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Periodontitis and peri-implantitis are common biofilm-mediated infectious diseases
affecting teeth and dental implants and have been considered to be initiated with
microbial dysbiosis. To further understand the essence of oral microbiome dysbiosis
in terms of bacterial interactions, community structure, and microbial stability, we
analyzed 64 plaque samples from 34 participants with teeth or implants under different
health conditions using metagenomic sequencing. After taxonomical annotation, we
computed the inter-species correlations, analyzed the bacterial community structure,
and calculated the microbial stability in supra- and subgingival plaques from hosts
with different health conditions. The results showed that when inflammation arose,
the subgingival communities became less connective and competitive with fewer hub
species. In contrast, the supragingival communities tended to be more connective and
competitive with an increased number of hub species. Besides, periodontitis and peri-
implantitis were associated with significantly increased microbial stability in subgingival
microbiome. These findings indicated that the periodontal and peri-implant dysbiosis is
associated with aberrant alterations in the bacterial correlations, community structures,
and local stability. The highly connected hub species, as well as the major contributing
species of negative correlations, should also be given more concern in future studies.

Keywords: periodontitis, peri-implantitis, microbiome, community structure, metagenomic sequencing,
dysbiosis, local stability
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INTRODUCTION

Periodontitis is a prevalent disease in the human oral cavity
and the major cause of dentition defects (Albandar, 2005).
It is a complex infectious disease resulting from infection-
induced inflammation and hyperimmune response toward
various microbial pathogens (Kajiya et al., 2010; Bueno et al.,
2015). Previous studies have proved that periodontitis is initiated
with microbial dysbiosis in the periodontium (Kinane et al.,
2017). The prevalence of periodontitis is estimated from 4 to
76.0% in developed countries and from over 50% to almost
90% in developing ones (Jiao et al., 2021). Approximately over
700 million adults are suffering from periodontitis worldwide
(Kassebaum et al., 2014), which has become a severe burden in
the oral health of humankind (Marcenes et al., 2013).

Peri-implantitis has been described as a pathological condition
around dental implants where inflammation continuously affects
connective tissue and finally leads to the loss of the supporting
bone matrix (Schwarz et al., 2018). Similar to periodontitis,
peri-implantitis is also caused by the hyper-inflammation in
peri-implant tissue and the aberrant change in the microbial
community (Alcoforado et al., 1991; Leonhardt et al., 1999; Wang
et al., 2016). A meta-analysis in 2017 indicated that the weighted
mean prevalence of peri-implantitis was around 19.83% at patient
level (Lee et al., 2017). As implant-supported prostheses are being
more and more widely used to replace missing teeth (Buser et al.,
2017), there will be an increasing number of patients suffering
from peri-implantitis in the coming future.

Periodontitis and peri-implantitis share many clinical and
etiological features, including biofilm-mediated infection,
hyperinflammatory reaction, and progressive absorption of
alveolar bone (Berglundh et al., 2011; Carcuac and Berglundh,
2014; Liu et al., 2020). Most importantly, the accumulation
of dental plaque and the following microbial dysbiosis are
considered to be the initiation of both diseases (Ng et al.,
2021). Given the shared nature as infectious diseases between
periodontitis and peri-implantitis, it is necessary to delve into the
microbial communities around teeth and implants to understand
the two diseases further.

The stability of commensal microbial communities in human
bodies has been proved essential to human health (Relman,
2012). However, previous studies investigating oral microbiota
using high-throughput sequencing approaches have mainly
focused on the taxonomical profile or microbial functionalities
(Dabdoub et al., 2016; Ai et al., 2017; Babaev et al., 2017;
Belstrom et al., 2017; Ghensi et al., 2020; Komatsu et al.,
2020; Ng et al., 2021). Yet, the community structure and the
microbial stability have not been fully illustrated, especially when
the complexity of numerous bacterial correlations cannot be
fully identified by isolating pairwise interactions. To fill this
insufficiency, we analyzed 64 microbial samples from plaque
around teeth and implants in different health conditions using
metagenomic shotgun sequencing. We annotated taxonomical
information at the species level, visualized the bacterial co-
occurrence network, analyzed the community structure, and
calculated the microbial stability of our samples to further our
understanding of periodontitis and peri-implantitis.

MATERIALS AND METHODS

Participant Recruitment
This study enrolled 34 participants, including 19 subjects
for the healthy group and 15 subjects with periodontitis or
peri-implantitis for the diseased group (See Supplementary
Tables 1, 2). All participants were Chinese natives who sought
care at the College of Stomatology, Xi’an Jiaotong University,
and provided written consents. Natural teeth were considered
periodontal health when there was no bleeding on probing
(BOP), no clinical attachment loss (CAL), or radiographic bone
loss (RBL) and the maximum probing depth (PD) was less than
3 mm. Periodontitis was diagnosed with an increased PD of
more than 4 mm, examinable RBL, and interdental CAL, which
corresponded with the latest diagnostic criteria for Stage II-IV
periodontitis (Papapanou et al., 2018). As for implants, subjects
were considered peri-implant health when peri-implant tissue
showed no redness, suppuration, BOP, and no more than 1-
mm marginal RBL beyond bone remodeling. Peri-implantitis was
diagnosed when there was clinical inflammation, increased PD
of more than 6 mm, and radiographic evidence of more than
3 mm RBL compared to baselines (Lindhe et al., 2008). Detailed
inclusion and exclusion criteria are listed in Table 1.

Clinical Examination and Sample
Collection
Before sampling, full-mouth examinations were conducted on
all subjects by the same calibrated clinician to record clinical
and demographic features, including sex, age, PD, BOP, and
RBL. Especially for subjects with implants, we also recorded
their implant type, location, and functional time (Supplementary
Tables 1, 2).

The selection of sampling sites followed the criteria in
our Supplementary Information. When sampling commenced,
patients first gargled with distilled water for 1 min. Then, we
used cotton rolls to isolate the selected sites and sampled the
supragingival plaque using sterile curettes by a single horizontal
stroke on each site. Bacteria were washed off from the curettes
by rinsing in 1.5-ml microcentrifuge tubes containing phosphate-
buffered saline (PBS). The remaining supragingival plaque was
then removed. Afterward, we used sterile endodontic paper
points for subgingival sampling (Jervoe-Storm et al., 2007), by
inserting paper points as deep as possible into the periodontal
or peri-implant sulcus and staying for 20 seconds. After taking
out, paper points were transferred into 1.5-ml microcentrifuge
tubes containing PBS. All samples were stored at −80◦C
and were then sent to BGI Institute (BGI Group, Shenzhen,
China) for genomic DNA extraction, metagenomic libraries
preparation, and sequencing.

DNA Extraction and Metagenomic
Sequencing
Genomic DNA of the samples was isolated using QIAmp DNA
Micro Kit (Qiagen, Valencia, CA) with “Protocol: Isolation
of Genomic DNA from Tissues” according to the handbook.
The sequencing libraries were then prepared following BGI’s
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TABLE 1 | Detailed inclusion and exclusion criteria for subject recruitment.

Type Health condition Inclusion criteria Exclusion criteria

Teeth Periodontal health • Individual normal occlusion with no less than 28 teeth left in dentition;
• No RBL or examinable CAL;
• Maximum PD ≤ 3 mm;
• No BOP or redness examined.

• Diabetes mellitus or other severe systemic
diseases;
• HIV infection or other severe immune diseases;
• A history of tobacco smoking;
• A history of immunosuppressant therapy;
• A history of bisphosphonates, steroids, or other

therapy influencing bone metabolism;
• Antibiotic therapy, oral antiseptic therapy, or

oral prophylactic treatment undergoing or in
recent 3 months;
• Having other dentures in any form besides the

selected dental implant;
• Pregnancy or lactation;
• Over 60 years old or below 20 years old.

Periodontitis • Individual normal occlusion with no less than 20 teeth left in dentition;
• Examinable interdental CAL ≥ 3 mm;
• PD ≥ 4mm;
• Examinable RBL;
• Existing BOP and/or suppuration.

Implants Peri-implant health • A single implant with a single cement-retained crown seated to replace
the missing tooth;
• Implant in function for over 2 years;
• Radiographic MBL ≤ 1 mm;
• No redness, suppuration, or BOP examined around the implant.

Peri-implantitis • A single bone-level implant with a single cement-retained crown seated
to replace the missing tooth;
• Implant in function for over 2 years;

Radiographic MBL ≥ 3 mm compared to baseline;
• PD ≥ 6 mm around the implant.

instruction (BGI Group, Shenzhen, China). The libraries were
sequenced on the BGI SEQ-500 sequencing platform (BGI
Group, Shenzhen, China). Raw reads generated from the
sequencing platform were then filtered and cleaned before
further analysis.

Metagenomic Analysis
To obtain high-quality data, we firstly filtered the raw reads
when they contained more than 10 low-quality bases (< Q20)
or 15 bases of adapter sequences with a self-constructed script.
Using BWA software (version 0.7.17), we aligned the read
data to the human genome (hg19) and filtered the reads
when the alignment length exceeds 40% of the read length (Li
and Durbin, 2009). After the removal of host mapped reads,
the clean metagenomic data were applied for the following
metagenomic analysis.

Using MetaPhlAn3 (Truong et al., 2015), we aligned the
filtered reads to the microbial database of specific marker
genes (mpa_v30_CHOCOPhlAn_201901) and obtained the
taxonomical annotation results. Based on the microbial profiling,
we calculated the relative abundances of bacteria at phylum,
class, order, family, genus, and species levels, respectively (see
Supplementary Data Sheet 1). After the taxonomical annotation,
we performed permutational multivariate analysis of variance
(PERMANOVA) to evaluate the impact of environmental
factors on the microbiome (permutation number equals 9,999),
calculated alpha diversity using the Chao1 and Shannon indexes,
and detected the Spearman correlation coefficients among the
species with relative abundance over 0.01%. We kept the relations
with coefficients <−0.6 or > 0.6 (adjusted p-value < 0.05) to
construct the bacterial interacting matrix (Supplementary Data
Sheets 2, 3) and to plot the bacterial co-occurrence networks
by applying Gephi (version 0.4.2) and Cytoscape (version 3.8.2)
for further analysis (Shannon et al., 2003; Bastian et al., 2009;
Otasek et al., 2019). Species with more than 25 correlations were
defined as hub species, which indicated their pivotal places in the

bacterial co-occurrence networks. We screened and compared
these species between different microbiomes.

Local Stability Analysis
Local stability measures the tendency of a community to return
to its equilibrium after perturbation. The community is stable
if it can return to its equilibrium after perturbation. Following
the work by May and Allesina (May, 1972, 1973; Allesina and
Tang, 2012), we used the community matrix generated from our
co-occurrence network (Supplementary Data Sheets 2, 3) to
analyze the local stability of oral microbiome (Figure 1A). The
community matrix incorporates several structural properties,
including the number of interacting species, the connectance, the
types and strength of interactions, and the degree distribution.
Connectance was defined as the fraction of non-zero off-diagonal
elements of the community matrix (May, 1972, 1973), or briefly
as the ratio of actual bacterial correlations to all topologically
possible correlations. The types of interactions were extracted
from our co-occurrence networks illustrated above. The degree
of a species referred to the count of its correlations with other
species. The local stability theory indicates that a stable system
requires that all eigenvalues of the community matrix should
have negative real parts (Figure 1B), which means the real
part of the rightmost eigenvalue in the complex plane can be
used to measure the extent of stability. A more negative real
part corresponds to a more stable community, which grants
it more robustness when resisting perturbations that tend to
alter the abundance of its members (Figure 1C). Based on
experimental data, we performed a series of simulations to show
the differences in stability among different groups (see also
Supplementary Information).

Statistics
For the Chao1 and Shannon indexes calculated for different
groups, we performed the Wilcoxon rank-sum test to check
whether significant differences exist between groups. All the
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FIGURE 1 | Local stability theory. (A) A schematic diagram shows a small community with bacterial species interacting within themselves (−d) and with other
species (Mij ). Ordinary differential equations measure the abundance change of species i after perturbation around the equilibrium point. Xi , abundance of species i;
−di , self-regulating effect of species i; Mij , effect of species j on species i. (B) All eigenvalues of community matrix M are shown in the complex plane. The community
is stable if all eigenvalues have negative real parts. Therefore, the sign of the rightmost eigenvalue decides whether a community is stable or not, and the value of its
real part decides how stable the community is: the more negative its real part, the more stable the community (see also Supplementary Information). (C) A
community will return to its former equilibrium after perturbations if it is stable. A community with higher stability will recover faster than a less stable community.

Spearman correlation coefficients among the species were
adjusted with Benjamini and Hochberg method (adjusted
p < 0.05). As for the counts of negative and positive correlations,
we applied the chi-square test for the detection of significant
differences between the health and disease groups.

RESULTS

Taxonomical Annotation
After low-quality filtration and host-read removal, a total of
1,926,649,953 sequences were obtained from 64 samples, with

an average of 30,103,906 sequences per sample (range from
1,004,522 to 77,090,552). Overall, 310 bacterial species have
been identified (see Supplementary Data Sheet 1). The clinical
and demographic characteristics of recruited subjects were
summarized (Supplementary Table 3). There were no significant
differences in mean age and sex distribution among all subjects,
and functional time between healthy and diseased implants
(p > 0.05).

PERMANOVA was performed to evaluate the differences
in microbial communities contributed by several factors
(Supplementary Figure 1). The results indicated a significant
difference between the compositions of supra- and subgingival
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communities (R2 = 0.02631, p = 0.047). Based on this finding,
we therefore analyze and discuss supragingival and subgingival
communities separately in the following procedures.

Using the interacting matrix extracted from our taxonomical
annotations (see Materials and Methods), we plotted co-
occurrence networks in healthy and diseased sites (Figure 2).
In our networks, positive and negative coefficients represented
potentially cooperative and competitive interactions between
bacterial species, respectively. Overall, subgingival microbiome
from periodontitis and peri-implantitis patients exhibited less
connected and competitive bacterial networks. On the contrary,

supragingival microbiome from the diseased subjects showed
more connected and competitive bacterial networks when
compared with their healthy controls.

Structural Properties of Bacterial
Co-occurrence Networks
Besides the proportions of negative and positive interactions, we
visualized more structural properties including the numbers of
interacting species, the connectance, and the degree distributions
of the networks using bar charts (Figures 3A–D), to further
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FIGURE 2 | Bacterial co-occurrence networks. (A) Network of diseased subgingival microbiome. (B) Network of healthy subgingival microbiome. (C) Network of
diseased supragingival microbiome. (D) Network of healthy supragingival microbiome. Species from different phyla were marked in different colors. The larger nodes
represented the higher mean relative abundance of the species. We selected those interactions with Spearman correlation coefficient <-0.6 or >0.6 (adjusted
p < 0.05). Positive and negative correlations are shown in red and green lines, respectively. Thicker lines meant higher absolute values in Spearman coefficient.
Generally, the healthy subgingival network was more complex than the diseased subgingival network, while the healthy supragingival network was less complex than
the diseased supragingival network.
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FIGURE 3 | Properties of the community structures in different microbiomes. (A) Positive and negative correlations were shown in red and blue, respectively. Positive
correlations were predominant in all communities. The percentage of negative correlations in diseased subgingival communities was significantly lower than that in
healthy subgingival communities. However, such difference was reversed between diseased and healthy supragingival communities (p < 0.05, Pearson chi-square).
(B) All communities in our study had similar counts of interacting species (p > 0.05, Pearson chi-square). (C) When associated with periodontitis and peri-implantitis,
the subgingival community exhibited a decrease in connectance while the supragingival community exhibited an increase in connectance. Significance of differences
was marked in letters. (D) Degree distributions of the diseased subgingival, healthy subgingival, diseased supragingival, and healthy supragingival networks are
shown in red, blue, yellow, and green bars, respectively. C stood for connectance. A conspicuous difference was observed in the degree distribution of healthy
subgingival communities as there were significantly more high-degree (degree > 25) species (p < 0.05 Pearson chi-square). (E) Hub species in the diseased
subgingival, healthy subgingival, diseased supragingival, and healthy supragingival microbiome are shown in the heatmap. A blue dot means the species had more
than 25 interspecies correlations in the corresponding microbiome. Numbers within the dots showed the counts of correlations of the species.

dissect the community structure within these networks. In both
supra- and subgingival samples, there are similar amounts of
interacting species between healthy and diseased microbiome.
However, in subgingival microbiome, healthy communities had
higher connectance and more high-degree species than diseased
communities (p < 0.05, Pearson chi-square and Fisher exact test).
Besides, the healthy subgingival network had a larger proportion
of negative correlations (22.51%, 208 of 924) than the diseased
subgingival network (9.97%, 67 of 672) (p < 0.05, Pearson
chi-square). As for supragingival microbiome, differences were
reversed where healthy communities had lower connectance and
exhibited a cluster in lower degrees when compared with diseased
communities. Also, the healthy supragingival network showed
a lower proportion of negative correlations (11.38%, 56 of 492)
than the diseased supragingival network (16.52%, 116 of 702)
(p < 0.05, Pearson chi-square).

Based on the degree distribution, we selected those hub
species with more than 25 correlations (degree > 25) in each

group. These hub species were the pivotal members in the
co-occurrence networks which were highly connected with other
species (Figure 3E and Supplementary Table 5). There were
more hub species in the healthy subgingival microbiome than
the diseased subgingival microbiome (31 in healthy microbiome
and 2 in diseased microbiome). Such difference was again
reversed in the supragingival group where diseased microbiome
had more hub species (5 in healthy microbiome and 11
in diseased microbiome). The results above revealed distinct
bacterial co-occurrence networks and community structures
in different microbiomes and built the foundation for further
stability analysis.

Alterations in Bacterial Interactions
Bacterial interactions are known to have an impact on oral health
(Diaz and Valm, 2020), especially the competitive interactions
which have been proved essential in preserving the fitness of
microbial communities (Stacy et al., 2014). To evaluate how
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inflammation around teeth and implants would alter such
bacterial interactions, we extracted all negative correlations
unique to different health conditions for further comparison
(Figure 4). As expected, there was a great change in the bacterial
competition with the shift from health to disease. Each group had
its own distinctive set of unique correlations.

In subgingival microbiome (Figure 4A), Streptococcus
sanguinis (l = 31, number of negative linkages equal 31 with
R < -0.6 and adjusted p < 0.05), Streptococcus oralis (l = 17),
Haemophilus parainfluenzae (l = 10), Rothia aeria (l = 12),
Corynebacterium matruchotii (l = 18), Leptotrichia hofstadii
(l = 11), Actinomyces massiliensis (l = 22), and Capnocytophaga
sputigena (l = 14) participated in a large number of negative
correlations in healthy communities. When inflammation
arose, the negative correlations were significantly weakened
and those interactions associated with the above species were
altered, among which Corynebacterium matruchotii, Leptotrichia
hofstadii, Actinomyces massiliensis, and Capnocytophaga
sputigena lost all their negative correlations, while Streptococcus
sanguinis (l = 10), Streptococcus oralis (l = 3), Haemophilus
parainfluenzae (l = 5), and Rothia aeria (l = 2) established fewer
new negative correlations with other species. Instead, in the
diseased communities, Lautropia mirabilis (l = 15), Actinomyces
naeslundii (l = 8), and Capnocytophaga gingivalis (l = 7) emerged
to become the concentrated nodes of negative correlations.

Changes in supragingival microbiome were quite different
(Figure 4B), where healthy communities had significantly fewer
negative correlations than diseased communities. Kingella oralis
(l = 3), Lautropia mirabilis (l = 9), Prevotella multiformis (l = 5),

and Actinomyces massiliensis (l = 15) were the major contributors
of negative correlations in healthy communities, while in diseased
communities, there were complex sets of negative correlations
coming from Streptococcus sanguinis (l = 14), Neisseria sicca
(l = 10), and Capnocytophaga sputigena (l = 23).

In contrast with alterations of negative correlations, there were
also some correlations shared by all communities despite health
conditions or sampling sites (Figure 4C). This shared network
was mainly constructed by species from phyla Bacteroidetes,
Firmicutes, and Spirochaetes. Different from the unique negative
correlations which defined the health status of the microbiome,
these shared correlations seemed to be constant and might have
formed a fundamental framework for periodontal and peri-
implant microbiome.

Stability Analysis
To compare the stability among different microbial communities,
the above structural properties were required for numerical
simulations. The number of interacting species, the connectance,
and the types of interactions could be drawn directly from
our taxonomical annotation and the co-occurrence networks.
However, acquiring the strength of interactions would usually
require a time-sequence analysis from longitudinal samples
according to previous studies (Schloissnig et al., 2013; Stein
et al., 2013; Oh et al., 2016). This seemed inapplicable to
studying diseased subjects due to ethical reasons, as clinicians
were supposed to treat the periodontitis or peri-implantitis
rather than observing the diseased status without interference.
In this scenario, we introduced a strategy to analyze the stability
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FIGURE 4 | Alterations in negative correlations from health to disease and the shared correlations. (A) Unique negative correlations of healthy and diseased
subgingival communities. Streptococcus sanguinis, Streptococcus oralis, Haemophilus parainfluenzae, Rothia aeria, Corynebacterium matruchotii, Leptotrichia
hofstadii, Actinomyces massiliensis, and Capnocytophaga sputigena were the concentrated nodes of negative correlations in health, while Lautropia mirabilis,
Actinomyces naeslundii, and Capnocytophaga gingivalis were the concentrated nodes in disease. (B) Unique negative correlations of healthy and diseased
supragingival communities. Kingella oralis, Lautropia mirabilis, Prevotella multiformis, and Actinomyces massiliensis were the concentrated nodes of negative
correlations in health, while Streptococcus sanguinis, Neisseria sicca, and Capnocytophaga sputigena were the concentrated nodes of negative correlations in
disease. (C) The shared correlations of all communities. All shared correlations were positive and were mainly constructed by phyla Bacteroidetes, Firmicutes, and
Spirochaetes.
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of microbial communities using cross-sectional samples based
on Spearman coefficient (see Materials and Methods, see also
Supplementary Information).

We assigned the strength of interactions following the
assumptions by Allesina (Allesina and Tang, 2012) (see
Supplementary Information) and mainly focused on
comparing the stability among different communities rather than
numerically calculating the absolute stability value of a specific
community. Stability analysis showed that healthy subgingival
communities had the worst stability among four groups while
diseased subgingival communities possessed the highest stability
(Figure 5). As for the supragingival group, the healthy and
diseased supragingival communities showed similar stability in
our analysis. We performed a series of simulations using different
parameter sets and concluded the same result, which proved its
robustness (Figure 5, see also Supplementary Figure 3).

To figure out why healthy subgingival microbiome was far less
stable than the others, we generated unstructured ER (Erdõs–
Rényi) networks with the same amount of interacting species,
connectance, and the positive–negative ratio of interactions
as our original networks. Yet the sole different property
was that these unstructured communities were distinguished
from the original communities by having concentrated degree
distributions (Figure 6A). Using the same method above,
we compared the stability differences caused by distinct
degree distributions between the original communities and
the unstructured communities (Figures 6B–E). All original
communities showed decreased stability when compared with
their ER network counterparts in most parameter sets, while
the healthy subgingival microbiome showed the largest extent
of stability decrease. This indicated that the degree distributions
of the original communities were somehow destabilizing,
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among which the degree distribution of the healthy subgingival
microbiome tended to hamper stability the most.

DISCUSSION

Distinct Structures Between Healthy and
Diseased Communities
The oral microbiome is structurally and functionally organized,
which means the properties of a microbial community are more
than the sum of the components within it (Kuramitsu et al.,
2007; Marsh and Zaura, 2017). To fully understand a microbial
community, we are supposed to explore the whole structure
and the aggregation of all interactions more than focusing on
single or pairwise species. In this scenario, we investigated the
bacterial co-occurrence networks and the community structures
to explore the effect of periodontitis and peri-implantitis on the
oral microbiome in a new perspective.

Our study revealed that when inflammation arose around
teeth and implants, the subgingival bacterial networks tended to
become less connected and less competitive. However, networks
in supragingival communities seemed to shift in an opposite
direction, with higher connectance and a larger proportion of
competitive interactions in the diseased communities than their
healthy counterparts.

Bacterial competition has been reported to be beneficial to
both competitors involved and might even improve the fitness of
the whole microbial community (Stacy et al., 2014), as they form a
defensive mechanism in oral microbiome where the colonization
of exogenous species was prevented (Marsh and Zaura, 2017).

However, our results indicated that inflammation would alter
the competition among species in periodontal and peri-implant
microbiome. Such alterations could be observed in both supra-
and subgingival microbiome and were not just in terms of
number or proportion. In fact, the whole community seemed to
reestablish a brand-new network with its own distinctive negative
correlations and own centers for these correlations. These major
changes in the community structure might lead to changes in
the keystone compositions of the biofilm and come with the
pathologic shift from health to disease (Marsh and Zaura, 2017).

The degree distribution of ecological networks is usually right-
skewed with many low-degree vertices and only a small number
of high-degree vertices (Girvan and Newman, 2002). Such was
the case in our networks where the majority of the species
were in low degrees. However, it was still clear that the degree
distribution of the healthy subgingival microbiome distinguished
itself among groups by having significantly more hub species,
which also contributed to hampering the local stability of healthy
subgingival community according to our further analysis.

The connectance was another important property of
the community structure. Our result showed that when
associated with periodontitis and peri-implantitis, the
connectance of subgingival microbiome tended to decrease
while the connectance of supragingival microbiome tended to
increase. Previous studies proved that an ecosystem with higher
connectance was more persistent when subjects to colonization–
extinction dynamics (Gravel et al., 2011) and was less prone
to losing hub species than systems with lower connectance
(Kulkarni and De Laender, 2017). However, other studies on the
dynamics of complex ecosystems showed that when connectance
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rose beyond a certain threshold, the local stability of the
community would decrease rapidly (Gardner and Ashby, 1970).
The healthy subgingival microbiome in our study had a larger
number of hub species, which were sensitive to selective loss
accordingly. Nonetheless, the high connectance helped prevent
these species from losing. As for whether the connectance of
our communities had crossed the threshold where local stability
began to drop, we suggested that more studies were needed to
draw the conclusion. However, we were able to plot the overall
outcome of these factors and to compare the stability differences
between the healthy subgingival microbiome and the other three
groups (see below).

All findings above showed that healthy and diseased
oral microbiome had distinct community structures. We
addressed that these aberrant changes in bacterial competition,
connectance, and degree distribution were crucially associated
with the onset and progression of periodontitis and peri-
implantitis. Among all communities in our study, we found
that the differences between healthy and diseased subgingival
microbiomes were most striking and complicated. Future
studies should pay more attention to the relationship between
community structures and oral infectious diseases, especially the
changes in the community structure of subgingival microbiome.

Association Between Ecological Stability
and Health Conditions
Patterns of the bacterial networks in supra- and subgingival
microbiome were associated with health and disease. Moreover,
the multiple interactions gave the community resilience to
environmental perturbations (Marsh and Zaura, 2017). As
mentioned above, the stability of a community mainly depends
on its community matrix, which incorporates structural
properties such as interaction types, connectance, and degree
distribution. According to previous studies, competitive
interactions tend to increase stability by decreasing diversity
within the influence range of the competitors (Coyte et al.,
2015), while connectance that reaches beyond a critical level
might rapidly destabilize a microbial community (Gardner
and Ashby, 1970; May, 1972). Interestingly, in our study, those
communities with larger proportions of competitive interactions
turned out to have higher connectance too. These communities,
or more specifically, healthy subgingival communities and
diseased supragingival communities, received antagonistic
effects from both stronger competition within species and
higher connectance. To plot the outcome of various effects on
the stability in our study, we performed a series of simulations
following the work of Allesina to compare the stability differences
among our communities.

The result showed that healthy subgingival microbiome had
the worst local stability among four groups while diseased
subgingival microbiome had the highest. This meant that the
equilibrium of healthy subgingival microbiome was more delicate
and more prone to perturbations. When perturbations reached
beyond resilience, equilibrium may break down with changes
in microbial composition and shift in the community structure.
That could be where dysbiosis happened and be the essence of the

initiation of periodontal and peri-implant diseases. On the other
hand, the high local stability in diseased subgingival microbiome
explained why, if without interventions, the periodontal and peri-
implant microbiome could not spontaneously change back to
health once infected by periodontitis or peri-implantitis as the
diseased equilibrium was very robust.

By comparing the stability between randomly generated ER
communities and our original communities, we revealed that the
degree distribution of healthy subgingival microbiome tended
to be most destabilizing. As healthy subgingival microbiome
was characterized by having more hub species, we hereby
hypothesized that hub species were in some way a weak point
during the breakdown of the current equilibrium, for changes in
these highly connected species could trigger a massive alteration
in the whole network. This explained why the stability of healthy
subgingival microbiome was far lower than other microbiomes.
In this scenario, we suggested that more caution should be raised
toward these hub species together with their roles during the shift
from health to disease.

Relationship Between Hub Species and
Health Conditions
Hub species were those with a large number of interspecies
correlations. Whether abundant or not, hub species played roles
as “traffic centers” in the bacterial network. In one respect, these
species were spatially or functionally related with many others
and therefore contributed to the integration of the community. In
another respect, they might also be responsible for destabilizing
the community as mentioned above. Our study showed that the
healthy subgingival microbiome had the highest count of hub
species, of which species from genus Prevotella and Treponema
made up a major part. In the diseased subgingival microbiome,
there were only two hub species, Capnocytophaga granulosa
and Selenomonas noxia. As for the supragingival microbiome,
differences between healthy and diseased networks were not as
distinct as subgingival microbiome and seemed to change in an
opposite direction where the diseased network had more hub
species than the healthy one. The supragingival hub species came
from various genus including Actinomyces, Aggregatibacter,
Anaeroglobus, Bulleidia, Capnocytophaga, Porphyromonas,
Prevotella, Selenomonas, Tannerella, and Treponema.

The microbial community is extremely complex and
sophisticated which subjects to numerous influences ranging
from microbial compositions to environmental and genetic
factors. It is difficult to explicitly address the role of a specific
species in the community. Although most of the hub species
of communities in our study had been proven associated with
periodontal and peri-implant destruction (Morita et al., 1991;
Ellen and Galimanas, 2000; Takeuchi et al., 2001; Ohishi et al.,
2005), we suggested that their pivotal roles in the bacterial
network should be treated dialectically, the roles that on the one
hand contributed to their pathogenicity, but on the other hand,
were also essential in integrating the community network. Future
studies should pay more attention to the important roles of these
hub species and associate the pivotal places in the network with
their pathogenicity.
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Limitations of the Study
One major limitation in this study is that the sample size,
although equivalent to other congener studies (Dabdoub et al.,
2016; Belstrom et al., 2017; Komatsu et al., 2020), is relatively
small to describe the oral microbiome of the whole human
population. As the oral microbiome is very individualized
(Belibasakis et al., 2019), we suggest that future studies with a
larger sample size are needed to further generalize our findings.

The strategy provided in this study is sound and rigorous in
theoretical aspect. However, these methods were mainly based
on taxonomical annotations. They revealed the phenomena
observed from the samples within this study yet could
not validate the mechanisms behind the phenomena in
biochemistry or molecular view. We appeal that further studies
using either in vitro models or in vivo trials are needed
to figure out the detailed mechanisms and provide more
clinical implications.

Predicting the stability of microbial community usually
requires a time-sequence analysis from longitudinal samples,
as longitudinal studies offer control for confounding factors
including age, gender, diet and so on. Although cross-
sectional samples can also provide prediction on community
stability following our strategy, it can be less powerful than
longitudinal ones (Knight et al., 2018).

CONCLUSION

In conclusion, we revealed distinct community structures in
healthy and diseased microbial communities around teeth and
implants. By extracting the bacterial correlation networks, we
found that the subgingival microbiome tended to become
less connective and competitive when inflammation arises. In
contrast, the supragingival microbiome tended to become more
connective and competitive. We also observed a great change
in competitive interspecies correlations between healthy and
diseased microbiome. These alterations contributed crucially to
the shift from health to disease and were highly associated
with periodontal and peri-implant microbiome dysbiosis in
the aspect of community structures. Besides, by applying
dynamic models on these microbial communities, we concluded
that the healthy subgingival community was far less stable
than the inflamed subgingival community. We also managed
to prove that it was those highly connected species in the
network that contributed to destabilizing the biofilm. Our
results suggested these hub species should also be given
more concern in future studies. Preserving these species and
maintaining their normal functionalities might be of much
meaning in preventing periodontal and peri-implant diseases.
Combining the above findings, we revealed that microbiome
dysbiosis in the periodontium was not limited to the changes
in bacterial compositions. With durative perturbations from
microbial pathogens, the former equilibrium broke down and
the microbiomes formed new bacterial networks with distinct
interspecies correlations and community structures. During this
progress, the subgingival biofilm established a more stable and
stubborn community with even higher resilience.
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