular weight, aromaticity, and isoelectric point, using
the “ProteinAnalysis” module of the “protParam” software.

2.3. Machine Learning Models
We developed our prediction model using several machine
learning algorithms, including Support Vector Machines (SVM),
Random Forest (RF), and Extreme Gradient Boosting (XGBoost)
classifiers. Our goal was to select the algorithm that provides
the best predictive performance for antibiofilm activity on out-
of-sample data. We used the “Scikit-learn” (Pedregosa, 2011)
package to train and test models for our work.

2.3.1. Support Vector Machine
Support Vector Machine (SVM) is one of the most commonly
used classifiers for peptide prediction (Ng et al., 2015). SVM

works particularly well for binary classification problems. The
model works by separating samples in different classes using a
hyperplane, which can be expressed in a high dimensional space
through kernel transformations. Since our dataset is not relatively
large, we used a nonparametric method that SVM supports and
a radial basis function (RBF) kernel. SVM is a robust model
that can be used for both classification and regression. Literature
shows that SVM has performed exceptionally well in predicting
peptide function (Gupta et al., 2013).

2.3.2. Support Vector Regressor
The Support Vector Regressor (SVR) model uses the same
principle as SVM, but for regression problems. Instead of
separating samples into different classes using a hyperplane,
the hyperplane is used to create a best fit line that has the
maximum number of points between the decision boundaries.
Like the classifications models, we used a radial basis function
(RBF) kernel to create a nonlinear hyperplane. The SVR
was used to predict minimum biofilm eradication/inhibitory
concentration (MBEC/MBIC).

2.3.3. Random Forest
The Random Forest (RF)model is an ensemble predictionmodel,
which also supports both regression and classification. RF has
been used to classify peptides and to solve other biological
problems (Manavalan et al., 2018). Although RF may not be
the best choice as a classifier for an imbalanced dataset, we
used this algorithm to compare the performance with other
classification algorithms.

2.3.4. Extreme Gradient Boosting
The Extreme Gradient Boosting (XGBoost) model is
comparatively a new prediction method used in machine
learning, which can also be used for both classification and
regression problems. In our work we used the XGBClassifier.
The XGBoost algorithm has regularization parameters that can
be tuned to reduce overfitting in an imbalanced dataset. This
algorithm is also used in prior work for the prediction of peptides
with an accuracy greater than 98% (Wang et al., 2020).

2.4. Cross-Validation and Stratified
Sampling
To address potential overfitting problems, we performed 10-fold
cross-validation of our training dataset, wherein one part of the
dataset, called the validation set, was used for testing, and the
other nine were used for training. This process was iterated over
ten times, using, in turn, each of the ten parts as the validation
set. Since our dataset is imbalanced, having ten negative peptides
for every positive one, we used stratified sampling to ensure that
each fold receives an equal percentage of positive and negative
peptides while doing cross-validation. Additionally, we used
stratified sampling to ensure that the out-of-sample test dataset
also has precisely 20% of the positive data, i.e., 48 peptides, and
20% of the negative data, i.e., 485 peptides. The details of the
distribution of dataset is available in Supplementary Table S1 in
Supplementary Note 1.
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2.5. Performance Evaluation
We used several standard metrics to evaluate our models”
performance, including sensitivity (Sen), specificity (Spec),
accuracy (Acc), Matthews’s correlation coefficient (MCC), and
harmonic mean of the precision-recall (F1) Score. The metrics
are defined as,

Specificity =
TN

FP + TN
(3)

Sensitivity =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

F1 =
TP

TP + FP + FN
2

(6)

MCC =
(TP)(TN) − (FP)(FN)

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(7)

where, TP = True Positive, TN = True Negative, FP = False
Positive, and FN = False Negative. For each model we tested, we
used 10-fold cross-validation to tune meta-parameters and find
the best model performance on the training set. We report the
effectiveness of that model on the out-of-sample test set in the
following section.

2.6. Principal Component Analysis (PCA)
During feature selection, the samples were transformed into
a lower dimensional space via Principal Component Analysis
(PCA). Several hyperparameters were tuned, namely the
regularization parameter (C) and kernel coefficient (γ ) for the
SVM/SVR models, and the number of principal components
for the dimensionality reduction. We employed 5-fold stratified
cross validation for classification and 5-fold cross validation for
regression to ensure we trained a generic enough model that
would not overfit the training set.

2.7. Sequence Alignment and Structure
Prediction
Sequence alignment of peptides was performed to identify
structural similarities between peptides using Clustal Omega, and
visualized using Jalview (Madeira et al., 2019). The BLOSUM62
raw scores were used to confirm pairwise homology. To obtain
consensus sequences frommultiple sequence alignments, the first
phylogenetic relationship was established based on BLOSUM62
scores. Then, from peptides in closely related trees, same or
highly similar residues were extracted. To obtain the degree of
disorder, the DisEMBL algorithm was used, and sequences with
a threshold value greater than 0.55 were classified as “hotloops”
or highly disordered regions. The 2D and 3D structures of the
peptides were predicted using the PEP2D (Singh et al., 2019) and
PEP-FOLD3 (Lamiable et al., 2016) servers, respectively.

3. RESULTS AND DISCUSSION

Our pipeline to predict peptides active against biofilms may
be grouped into four key steps: identification of positive and
negative datasets; development of a robust machine learning
algorithm for classification of ABPs; collection of candidate
potential ABPs from diverse habitats; and prediction of the
efficacy of the novel peptides using our antibiofilm peptide
classification model and a regression model based on known
MBEC data. In the following, we will describe each of these tasks,
which are also portrayed in Figure 1.

3.1. Characteristics of Peptides in the
Positive Dataset
3.1.1. Sequence Length
The number of amino acids in our positive dataset varies between
4–70 (Figure 2A). Almost all the peptides have a sequence length
less than 50. Only 2 peptides have a sequence length between 50–
60 and 2 peptides have a sequence length between 60–70. Most
of the ABPs were relatively short, i.e., two-thirds of the peptides
contain less 20 amino acids with half of the peptides containing
between 11–20 amino acids.

3.1.2. Amino Acid Composition
We compared the distribution of 20 amino acids in the peptides
in the positive and negative datasets (Figure 2B). We observed
that, compared to the negative dataset, the ABPs contained
a significantly higher percentage of lysine (K), arginine (R),
tryptophan (W), and a significantly lower percentage of aspartic
acid (D), glutamic acid (E), threonine (T) serine (S), asparagine
(N), and methionine (M). This clearly indicates that the ABPs
are positively charged, and contain a lower fraction of polar but
uncharged side chains. The higher percentage of W indicates a
higher hydrophobic nature of ABPs. This is further exemplified
when the distribution of amino acids in the positive dataset were
grouped by sequence length: K, R, and W make up 50% of the
amino acid composition in the short peptides (<20 amino acids),
which make up two-thirds of the positive dataset (Figure 2C).
We also observed that peptides contain non-polar amino acids
isoleucine (I), leucine (L), glycine (G), and alanine (A), which
provide an amphipathic character to the ABPs.

3.1.3. Dipeptide Composition
Figure 2D and Supplementary Figure S1 in Supplementary
Note 2 show the most commonly encountered dipeptides in
our positive and negative datasets, respectively. In our analysis,
we focused on the top 3 dipeptide components in different
sequence ranges. With the higher prevalence of K, R, and W
in the ABPs, all the top candidates for dipeptides contained
these amino acids. When arranged by sequence length, it
can be seen that the majority of the peptides (>80%, with
lengths in the range 4–30) contained “WR/RW,” “RI/IR,” “KK,”
and “RR” as the most commonly encountered dipeptides. In
contrast, the non-ABPs have non-polar aliphatic amino acid
leucine (L) and alanine (A) in the top 5 dipeptide candidates.
The dipeptide components most prominent in the positive
and negative datasets clearly indicate the presence of a higher
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FIGURE 1 | Process flow for the classification of potential antibiofilm peptides and prediction of antibiofilm activity. The process consists of two distinct, sequential

steps. In the first step, a binary classification model was trained using a dataset with 242 peptides with reported antibiofilm activity and 2420 peptides with no known

or suspected antibiofilm activity. In the second step, two regression models were trained using a subset of the peptides with known minimum biofilm eradication

concentration (MBEC) and minimum biofilm inhibitory concentration (MBIC) values. Candidate peptides will be first evaluated for potential antibiofilm activity using the

classification model, and then their effectiveness will be predicted using the regression model.

percentage of cationic and hydrophobic amino acids, and charge-
hydrophobicity as a recurring theme in the antibiofilm (positive)
dataset. It is this recurring presence of the charge-hydrophobicity
combination exemplified by the dipeptide composition that
underscores the amphipathic characteristic typically attributed to
the action of ABPs.

3.1.4. Motifs
Motifs represent short sequences that are commonly found in
the datasets. We observed that the motifs “RIRV,” “RIVQRIK,”
and “IGKEFKR” appeared more frequently in the positive
dataset (Figure 2E), indicating a combination of polar and non-
polar amino acids as one of the main reasons of amphipathicity.
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FIGURE 2 | Primary and secondary structural characteristics of antibiofilm peptides. (A) Distribution of antibiofilm peptides over different sequence lengths; (B)

Comparison of amino acid distribution in the positive and negative datasets. Statistical significance (p ≤ 0.001) was established using Mann-Whitney U-test; Amino

acids marked in “red” on the x-axis of the figure are not statistically significant; (C) Distribution of K, R, and W, grouped based on the peptide length; (D) Dipeptide

composition analysis shows IR, RI, WR, RW, and KK are the most common dipeptide sequences present in the antibiofilm peptide database (AA, LL, AL, or LA are

most common in the negative dataset); (E) Most commonly found motifs in the antibiofilm peptides; (F) Antibiofilm peptides contain more alpha helices than beta

sheets or coils.

Frontiers in Microbiology | www.frontiersin.org 7 February 2022 | Volume 12 | Article 783284

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Bose et al. Novel Antibiofilm Peptide Prediction

In contrast, the most prevalent motifs in non-ABPs were
“SE,” “ET,” and “VD,” mainly consisting of acidic amino acids,
i.e., aspartic acids and glutamic acids. This analysis shows
that certain motifs, although present in a relatively smaller
fraction, can be effective in conferring antibiofilm properties. For
instance, human cathelicidin LL-37 prevents biofilm formation
of P.aeruginosa at a concentration lower than its MIC value by
probably blocking the growth of the extracellular matrix (Nagant
et al., 2012). While the truncated LL19-37 did not affect biofilm
growth, the addition of “IGKEFK” (LL13-37) inhibited biofilm
formation at 50 µM. “IGKEFK” is one of the motifs we
found in high numbers in our positive dataset during motif
analysis. As stated in Nagant et al. (2012) LL-19 has no activity
against bacterial membrane permeability, but adding a motif of
“IVQRIK” increases permeability in LL-25. “IVQRIK” is another
motif that we found in our positive dataset.

3.1.5. Secondary Structure Analysis
We observed that ABPs of any sequence length are more likely to
form α-helix structures (Figure 2F). In smaller length peptides,
we noticed a prevalence of α-helix structures. As the peptide
length increases, we noticed a greater percentage of coils in the
peptides. The presence of positively charged and hydrophobic
amino acids, together with the propensity to form α-helices
suggests that the predominant mechanism of antibiofilm activity
consists of positively charged, amphipathic helical peptides.

3.1.6. Physicochemical Properties
We also compared different physicochemical properties, namely,
polarity, hydrophobicity, and solvent accessibility between the
positive and negative datasets (Figure 3). First, as expected
from the AAC, the ABPs, compared to the negative dataset,
contained a significantly larger fraction of charged polar residues
but a smaller fraction of uncharged polar residues. Second,
the comparison of hydrophobic properties between ABPs and
non-ABPs showed that ABPs in our dataset consisted of
a much lower number of hydropathically neutral peptides
but significantly higher number of hydrophobic or charged
residues. The hydrophobic portion of ABPs leads to insertion
of the peptides into the less polar bacterial membrane and to
destabilizing membrane barriers (Schmidt and Wong, 2013).
The higher percentage of alanine, valine, leucine, isoleucine,
and phenylalanine could be a potential reason for the ABP’s
hydrophobic nature. Third, ABPs, compared to the negative
dataset, had a significantly lower percentage of compounds
that were neutral in their interactions with solvent water but
contained more residues that will be buried or exposed when
exposed to water. This compositional analysis shows that the
ABPs are composed of amino acids with strongly polar and
hydrophobic tendencies which together provide an amphipathic
nature rather than neutral amino acids.

3.2. Performance of Machine Learning
Models
3.2.1. Classifier Performance
Having characterized the antibiofilm peptide dataset, we used
primary and secondary structure information of the peptides to

develop machine learning models to identify and understand
features that may be unique to ABPs. We used a total of 572
features obtained from AAC, DPC, and CTD analysis, and
motifs, in various combinations, to describe our peptide samples
numerically and train ourmachine learningmodels. For the SVM
model, we used a linear kernel with and without recursive feature
elimination, and a RBF kernel. Recursive feature elimination is
a heuristic method used to select a subset of the features that
may lead to superior performance compared to using all initial
features; it works by iteratively eliminating the feature whose
elimination produces the most improvement in performance,
until no such performance improvement can be achieved. The
linear kernel in SVM did not perform well and only achieved
an MCC score less than 0.75. Additionally, recursive feature
elimination did not lead to improvements in our classification
model performance. Using the radial bias kernel provided the
highest model performance. For the XGBoost and Random
Forest models, the model parameters, number of estimators and
maximum depth, were tuned. The performance of the models
are presented in Figure 4 and Supplementary Tables S2–S4 in
Supplementary Note 3. The accuracy for all the models was more
than 95%while themodel specificity varies between 98 and 100%.
Since our model is a binary classifier and our dataset is not
balanced, we used F1 score and MCC as the two key metrics
to evaluate the performance of these machine learning models
(Figure 4).

We observed that using either AAC, DPC, or CTD alone
resulted in an F1-score between 0.80 and 0.85 in all ourmodels. In
contrast, using a combination of two of the three sets of features
significantly improved the model performance with F1-scores
between 0.82 and 0.88 in all our models. Using a combination
of all three sets of features further, though modestly, improved
model performance. We also observed that the addition of motifs
as a feature improved the performance of our classifier model
with SVM (Figure 4A). Similar observations have been noticed
with MCC scores. While only considering DPC gave an MCC as
low as 0.79, adding the remaining features lead to an MCC score
of 0.9 (Figure 4B).

To adequately compare the performance of our model with
that of previously published models on ABPs, we applied our
best-performing model to the dataset used by Gupta et al. (2016).
It is important to mention here that the performance obtained
by one model vs. another on the same task cannot be directly
compared unless experiments were conducted using the same
dataset and evaluation metrics. Our best performing model is
SVM with a radial bias kernel that utilizes AAC, DPC, CTD,
and motif as features. Our model outperformed the previously
reported results by a significant margin as seen by the increase in
MCC from the published value of 0.84 in Gupta et al. (2016) to
0.90 (Supplementary Table S5 in Supplementary Note 3).

3.2.2. Distinguishing Characteristics of Antibiofilm

Peptides Predicted by the SVM Model
Next, we ranked features that are distinct in the positive dataset
compared to the negative dataset, so that we may be able to
ferret out higher level information that may be unique about
the ABPs. To this end, the features were ranked in the order of
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FIGURE 3 | Physicochemical characteristics of antibiofilm peptides. (A) Polarity; (B) Hydrophobicity; (C) Solvent accessibility. Statistical significance (****p ≤ 0.001)

was established using the Mann-Whitney U-test using python package.

FIGURE 4 | Evaluation of classification models and features. F1 scores (A) and MCC (B) were estimated for three different machine learning algorithms, SVM,

RandomForest and XGBoost, incorporating features that contain combinations of amino acid composition (AAC), dipeptide composition (DPC),

composition-transition-distribution parameters (CTD), and motifs. SVM performed best when run against all features, including motif.

increasing importance, as determined by the SVM with radial
RBF kernel model.

There is no available API in the scikit learn RBF kernel
SVM package to get the top feature. Therefore, we used a
forward selection method to choose the top features. This is
a computationally intensive iterative process where we start
with zero features and iteratively add each feature that leads to
the most performance improvement, until all 572 features are
exhausted. In essence, it is the opposite of the recursive feature
elimination method. With each iteration, the algorithm identifies
the next best performing feature. The performance score was
measured using the MCC score.

We observed that the first feature generated an MCC score
of 0.61, and the first four features generated an MCC score of
0.79. The addition of the next four and eight features generated
an MCC score of 0.81, and 0.82, respectively; the inclusion of

all 572 features generated an MCC score of 0.91 (Figure 5A).
The first four features that contributed most to the MCC
score were all associated with the physicochemical properties
of the peptides, namely, number of transitions from apolar to
polar amino acids, fraction of polar amino acids, fraction of
amino acids that are buried and least accessible to solvent, and
distribution of solvent accessibility for amino acids that are
buried from first residue to 25% residue. The distributions of
these parameters in the positive and negative datasets reveal
non-overlapping distributions, which further explains their
performance impact in the classification task (Figure 5B). This
analysis confirmed the importance of the alternation between
charge and hydrophobicity. The most discerning feature from
the forward selection process, “polarity-transition-group-1-3,” is
the transition from polar group 1, i.e., from non-polar sequences
like Gly, Ala, Val, Leu, Ilu, Pro to group 3, i.e., charged-polar
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FIGURE 5 | Most discriminant features obtained from the SVM model using Forward Selection. (A) Cumulative increase in MCC with top features shows that polarity

and solvent accessibility are sufficient to account for nearly all the differences between the positive and negative datasets; (B) Distribution of top features between the

positive and negative datasets. Polarity Transition means transition from group1 (non-charged) to group3 (highly charged) amino acids; Polarity Composition means

composition of highly charged amino acids; Solvent Accessibility Composition means composition of buried amino acids; Solvent Accessibility Distribution means the

fraction of first 25% of residues in the sequence are buried amino acids. Statistical significance (p ≤ 0.001) was established using the Mann-Whitney U-test from

python package.

amino acids like His, Lys, and Arg. The other discerning features
consist of “polarity-composition-group-3” or composition of
highly charged amino acids like His, Lys and Arg, “Solvent-
Accessibility-composition-group-1” or composition of buried
amino acids, and “Solvent-Accessibility-Distribution-group1” or
distribution of amino acids like Ala, Leu, etc.

3.2.3. Prediction of Antibiofilm Efficacy Using

Regression Models
The effectiveness of ABPs are evaluated based on their minimum
biofilm inhibitory concentration (MBIC) and minimum biofilm
eradication concentration (MBEC) levels. The MBIC represents
the concentration of the peptide that will prevent biofilm
formation, while MBEC represents the concentration of the
peptide that can remove preformed biofilms. datasets containing
both concentrations were modeled and evaluated for efficacy,
with the goal of predicting these values for antibiofilm
peptide hits.

3.2.3.1. Models for the Prediction of Minimum Biofilm

Inhibitory Concentration
The positive peptide dataset for the classification model contains
242 anti-biofilm peptides, 178 of which we were able to obtain
MBIC values for. Although MBIC spanned from 0 to 640 µM,
the data was largely skewed with approximately 80% of the values
less than 64 µM and 52% of the values less than 20 µM. Given
this imbalance, we trained an SVM to classify peptides above or
below 64 µM, and a separate Support Vector Regression (SVR)

model to predict the MBIC value of a peptide. Both models used
an RBF kernel and a dataset consisting of only those peptides
with MBIC values less than or equal to 64 µM. Each peptide
consisted of 571 features and, due to this large dimensionality,
feature selection was implemented using the forward selection
algorithm to choose the most effective features. While iterating
through forward selection, Root Mean Square Error (RMSE) for
the training set peptides was minimized in the case of SVR and
MCC was maximized in the case of SVM. Forward selection
was halted upon 5 consecutive iterations where RMSE had
not decreased or MCC increased. During feature selection, the
samples were transformed into a lower dimensional space via
Principal Component Analysis (PCA). Several hyperparameters
were tuned, namely the regularization parameter (C) and kernel
coefficient (γ ) for the SVM/SVR models, and the number of
principal components for the dimensionality reduction. We
employed 5-fold stratified cross validation for classification and
5-fold cross validation for regression to ensure we trained a
generic enough model that would not overfit the training set. For
both models, a grid search between 0.001 to 1000 was used for
both C and γ and the number of principal components spanned
from 1 to the number of forward selection features. The best
SVM model we found contained 9 features and was trained with
parameters C = 10, γ = 950, and 6 principal components. The
best SVRmodel contained 9 features as well and used parameters
C = 45, γ = 40, and 8 principal components. The final model
was able to achieve an MCC of 0.81 and an RMSE of 8.51 on
the out-of-sample test sets. Figure 6A shows several ranges of
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FIGURE 6 | Performance and characteristics of peptides with MBIC/MBEC values. (A) Comparison between original and predicted MBIC values using the best

regression model; (B) Performance of the best MBEC regression model. Best fit line (R2 = 0.832) and 95% confidence interval are shown.

MBIC values and the number of actual predicted MBIC values
in each range.

3.2.3.2. Models for the Prediction of Minimum Biofilm

Eradication Concentration
We further evaluated the peptides and found only 57 from
literature where the MBEC values have been reported. The
analysis of peptides showed almost 85% of peptides having a
sequence length < 30. These peptides showed a high percentage
of positively charged amino acids like arginine and lysine as well
as aromatic amino acids like tryptophan. Additionally, secondary
structure analysis showed a high percentage of helices present
in those peptides (figures in Supplementary Note 4). After
eliminating peptides with MBEC values greater than 64 µM, our
dataset consisted of 42 peptides for further regression analysis.

A Support Vector Regression (SVR) model built with an RBF
kernel was found to be the most effective model to predict
MBEC values given the limited training dataset. The same
dimensionality reduction methodology was used as in the MBIC
models in addition to the same hyperparameter grid search. The
best SVR model contained 12 features and used hyperparameters
C = 900, γ = 20, and 7 principal components. It was trained
using 5-fold cross-validation and the best performing model had
an RMSE of 8.41. When ground truth MBEC values were plotted
against the regression predictions, we found the R-squared value
to be 0.832 (Figure 6B).

3.3. Classification of Novel Antibiofilm
Peptides
We used our best machine learning models to predict peptides
with potential for antibiofilm activity from diverse sources.
We queried various peptide databases to identify peptides with
antibiofilm activity. We searched 4,700 antimicrobial peptides,
74 anticancer peptides, and 212 antiviral peptides in the DRAMP
database. We also considered more than 131,298 unique peptides
from UniProt which have a sequence length of 4–80. After

removing duplicates, we ran our classification model on 135,015
unique peptides from these varied sources, and selected 5468
unique peptides which were predicted as positive or hits by
our model. The overall hit rate for this initial set of predicted
peptides is 4.04%while the hit rate only fromDRAMP database is
30.49%. This higher value is due to the inclusion of peptides with
established antimicrobial activity in the antimicrobial databases,
which is likely to be skewed for high antibiofilm activity.

Due to the relatively large number of peptides selected by
our classification model, we used the decision function of each
of the peptides to narrow down the hits. The decision function
estimates the sample position with respect to the discriminating
hyperplane of the model. While training our model, we noticed
that the peptides with decision function values higher than 0.99
were ABPs, whereas those with a negative decision function were
non-ABPs (Figure 7A). More importantly, we noticed a clear
discontinuity in the decision function as we transition from the
positive to the negative dataset, which further showcases the
effectiveness of our computational prediction model. Therefore,
we used this confidence value as a filtering criteria to narrow
down our list of peptides in the candidate set which were initially
predicted as antibiofilm by our classification model and set a cut-
off threshold of 0.99. As a result, we chose candidate peptides
with decision function values higher than 0.99 as more likely
to have antibiofilm activity, which further narrowed down the
hits to 296 peptides or a hit rate less than 0.2% overall. A vast
majority of these peptides have lengths between 6 and 21 amino
acids (Figure 7B).

3.4. Prediction of Activity in Novel
Antibiofilm Peptides
Having classified potential ABPs, we used the regression models
to predict the MBIC and MBEC values of the 296 peptides.
Since we are interested in peptides that are efficacious against
preformed biofilms, we used an operational cut-off of decision
function≥ 0.99, and MBEC≤ 64 µM.We obtained 185 peptides
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FIGURE 7 | Classification of antibiofilm peptides. (A) Decision Function of the training data, decision function values >0.99 are the antibiofilm peptides whereas

values <0 are the non-antibiofilm peptides; one antibiofilm peptide was misclassified by the model; (B) Distribution of predicted antibiofilm peptides based on their

sequence lengths.

(Supplementary Tables S6–S12 in Supplementary Note 5) of
interest (Figure 8A). Among these peptides, 40 showed high
effectiveness (MBEC between 1.0–8.0 µM) and another 48
peptides had comparatively lower effectiveness (MBEC more
than 32 µM) (Figure 8B). We noticed that most of the peptides
(67 peptides) had moderate predicted effectiveness between
16.0 and 24.0 µM. When we evaluated the source of the
peptides, most of them were synthetic (116), and the naturally
occurring peptides were from expected sources such as plants,
amphibians, insects, and mammals (Figure 8C). We grouped the
hits into those with known antimicrobial activity as archived
in the DRAMP database (Supplementary Tables S6–S10 in
Supplementary Note 5), and those that are not archived in the
DRAMP database that were obtained from the UniProt database
(Supplementary Tables S11–S13 in Supplementary Note 5). Of
the 185 hits, 131 peptides were from the DRAMP database,
and 54 were from the UniProt database. We also grouped the
peptide hits based on their function. As expected, most of the
peptides have some previously reported antibacterial properties.
The hits also contained 19 peptides with anti-tumor/cancer
activity, 26 peptides with antifungal properties, and 1 peptide
with antiplasmoidal activity, suggesting potentially useful dual
function therapeutics (Figure 8D).

Some of these peptide hits have already shown promise
as antimicrobial agents (but not as antibiofilm agents) (Sahoo
et al., 2021). The two anticancer peptides DRAMP03575 and
DRAMP03829 are reported to exhibit an MIC of 16 µM and 10
µM, respectively, against Escherichia coli (Kang et al., 2019). The
sperm protamine peptides from catshark and bat showed activity
against 12 pathogens at a concentration of 0.01–20 mg/mL (Kim
et al., 2015). Mastoparan-1 has an MIC value between 2 and
32 mg/L against Staphylococcus aureus, and is known to have
antibacterial and antibiofilm properties (Memariani et al., 2018).
Ponericins, peptides from the Ponerine ant, have structural

similarity with well-known antimicrobial and antibiofilm peptide
cecropins (Orivel et al., 2001). While no known antimicrobial
activity has been listed for the histamine releasing peptide from
the oriental hornet, studies are ongoing for alpha-conotoxin
obtained from cone snails, mainly used in pain management,
to establish its antimicrobial activity (Ebou et al., 2021). An
analog,ω-conotoxinMVIIA shows the peptide is effective against
Candida kefyr and Candida tropicalis with moderate MIC values
between 28 and 40 µM but it was not effective against any
bacterial assay up to 500 µM (Hemu and Tam, 2017).

3.5. Prediction of Secondary Structure of
Novel Antibiofilm Peptide Hits
We sought to understand the possible mechanisms of action
of newly found potential antibiofilm hits in the top quadrant
of (Figure 8A). Since we were interested in peptides with
previously unreported antimicrobial activities, and therefore
novel, we focused on the 54 peptides from the UniProt database.
Even amongst these 54 peptides, 14 peptides have been reported
to have antimicrobial activities as per the UniProt annotation
although they were not listed in any of the antimicrobial
databases. For instance, the peptides P0CF03, P82420, and
C0HK43 have been reported to have antimicrobial properties
as well non-hemolytic properties, and anticancer properties
(C0HK43) suggesting that these peptides may serve as good
antibiofilm candidates. Other peptides such as P30259, P0C424,
C0HLM2, Q9U8M9, A0A1C8YA26, P85874, and Q16228 are
not reported to have any antimicrobial/antibacterial activity as
per their UniProt annotation. Of the 40 peptides that do not
have any annotations or references to antimicrobial activity, we
found 5 peptides from the mastoparan group, 3 peptides from
the poneritoxin group, 2 peptides each from the conotoxin,
lasioglossin and protamine groups, and 17 uncharacterized
peptides that are mostly derived from plant sources. Of note,
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FIGURE 8 | Prediction of antibiofilm activity using an integrated classification-regression scheme. (A) Decision Function of the classifier and Predicted MBEC from the

regression model of the peptides; (B) Distribution of MBEC values in the 1-64 µM range; (C,D) Distribution of the peptides with predicted antibiofilm activity based the

source (C), or the function (D).

our positive dataset did not contain any peptides from the
mastoparan, poneritoxin, conotoxin, lasioglossin or protamine
groups indicating that these are indeed novel hits. Since the
function of peptides from the mastoparan, ponericin, and
conotoxin groups is to protect the host organism, they belong
the category of host defense peptides (HDPs). Interestingly,
we also obtained non-host defense peptide hits which have
varied functions—DNA intercalation (protamine), intemediate
filaments in neurons (peripherin), and metabolic enzymes
(alcohol dehydrogenase, beta-amylase).

We chose the 37 novel peptides for further analysis, and
their decision function and predicted MBEC values are listed
in Table 1. In this Table, the first 16 peptides have been
characterized previously, and the next 21 peptides have not
been characterized (i.e., listed as uncharacterized in the Uniprot
database). Next, we predicted the secondary structures of these
peptides using the PEP2D server (Singh et al., 2019) and PEP-
FOLD3 server (Lamiable et al., 2016). Figures 9, 10 show the
predicted 3D structures, and Supplementary Figures S3, S4

in Supplementary Note 5 show the predicted 2D structures
of previously characterized and uncharacterized peptides,
respectively. Most peptides show helical or coil structures.

Specifically, the mastoparan, poneritoxin, and lasioglossin
peptides show helical structure, while the conotoxin peptides
have a purely coil structure (Supplementary Figure S3 in
Supplementary Note 5). The peptides not belonging to any
specific class or uncharacterized peptides as per Uniprot
annotation also showedmostly helical or coil structures with only
one or two peptides folding as sheets (Supplementary Figure S4

in Supplementary Note 5). Using the DisEMBL predictor
from JalView, we also observed that three hits (A0A0D3HK27,
A0A2P2N8A3, E9I8P2) are likely to be highlymobile and not fold
to a stable structure.

3.6. Alignment of Sequences to Identify
Consensus Patterns
To characterize the unique sequences or common functional
motifs among the 37 peptide hits, we performed multiple
sequence alignment and generated the phylogenetic relationship
between the hits. Based on these results, the peptide hits were
classified into subgroups to obtain consensus sequences. The
results are shown in Figure 11. We found that previously
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TABLE 1 | Antibiofilm peptide hits.

Name Type Sequence Decision function Predicted MBEC (µM)

P17238 Mastoparan INLKAIAALVKKVL 1.142 22.669

P85874 Mastoparan-like-peptide PMM2 INWKKIASIGKEVLKAL 1.109 22.679

P69036 Mastoparan INWLKLGKAVIDAL 1.065 22.679

P69034 Mastoparan INWLKLGKKVSAIL 1.011 22.679

P82420 U1-poneritoxin-Ng3g GLVDVLGKVGGLIKKLLPG 1.326 27.710

P82419 M-poneritoxin-Ng3f GLVDVLGKVGGLIKKLLP 1.299 28.502

P0CF03 U1-poneritoxin-Da2a FLGGLIGPLMSLIPGLLK 1.001 19.722

C0HLM2 Alpha-conotoxin SGCCKHPACGKNRC 1.729 39.130

P0C424 Conotoxin CCAPSACRLGCRPCCR 1.348 2.967

C0HK43 Lasioglossin VNWKKILGKIIKVAK 1.252 3.071

C0HK42 Lasioglossin VNWKKVLGKIIKVAK 1.169 3.071

P30259 Protamine GCKKRKARKRPKCKKARKRP-KCKRRKVAKKKC 1.278 4.289

Q8WMD3 Protamine MARYRRCRSRSRCRRRRRRCH-

RRRRRCCRRRRRRRACCRRYRCRRR

1.043 21.567

Q16228 Peripherin WRWRRACRRPGRPFWRV 1.533 61.163

Q9U8M9 Alcohol dehydrogenase AGLGGIGLDTNREIVKSGPK 1.079 20.531

A0A1C8YA26 beta-amylase FLGCRVQLAIKISGI 1.072 22.358

A0A0A9FN30 Uncharacterized MFRSLRKELKSKLL 1.052 22.845

A0A0A9M1Q7 Uncharacterized MGRKFKWKLWT 1.448 14.309

A0A0A9U210 Uncharacterized MTRIRRRRRHLLLLR 1.066 22.612

A0A0D3HK27 Uncharacterized MFGGSGPLKLL 1.027 22.008

A0A0E9SZ00 Uncharacterized MCTRWRVLLTCVRRR 1.299 28.711

A0A0K1NW40 Uncharacterized KAIALALGKSGCK 1.226 22.678

A0A2P2N8A3 Uncharacterized MGGKSDFRFCHVKKKVL 1.082 11.138

A0A2P2Q2Y8 Uncharacterized MLKLWLRIKLLRKAL 1.225 35.601

A0A3D5SU75 Uncharacterized PCPCGSGKKYKHCHGKLS 1.040 1.854

A0A3Q7GQZ6 Uncharacterized GLAYRLVNLHFCKTKR 1.073 22.656

A0A5K0UXG7 Uncharacterized ALLKSKPKLLRSGL 1.662 22.694

A0A5K1B3V0 Uncharacterized VIRIGCKWKRTA 1.416 6.260

A0A5K1BN05 Uncharacterized LGCGHGLPGIFACLK 1.030 3.071

A0A5K1D9T8 Uncharacterized AKALGKRLRIKGRFQS 0.999 61.036

A0A5K1DCQ4 Uncharacterized LGCGHGLPGIYACLK 1.233 3.071

A0A5K1F988 Uncharacterized EKFKIHKSGKRWM 1.062 46.811

A0A5K1FWL9 Uncharacterized FRARLLRTAFR 1.115 22.722

E4Z311 Uncharacterized IKGILLRKIIKVR 1.138 35.514

E9I8P2 Uncharacterized MLKKFLGKSGRRILR 1.173 8.156

E9JAR4 Uncharacterized KLVLRRILALCIIAVCK 1.259 22.923

S7IKV4 Uncharacterized SGLFCKGCSKL 1.030 60.153

characterized peptides grouped into four subgroups: Subgroup-
1, –2, –3 and −4, consisting of mastoparan and lassioglossin,
poneritoxin, conotoxin, and protamine peptides, respectively.
The previously uncharacterized peptides were grouped in
Subgroups-5 through –9. The remaining hits that did show
significant alignment with any other hit were placed in
Subgroup-10. Some of the uncharacterized peptides aligned well
with previously characterized peptides: E9I8P2 aligned with
the poneritoxin group, and A0A0E9Z00 and A0A2P2N8A3
aligned with the protamine group. The common functional
motifs were diverse but do not contain any anionic residues,
and most commonly contain R, K, L, I, and G. We
found sequences that were either R- or K-rich (Subgroup-1,

−2, −4, −5, and −7), C-rich (Subgroup-3), I- or L-rich
(Subgroup-1, −2, −5, −8 and −9). Interestingly, some
of the common functional motifs, such as those from
Subgroup-3, and −9, are unlike what is typically observed
in AMPs.

Using helical wheel diagrams, we visualized helical peptides
and their hydrophobic moment in Supplementary Figure S5

in Supplementary Note 5. The helical wheel diagrams show
that the mastoparan and lassioglossin peptides (Subgroup-
1) and A0A2P2Q2Y8 (Subgroup-5) form a nearly perfect
amphipathic helix with hydrophilic and hydrophobic amino
acids on either side of the helix. Other peptides such as
A0A0A9210, A0A3Q7GQZ6, and E9JAR4 form helices but do
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FIGURE 9 | 3D structures of previously characterized potential antibiofilm peptides. The 3D structures were predicted using the PEP-FOLD 3 server. All structures are

depicted with N-terminal at the top, and C-terminal at the bottom.

FIGURE 10 | 3D structures of previously uncharacterized potential antibiofilm peptides. The 3D structures were predicted using the PEP-FOLD 3 server. All structures

are depicted with N-terminal at the top, and C-terminal at the bottom.

not show amphipathic character as indicated by the lower value
of hydrophobic moment.

To obtain insights into the mechanisms of action of these
peptide hits, we sought to compare the sequences of these
peptides with those in the positive dataset with known low
MBEC values (<64 µM). Upon sifting through the positive
dataset, we identified 5 peptides (LL-37, coprisin, melittin,
RT2 and 1018) that have unique sequences and also have

well established antibiofilm activity with known mechanisms
of action (Supplementary Tables S19, S20 in Supplementary
Note 6). We performed sequence alignment of the 37 peptide
hits (16 characterized peptides and 21 uncharacterized peptides)
with these 5 antibiofilm peptides using Clustal Omega, and the
pairwise alignment score is shown in Table 2. As representative
examples, the sequence alignments for the peptide pairs
with the highest pairwise alignment scores are presented
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FIGURE 11 | Multiple sequence alignment of peptide hits. The peptide hits listed in Table 1 were placed in Subgroups based on their BLOSUM62 neighbor in the

phylogenetic tree, and Multiple Sequence Alignment with ClustalW was performed. The most conserved sequences for the Subgroups are: (1) INWKKI—V–VL; (2)

L—LGK-G—KRLL; (3) CC—AC–G—C; (4) C-R-R-R–C-RR—RR; (5) LR-KLLR–L; (6) GCGHGLPGIFACLK; (7) GKRLR—GKL; (8) I-LAL–SG; (9) GG—GPL—LL. The

default color scheme used as per ClustalX. Colorcode—blue: residue A, I, L, M, F, W, V, C; red: residue K, R; green: residue N, Q, S, T; magenta: E, D; yellow: residue P.

in Supplementary Figure S6 in Supplementary Note 5. The
alignment scores are relative. The scores depend on both the
length of the sequences and the number of identical or similar
amino acids in those sequences. For instance, the self-alignment
scores for the 37-amino acid long LL-37 is 1850, while the same
score for alignment with the first five amino acids of LL-37 is 260.

Of the previously characterized peptides, the hits which have a
helical structure encompassing the mastoparan, poneritoxin, and
lasioglossin groups showed significant sequence similarity with
the melittin and LL-37 peptides. Conotoxin peptides with coiled
structure share sequence similarity with coprisin. Interestingly,

peripherin shared relatively high sequence similarity with
LL-37, 1018 and RT2, demonstrating the highest pairwise
alignment score with RT2 amongst all the peptides tested in
this work. On the other hand, we notice that a few of the
peptide hits (Q8MWD3 and P30259-protamines, Q9U8M9-
alcohol dehydrogenase) showed low sequence similarity to the
five known antibiofilm peptide sequences. These three peptides
have an acceptable MBEC predicted to be less than 20 µM.

Of the uncharacterized peptides (Table 3), a majority of the
peptides shared sequences similar to either melittin or LL-
37. Among others, A0A0K1NW40 and E9JAR4 showed higher
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TABLE 2 | Pairwise alignment scores of known vs. previously characterized

potential antibiofilm peptides along with predicted secondary structure.

Peptide Name Melittin LL-37 Coprisin RT2 1018 Secondary

structure

Q16228 90 160 40 230 150 helix-coil

P69034 200 140 90 60 70 helix-coil

P82420 210 120 0 40 40 helix-coil-helix

P0CF03 190 120 10 20 30 coil-helix

P69036 180 50 90 60 50 helix

C0HK43 170 170 70 50 90 helix

C0HK42 170 160 70 50 90 helix

C0HLM2 10 40 170 30 20 coil

P0C424 20 0 160 110 40 coil

P85874 140 160 30 50 90 helix-coil-helix

P82419 150 140 0 40 50 helix-coil-helix

P17238 130 120 50 0 80 helix

A0A1C8YA26 130 40 130 100 80 coil

P30259 110 50 80 0 20 helix-coil-helix

Q8WMD3 80 40 60 60 90 helix

Q9U8M9 90 70 50 60 0 coil-helix

High-low scores are denoted in blue-white-red scale; Most match with known peptide
is highlighted in bold; Secondary structure predicted using the PEP-FOLD 3 as shown
in Figure 9.

sequence similarity to coprisin, A0A0A9M1Q7 andA0A5K1F988
showed higher sequence similarity to RT2, and E4Z311 showed
similarity to the 1018 peptide. A few peptides (A0A5K1FWL9,
A0A5K1D9T8, S71KV4, A0A2P2N8A3) showed poor alignment
with any of the five known antibiofilm peptides. Of these five
peptides, A0A2P2N8A3 and A0A5K1FWL9 are predicted to have
lowMBEC values. A0A2P2N8A3 is rich in lysine and hydrophilic
residues while A0A5K1FWL9 is rich in arginine and hydrophobic
residues, indicating the diversity in the sequences of the hits.

The results from secondary structure prediction and sequence
alignment analysis provide insights into the possible mechanisms
of action of the novel antibiofilm peptides. Although poorly
understood, the antibiofilm peptides work through a variety
of mechanisms including membrane disruption, inhibition of
motility, disruption of essential proteins, and interruption of
genetic elements (Raheem and Straus, 2019). The interaction
with cell membrane is naturally favored by the amphipathic
helices which is commonly found in most antimicrobial peptides,
and in antibiofilm peptides (Zeng et al., 2021). Therefore, we
expect that peptides from Subgroup-1 and Subgroup-5 including
mastoparan and poneritoxin peptides may show membrane
disrupting activity similar to the AMP. The Subgroup-4 peptides
with high overall positive charge may interact favorably with
negatively charged membrane. The coiled peptides (conotoxin,
peripherin and protamine) may elicit antibiofilm action through
mechanisms different from membrane interactions, possibly by
interfering with vital cellular processes through specific binding
interactions. For instance, the 1018 peptide is believed to interact
with the signaling molecule ppGpp, and LL-37 by interfering
with several pathways including quorum sensing (Overhage et al.,
2008; Wieczorek et al., 2010). Lastly, the biofilm environment

TABLE 3 | Pairwise alignment scores of known vs. previously uncharacterized

potential antibiofilm peptides along with predicted secondary structure.

Peptide name Melittin LL-37 Coprisin RT2 1018 Secondary

structure

E9I8P2 30 230 40 0 60 coil

A0A0A9M1Q7 50 130 30 220 60 coil

A0A0K1NW40 30 50 200 70 50 helix

A0A5K1F988 30 190 40 180 50 sheet

E4Z311 90 110 50 10 190 helix

A0A5K1DCQ4 190 20 70 60 30 coil

A0A5K1BN05 190 40 50 20 30 coil-helix

A0A0A9U210 180 90 50 10 150 helix

A0A2P2Q2Y8 120 90 10 80 180 helix

A0A0E9SZ00 170 60 90 90 90 coil-helix

A0A0D3HK27 140 80 30 10 90 coil

A0A5K0UXG7 140 70 110 80 10 coil-helix

A0A5K1B3V0 50 150 50 50 140 coil

E9JAR4 100 80 150 0 80 helix

A0A3Q7GQZ6 50 140 70 0 30 helix

A0A3D5SU75 40 70 130 20 20 coil-helix

A0A0A9FN30 60 120 50 20 60 helix

A0A5K1D9T8 20 110 10 20 80 coil

S7IKV4 50 110 90 20 40 coil

A0A2P2N8A3 40 60 110 20 40 coil

A0A5K1FWL9 30 50 50 40 0 helix

High-low scores are denoted in blue-white-red scale; Most match with known peptide
is highlighted in bold; Secondary structure predicted using the PEP-FOLD 3 as shown
in Figure 10.

is generally acidic with pH 5–6, which may promote a
change in secondary structure depending upon the pI of the
amino acids (Xiong et al., 2017). Therefore, while this work
provides some insights into novel peptide sequences and their
mechanisms, detailed genetic and molecular biofilm inhibition
assays are necessary to confirm the proposed mechanisms or
delineate the mechanisms of action of novel peptides identified
in this study.

3.7. Significance and Limitations of the
Models
Unlike many other machine learning applications for
antimicrobial peptides, we focused on the smaller subset
of antibiofilm peptides instead of the much larger set of
antimicrobial peptides because most recalcitrant infections
are due to biofilms. Therefore, the drug development strategy
should focus on efficacy against the biofilm mode of growth
rather than the planktonic mode. Our approach differs from
the previous models of antibiofilm peptide discovery in many
significant ways. First, our negative dataset was curated as
peptides which are likely to directly or indirectly promote
biofilm formation rather than randomly generated sequences.
Second, our model is built on the idea that the antibiofilm
peptides are rarer to find in nature than biofilm-inhibiting
peptides. To mimic that concept, we used ten times more
peptides in the negative dataset than in the positive dataset. We
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considered stratified sampling and ten-fold cross-validation to
eliminate the overfitting problem due to an imbalanced dataset.
Third, we used motifs that are unique to the antibiofilm peptides
not as privileged information but as a discovered entity while
cross-validating the training dataset. This unbiased approach not
only improved the performance of the model but also enabled
the identification of truly discerning motifs, which changed the
performance compared to the “without motif ” model. Fourth,
we developed SVR-based regression models for the prediction of
the efficacy, i.e., the MBIC and MBEC values of novel peptides
that were classified as ABPs by our classification model. Fifth, we
used sequence alignment and secondary structure predictions to
predict putative mechanisms of action of antibiofilm hits. Lastly,
our work identified two broad classes of peptides: those peptides
that have previously known bioactivity but not antibiofilm
activity, i.e., those that may be considered for drug re-purposing;
and those peptides without any previously reported bioactivity,
i.e., those that may be considered as novel drug candidates.

One important limitation of using MBIC/MBEC values from
the literature is that the peptides were not all tested against a
single organism or using a single experimental technique but
against a wide range of microorganisms (gram positive and
gram negative bacteria, fungi), and using both dilution, plate-
based or other techniques. This key limitation notwithstanding,
the regression model performed very well, with an RMSE of
10–25% of the mean MBIC/MBEC values, for most peptides
in the training set. We expect the effectiveness of our model
to increase given more adequate MBIC/MBEC measurements
on a wide range of ABPs. As an independent validation of
our regression model, the predicted MBIC of these peptides
matched well with experimentally determined antimicrobial
activity (MIC). For instance, the peptide C0HK43 is active against
gram-negative bacteria at concentrations of 1–14µM as reported
in the DRAMP database (MIC 1.4 µM against E. coli, MIC
14.1 µM against P. aeruginosa) while our model predicted an
MBIC/MBEC value between 1 and 8 µM. The identification
of a number of host defense peptides, which are considered to
be a physiologically relevant response to biofilms, through a
mechanism-agnostic sequence search further bolsters confidence
in our approach (Hancock et al., 2021). Despite these limitations,
our work has clearly demonstrated not only the feasibility of
our sequence-based and mechanism-agnostic machine learning
pipeline to predict efficacious antibiofilm peptides, but has also
unearthed the vast diversity in sequences that have the potential
to eradicate biofilms. Our platform may also be easily expanded
to incorporate features such as the various post-translational
modifications which may enhance the antibiofilm activity of the
peptide backbone (Wang, 2012).

4. CONCLUSIONS

In this work, we have developed a machine learning pipeline
for the classification of antibiofilm peptides followed by the
determination of their efficacy. Using this pipeline, we identified
a small set of novel antibiofilm peptides by mining diverse
peptide libraries, and evaluated the efficacy of the hits. The

peptide hits comprised of both novel peptides and peptides with
other reported functions. Classical bioinformatics approaches of
sequence alignment showed that some of the peptide hits may
act through known mechanisms of antibiofilm activity while
some others may follow less understood mechanisms to confer
antibiofilm activity.

The two-tiered model enabled the classification and
prediction of antibiofilm activity. Our SVM-based model
with 572 features performed exceptionally well with an MCC
of 0.91, which is significantly higher than current models. The
higher performance is due to considering the physicochemical
properties and motifs along with the compositions of peptides.
Consistent with previously published studies, our model showed
that the ABPs are characterized by the abundance of positively
charged amino acids K and R, and higher hydrophobicity due
to W and I. Our SVR-based model predicted the efficacy of
ABPs with high confidence. To our knowledge, no previous
studies have attempted to predict peptide efficacy using machine
learning approaches. To this end, we built a regression model
using the MBIC and MBEC values curated from the literature
that have experimentally determined these values. In this work,
we were careful to distinguish the biological significance of
MBIC and MBEC values, as the former represents efficacy
against biofilm formation, and the latter represents efficacy
against pre-formed biofilms. An antibiofilm peptide with a lower
MBIC but high MBEC may not effectively eradicate pre-formed
biofilm. For instance, Dermaseptin-AC is useful in the inhibition
of biofilm (MBIC 32 µM) formed by Staphylococcus aureus but
is not effective in eradicating preformed biofilm (MBEC 256
µM) (Gong et al., 2020). Therefore, in this work, we developed
models to predict both MBIC and MBEC for ABPs. In vitro
biofilm inhibition and in vivo virulence assays beyond the
scope of this work are warranted to confirm the validity and
translational potential of the peptide hits.
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