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Some microbial sexually transmitted infections (STIs) have adverse effects on the
reproductive tract, sperm function, and male fertility. Given that STIs are often
asymptomatic and cause major complications such as urogenital inflammation, fibrosis,
and scarring, optimal treatments should be performed to prevent the noxious
effect of STIs on male fertility. Among STIs, Chlamydia trachomatis is the most
common asymptomatic preventable bacterial STI. C. trachomatis can affect both
sperm and the male reproductive tract. Recently, mesenchymal stem cells (MSCs)
derived exosomes have been considered as a new therapeutic medicine due to their
immunomodulatory, anti-inflammatory, anti-oxidant, and regenerative effects without
consequences through the stem cell transplantation based therapies. Inflammation
of the genital tract and sperm dysfunction are the consequences of the microbial
infections, especially Chlamydia trachomatis. Exosome therapy as a noninvasive
approach has shown promising results on the ability to regenerate the damaged sperm
and treating asthenozoospermia. Recent experimental methods may be helpful in the
novel treatments of male infertility. Thus, it is demonstrated that exosomes play an
important role in preventing the consequences of infection, and thereby preventing
inflammation, reducing cell damage, inhibiting fibrogenesis, and reducing scar formation.
This review aimed to overview the studies about the potential therapeutic roles of
MSCs-derived exosomes on sperm abnormalities and male infertility caused by STIs.
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INTRODUCTION

A prominent etiological factor in male infertility is genital tract
infection. The infertility may be induced by various mechanisms,
such as damage to gametogenic cells, decrease in the quality
of sperm, and obstruction of the male reproductive tract (Keck
et al., 1998; Sanocka-Maciejewska et al., 2005). The most
common sexually transmitted microorganisms are Chlamydia
trachomatis (C. trachomatis) (Nieschlag et al., 1997; Keck et al.,
1998; Ombelet et al., 2008). There are controversial opinions
on the role of C. trachomatis in male infertility (Dehghan
Marvast et al., 2017). Several studies have shown that male
infertility induced by chlamydial infection occurs in different
forms of sperm abnormalities such as loss of mitochondrial
membrane potential, increase in apoptosis through the activation
of caspase 3 (Sellami et al., 2014) and DNA damage (Dehghan
Marvast et al., 2018), and changes in sperm quality (Bezold
et al., 2007; Sellami et al., 2011, 2014). Also, other studies
have claimed that this microorganism infection causes an
inflammatory reaction which leads to seminal tubes occlusion
(Dohle, 2003; Dehghan Marvast et al., 2016; Zhou et al.,
2021). Many sexually transmitted infections (STIs) pathogens
such as C. trachomatis are asymptomatic in subfertile men
(Sharma and Agarwal, 1996; Bezold et al., 2007; Geisler, 2010;
Hakimi et al., 2014; Bai et al., 2021). Screening and treatment
should be performed to prevent the detrimental effect of
C. trachomatis on male fertility (Geisler, 2010; Bryan et al.,
2019). Widespread antibiotics are currently the most common
treatment for chlamydial infection (Murray and McKay, 2021),
and this treatment can effectively alleviate the infection and
ameliorate sperm quality (Gallegos et al., 2008; Hamazah and Al-
Dahmoshi, 2021). However, antibiotic resistance is one of the
remaining challenges for this treatment, especially in patients
with multidrug resistance (Hamazah and Al-Dahmoshi, 2021;
Vanić et al., 2021).

The new experimental methods of the infertility treatment are
stem cell and exosome applications. Because of the limitations
using live cells injections and also the therapeutic effect of
their paracrine substances (Janockova et al., 2021), MSC–derived
exosomes containing bioactive molecules have been recently
used in studies of infertility treatment. Exosome therapy as a
noninvasive approach has shown promising results on the ability
to regenerate damaged sperms and treating asthenozoospermia
by their repairing molecules and counteracting with the
reactive oxygen species (ROS) (Kharazi and Badalzadeh, 2020).
These experimental methods may be helpful in the novel
treatments of male infertility. This review aimed to overview
the studies about the therapeutic potentials of the MSCs-
derived exosomes on sperm abnormalities and male infertility
caused by STIs.

C. TRACHOMATIS: CELL BIOLOGY

Chlamydia is a gram negative bacterium, an obligate intracellular
parasite, divided into 18 serovars (A-C, D-K, and L1-L3)
distinguished by the antigen named the Major Outer Membrane

Protein. This antigen gives the pathologic properties to the
serovars D-K and may play an essential role in genital
tract infection (Murray and McKay, 2021). Unlike other
microorganisms, C. trachomatis has two distinct developmental
cycles, the infectious type or elementary body (EB) and
intracellular replicative type or reticulate body (RB). Both
types of this bacterium are metabolically active, although
their energy sources are different (Omsland et al., 2012).
Expressions of different antigens during the cell cycle lead
to difficulties in eradicating the bacterium (Paavonen and
Eggert-Kruse, 1999; Murray and McKay, 2021). EB form
attaches to the host cell and enters it and protects itself from
host cellular defense by formation of vacuoles and inclusions
(Hosseinzadeh et al., 2000).

PATHOPHYSIOLOGICAL MECHANISMS

Approximately 50% of C. trachomatis infections in men are
asymptomatic, but it can cause epididymitis, epidiymo-orchitis,
urethritis, and prostato-vesiculitis (Eley et al., 2005; Rana et al.,
2016). Because of wide range of pathological changes and
tissue injuries in the urogenital tract, it is necessary to briefly
review the pathophysiology of C. trachomatis. This bacterium
first attaches to the epithelial cells in the urogenital tract,
and this is where immunological reactions are initiated. The
infected non-immune cells recognize different invaded pathogens
such as C. trachomatis by their PRRs (pathogen recognition
receptors) (Mackern-Oberti et al., 2013). The interaction between
non-immune host cell and bacterium leads to secretion of
many cytokines (IL-1, IL-8, IL-6) (Al-mously and Eley, 2007;
Redgrove and McLaughlin, 2014) and tumor necrosis factor
alpha (TNFα); these, in turn, recruit natural killer (NK) cells,
DCs, neutrophils, macrophage, T cells, and B cells (Redgrove
and McLaughlin, 2014). One of the most substantial cellular
immune reactions against chlamydia infection is mediated by
antigen-specific IFN-γ secreting CD4+, CD8+ T cells, and NK
cells. Also, elimination of chlamydial infection depends on IFN-
γ secreting CD4+ Th1 cells (Cain and Rank, 1995; Perry et al.,
1997). Immune cells also generate chronic inflammation by
increasing the production of ROS and releasing molecules with
degradative properties including defensins, elastase, collagenase,
cathespins, and lysozyme. Finally, the immune reactions lead
to tissue remodeling and scarring in the reproductive system
(Redgrove and McLaughlin, 2014).

EFFECTS OF C. TRACHOMATIS ON
SPERM AND MALE INFERTILITY

Infertility in men is caused by various reasons such as genetic
abnormalities, testicular damage, varicocele, immunological
subjects, systemic diseases, environmental factors, endocrine
disorders, and exposure to gonadotoxic agents (Dohle et al.,
2004; Jungwirth et al., 2012). In addition to the above-mentioned
factors, male genital tract infection and inflammation play
a devastating role in 8–35% of male infertility. Infectious
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factors such as fungi, parasites, viruses, and several other
microorganisms including C. trachomatis, Neisseria gonorrhoeae,
Ureaplasma urealyticum, and Trichomonas vaginalis are involved
in these disorders, which can affect the testis, epididymis,
accessory sex glands, sperm cell function, and finally fertility
(Isaiah et al., 2011). The most common cause is C. trachomatis,
which leads to infertility by affecting both the sperm and the
male reproductive tract (Nieschlag et al., 1997; Keck et al., 1998;
Ombelet et al., 2008).

Some studies have regarded the relationship between
C. trachomatis infection and semen quality. Semen of
C. trachomatis infected patient indicates reduced volume,
decrease in sperm motility, change in sperm concentration, and
pH alteration (Veznik et al., 2004; Rana et al., 2016). It seems that
aforementioned effects on the sperm can be due to Chlamydia
lipopolysaccharide (LPS) which interacts with CD14 on the
sperm membrane and leads to elevating production of ROS and
eventually induced apoptosis (Harris et al., 2001). Another study
demonstrated that C. trachomatis infection can cause rising in
the mitochondria membrane potential, caspase 3 activation,
and finally apoptosis induction in spermatozoa (Sellami et al.,
2014). Moreover, externalization of phosphatidylserine (PS) in
sperm membrane and DNA fragmentation has been reported
as a negative impact of C. trachomatis on sperm function
and fertility (Satta et al., 2006). In addition, several studies
have reported infections of the reproductive system can cause
leukocytospermia, and the leukocytes are able to produce
oxidative damage of the sperm plasma membrane and DNA
through the release of cytokines, free oxygen radicals, and
reactive nitrogen (Anderson and Hill, 1988; Aitken and West,
1990; Hamada et al., 2011).

CURRENT TREATMENT

Current treatment includes azithromycin 1 g single dose or
doxycycline 100 mg orally twice daily for 7 days (Stamm
et al., 1995; Dieterle, 2008; Mishori et al., 2012). Timely
management of sexual intercourse and sex partner treatment
are also necessary to reduce the re-infection risk (Centers
for Disease Control and Prevention, 1998a,b; Workowski and
Berman, 2011). Approximately 50% of C. trachomatis infections
in men are asymptomatic and can cause many complications
(Pacey and Eley, 2004; Eley et al., 2005; Rana et al., 2016).
Thus, screening programs are necessary to prevent long-term
complications of C. trachomatis infection such as epididymitis,
accessory sex glands inflammation, testicular atrophy, tubular
tract occlusion, and male infertility (Paavonen and Eggert-
Kruse, 1999). While treatment with antibiotics significantly
clears sexually transmitted patients, this treatment has its
limitations (Kong et al., 2014). First, screening programs
to identify chlamydia infected individuals are costly and
impractical, so they are limited to symptomatic patients
who are following their diseases (World Health Organization,
2016). Antibiotic therapy may also impair the production
of a sustained protective immune response to chlamydia
(Patton et al., 2014).

Vaccines have long been designed to treat chlamydia infection.
Despite numerous successes in this field, there are still issues
that have limited human access to deliver effective vaccines
without complication. Biological characteristics, two-phase life
cycle, and especially the ability of this bacterium to hide from
the view of the immune system are the main reasons for
this limitation in vaccine production. Providing a reliable and
effective vaccine for Chlamydia prophylaxis is still awaiting
further research and possibly shifting from whole-cell based
vaccines to subunit-based vaccines, especially considering the
role of MOMP (Murray and McKay, 2021).

Importantly, in some cases in which the complications
still remained following antibiotic therapy, a new therapeutic
approach is necessary for treatment. In this regard, MSCs-
derived exosomes have been shown to have critical roles such
as anti-inflammatory, antioxidant, regenerative and fibrogenesis
inhibiting, and wound and fracture healing (Janockova et al.,
2021), which can be considered a novel approach in the male
infertility complications of C. trachomatis infection.

EXOSOME: GENERAL ASPECTS

In different multicellular organisms, the intercellular
communication occurs through cell-to-cell contact or through
the secretion of molecules (Lai, 2004). Two decades ago, another
mechanism was considered in the intercellular communication,
which involves the transfer of extracellular vesicles that release
from the plasma membrane into the intercellular space under
physiological and pathological events and influence the other
cells in paracrine and endocrine manners (György et al., 2011).
Based on biosynthesis pathways and their size, the extracellular
vesicles are divided into three categories: micro vesicles (50–
3,000 nm), exosomes (40–100 nm), and apoptotic bodies
(800–5,000 nm) (Yamamoto et al., 2016). Other studies have
also mentioned other sizes for exosome: (30–100) (Wang et al.,
2017), (50–150 nm) (Théry et al., 2018), (40–160 nm) (Kalluri,
2016), and (50–100 nm) (Gould and Raposo, 2013). Recently
exosomes have attracted huge attention from researchers due
to their genetic material and protein shuttling ability to other
cells with various contents according to their origin (Han et al.,
2016). Exosomes secrete from T cells (Nolte-‘t Hoen et al., 2009),
B cells (Clayton et al., 2005), macrophages (Bhatnagar et al.,
2007), epithelial cells (Skogberg et al., 2015), endothelial cells
(Song et al., 2014, 2015), as well as MSCs (Yeo et al., 2013). The
vesicles with exosomal characteristics have been also founded
in the various body fluids such as semen (Fabiani et al., 1994;
Arienti et al., 1999; Park et al., 2011; Aalberts et al., 2012), blood
(Blanc et al., 2005; Caby et al., 2005; Yunusova et al., 2016), breast
milk (Admyre et al., 2007; Qin et al., 2016; Miyake et al., 2020),
ascites fluid (Andre et al., 2002; Navabi et al., 2005; Runz et al.,
2007), saliva (Ogawa et al., 2008; Michael et al., 2010), amniotic
fluid (Asea et al., 2008; Zhang et al., 2021), urine (Gonzales
et al., 2010; Street et al., 2017), and bile (Masyuk et al., 2010;
Sagredo et al., 2017). Because exosomes are in nano sized range,
they spread through body fluids and easily penetrate through
tissues and affect targeted cells (Phinney and Pittenger, 2017),
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even if those cells are far away (François et al., 2006). The
synthesis, secretion, and effects of the extracellular vesicles were
intensively considered in the past few decades so that it led to
the creation a scientific association named the International
Society for Extracellular Vesicles (ISEV) (Kowal et al., 2014).
Various techniques for isolation and detection of exosomes
have been reported in recent studies. Isolation techniques
include differential ultracentrifugation (Parolini et al., 2009),
density gradient (Beyer and Pisetsky, 2010), size exclusion
chromatography (Livshits et al., 2015), ultrafiltration (Greening
et al., 2015), immunological separation (Beyer and Pisetsky,
2010), isolation by sieving (Taylor and Shah, 2015), cell sorting
(Peterson et al., 2015), polymer-based precipitation (Grant et al.,
2011), and microfluidic technologies (Oves et al., 2018). Exosome
identification techniques include electron microscopy, western
blot, flow cytometry, and nanosight tracking analysis (Crenshaw
et al., 2018). The latest methods and techniques are RNA-seq
techniques (Jeppesen et al., 2019).

EXOSOME BIOGENESIS

Exosome generation, which was conserved during evolution,
is a continuation of the extracellular ligands internalization
and endocytosis process, which is carried out by the curvature
of the plasma membrane and budding inside the intracellular
endosome that leads to the formation of multivesicular
bodies (MVB). Later, the MVB, which contains intraluminal
vesicles (ILVs) that can be the precursors of the exosome,
either leads to fusion with lysosomes and degradation, or
undergoes exocytic merging with plasma membranes and
exosome secretion (Stoorvogel et al., 2002; Février and Raposo,
2004; Colombo et al., 2014; Kowal et al., 2014; Meldolesi,
2018; Xunian and Kalluri, 2020). Molecular mechanisms of
ILV generation depend firstly on the endosomal sorting
complex required for transport (ESCRT), a molecular apparatus
comprised of four sets including ESCRT-0 which consists of
two subunits HRS (hepatocyte growth factor-regulated tyrosine
kinase substrate) and STAM1/2 (signal transducing adaptor
molecule1/2) (for cargo clustering and sorting), ESCRT-I and
ESCRT-II (induce membrane curvature and vesicle budding),
and ESCRT-III (membrane deformation and vesicle detachment)
(Henne et al., 2011; Meldolesi, 2018; Xunian and Kalluri,
2020). The subordinate proteins (Vps4-Vta1 complex, Tsg101,
Vps24, Vps37, Vps2, and Alix) are also critical for exosome
biogenesis pathway (Henne et al., 2011). ESRT apparatus is
also involved in the deubiquitination of some proteins that
are ubiquitinated in ILVs (Henne et al., 2011; Meldolesi,
2018). The deubiquitination is mediated by the protein tyrosine
phosphatase HD-PTP, which is an essential process for exosome
function (Meldolesi, 2018). The subordinate proteins (class I
AAA ATPase Vps4) can cause the ESCRT apparatus recycling
(Xunian and Kalluri, 2020). In addition to the ESRT pathway,
there are other independent pathways, for example, ceramide
derived from sphingomyelin can cause membrane deformation
and vesicles budding within the MVB (Trajkovic et al., 2008;
Henne et al., 2011).

EXOSOME COMPOSITION

Exosomes are extra cellular vesicles that are secreted from
different cells under both normal and disease conditions and
represent cells function or even as diagnostic markers of diseases.
Existence of mRNA and miRNA within the exosomes has
led to more studies in recent years, making this field more
attractive (Valadi et al., 2007). The exosomes carry bimolecular
content such as protein (membrane proteins, cytosolic and
nuclear proteins, and extracellular matrix proteins), lipid, and
nucleic acid which are different between cells (McAndrews and
Kalluri, 2019). This content can be verified and accessed in
the Exocarta,1 a manually curated web-based database. The
current Exocarta is based on about 286 studies on exosomes
and contains about 41,860 proteins, 1,116 lipid, and more
than 7,540 RNAs from 10 various species (Keerthikumar
et al., 2016). Several most common proteins on the exosomal
surface such as tetraspanins (CD63, CD81, CD82, and CD9)
are known as membrane scaffolds (Ma et al., 2020); in
addition to the above-mentioned tetraspanins, in the MSC-
derived exosomes, there are expressions of CD73, CD44,
and CD90 (Ramos et al., 2016). Exosomes present antigen
proteins such as major histocompatibility complex (MHC) I
and II, flotillin-1, and integrins. Other proteins include MVB
biogenic proteins such as ESCRT complex 0,-1,-II,-III, Alix,
syntenin, TSG101, membrane transporters, and fusion proteins
such as RAB protein, RAP1B, RhoGDIs and annexins (Ma
et al., 2020), several enzymes such as glyceraldehydes- 3-
phosphate dehydrogenase (GAPDH), phosphoglycerate kinase
1 (PGK1) (Van Niel et al., 2011; Charrin et al., 2014),
and alanylaminopeptidase N (Ma et al., 2020), a number
of chaperones such as heat shock protein 70 (HSP70), heat
shock cognate 70 (HSC70) (Van Niel et al., 2011; Charrin
et al., 2014), HSP90, HSP60, and HSP8 (Ma et al., 2020),
adhesion proteins such as L1 cell adhesion molecule (L1CAM),
and lysosomal associated membrane protein 2 (LAMP2)
(Urbanelli et al., 2013).

Exosomes are also rich in genetic materials. Different types
of RNAs including mRNAs and miRNAs, vault RNAs (vtRNAs),
Y-RNAs, ribosomal RNAs (rRNAs), and transfer RNA (tRNAs)
(Squadrito et al., 2014; Vojtech et al., 2014; Shurtleff et al.,
2017). Also, various types of DNAs in exosomes are double-
stranded DNAs (dsDNA) (Thakur et al., 2014), mitochondrial
DNAs (mtDNAs) (Guescini et al., 2010), and single-stranded
DNAs (ssDNAs) (Balaj et al., 2011).

Other exosome contents are lipid compositions including
cholesterol, phosphatidylserine (PS), sphingomyelin, ceramide,
lysobisphosphatidicacid, and phosphatidylethanolamine (PE),
which play an important role in membrane structure and
exosome formation and are secreted in the extracellular
environment (Skotland et al., 2019).

Exosomes with lipid bilayer membrane can protect genetic
material and other contents through transportation to the
targeted cell (Fu et al., 2019). MSC-derived exosomes transmit
their composition to the targeted cells either via plasma

1http://www.exocarta.org
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membrane fusion or membrane receptor function which lead to
the exosome internalization (Harrell et al., 2019a).

MESENCHYMAL STEM CELLS-DERIVED
EXOSOMES

MSCs which are mainly tissue specific stem cells can be
isolated from adult (Akyash et al., 2020) and fetal (Hoseini
et al., 2020) sources. MSCs can be also be produced from
pluripotent human embryonic stem cells (hESCs) (Javidpou
et al., 2021). Different cells secrete exosomes that have
similar protein molecules and biological activities. Immune
modulation, regeneration, tissue repair, and promotion of
angiogenesis are the similar in vivo and in vitro therapeutic
effects of MSC-derived exosomes. These similar activities may
be related to the presence of common protein signature
in all MSCs-derived exosomes (van Balkom et al., 2019).
However, MSCs are a massive source for production of
exosomes, more accessible, and highly proliferative (Cheng
et al., 2017) and that makes them more suitable for different
fields of research. Moreover, exosomes derived from specific
types of MSCs have unique properties (Tang et al., 2021).
Additionally, different specific cells secrete exosome containing
unique protein molecules and exert biological activity (Simpson
et al., 2008). For example, in a recent study, amelioration of
the spermatogonia injuries by Sertoli cell-derive exosome was
revealed (Salek et al., 2021).

ROLE OF MESENCHYMAL STEM
CELLS-DERIVED EXOSOMES IN
INFLAMMATION AND CELLULAR
DAMAGE

Numerous studies have shown the potential of MSC-derived
exosomes for treatment of diseases, which can be used as vaccines
(prophylaxis), treatment, disease biomarkers, and drug delivery
(Wang et al., 2017; Janockova et al., 2021).

It has been demonstrated that MSC-derived exosomes exhibit
a crucial role in repair of the epithelium damage and re-
epithelialization (Zhang et al., 2015a), angiogenesis (Shabbir
et al., 2015; Zhang et al., 2015b), and prevention of the scar
formation by suppressed myofibroblast differentiation (Fang
et al., 2016). Studies have also reported that MSC-derived
exosomes containing miRNAs can reduce inflammation by
transforming the pro-inflammatory macrophage M1 to anti-
inflammatory phenotype M2. The phenotype M2 reduces local
interleukin-1β, interleukin-6, and tumor necrosis factor alpha
(TNF-α) and increases the secretion of anti-inflammatory factors
such as IL-10 as well as immune regulation (Wei et al., 2019;
Zhao et al., 2019). Recent study demonstrated that MSC-derived
exosomes can cause suppression of CD4+ Th1 and Th17 and
induction of T regulatory cells (Treg) expansion which it in
turn regulates and suppresses the immune system (Harrell et al.,
2019b). Also, the protective effects of MSC-derived exosomes
have been mediated via oxidative stress suppression and maintain
balance of cellular redox state (Yang et al., 2015).

FIGURE 1 | Potential effects of MSCs-derived exosomes on consequences of chlamydia infection in the genital tract. Genitalia tract infection with chlamydia evokes
an inflammatory immune response by epithelial and local immune cells. This, in turn, produces the high level cytokins that initiate a more severe immune reaction.
The responses may result in male genital inflammation and fibrosis. On the other hand, the inflamed tissue can lead to creation of ROS production and then sperm
damages. MSC derived exosomes potentially improve these consequences of chlamydia induced inflammation. DC, Dendritic cells; MC, Macrophage; NK, Natural
killer; MSC, Mesenchymal stem cell; ROS, Reactive oxygen species.
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Studies have also shown the important role of MSC-derived
exosomes in tissue repair after injury, the effect that is mediated
by inducing cell differentiation, proliferation, and prevention of
apoptosis. The miRNAs such as miR-21-5p, miR-144, and miR-
19a are the factors that inhibit apoptosis in the MSC-derived
exosomes and reduce apoptotic proteins such as caspase 3,
caspase 8, and caspase 9 after tissue injury (Yu et al., 2015; Li et al.,
2019; Wen et al., 2020).

In the inflammatory response of colitis it has been reported
that MSC-derived exosomes attenuate inflammation through
decrease in TNF-α, nuclear factor kappaBp65 (NF-κBp65),
cyclooxygenase-2 (COX-2), inducible nitric oxide synthase
(iNOS), interleukin-1β (IL-1β), and increase in expression of
IL-10. Alleviation of LPS-induced inflammation and acute
respiratory distress syndrome (ARDS) by MSC-derived exosomes
has been demonstrated (Deng et al., 2020). Another study on
premature ovarian failure reported that MSC-derived exosomes
with miR-644-5p can cause apoptosis inhibition via impressing
p53 and recover normal function in ovarian granulosa cell
(Sun et al., 2019). Considering the male infertility caused by
C. trachomatis has inflammation-based pathology (Lotti and
Maggi, 2013; Redgrove and McLaughlin, 2014), exosome therapy
may be a beneficial technique to attenuate the cell injuries and
the tissue remodeling such as occurrence of fibrosis and scar
formation (Figure 1).

ROLE OF MESENCHYMAL STEM
CELLS-DERIVED EXOSOMES IN
INFECTION

The antimicrobial properties of MSC-derived exosomes have
been reported by several clinical trials (Krasnodembskaya et al.,
2010; Harman et al., 2017; Cortés-Araya et al., 2018). Studies
also showed that exosomes contain antimicrobial peptides
(AMPs) and the proteins that have bactericidal effect (Gläser
et al., 2005; Krasnodembskaya et al., 2010; Allen and Stephens,
2011; Alcayaga-Miranda et al., 2017). MSC-derived exosomes
indicated the therapeutic effect on lung injury that induced
by E. coli (Zhu et al., 2014). Also, enhancing anti-microbial
function of immune cells infiltration in lung by MSC-derived
exosome has been reported in an animal study (Hao et al.,
2019). A previous study revealed that exosomes can protect
the brain against sepsis induced in an experimental model
(Chang et al., 2018). MSC-derived exosomes enhanced the
bacterial phagocytosis capability of the monocytes in severe
bacterial pneumonia (Monsel et al., 2015) and enteric infections
(Islam et al., 2001). Moreover, immunoregulatory properties
of monocytes and decrease in inflammatory cytokine secretion
were observed after use of the exosomes (Monsel et al.,
2015). There is evidence that MSC-derived exosomes with their
immunomodulatory, pro-angiogenesis, and anti-inflammatory
activities can prevent inflammatory responses and alleviate
COVID-19-induced pneumonia and lung injury (Raghav et al.,
2021). In sum, these evidences about the role of exosomes in
infections, especially their effects in increase of phagocytosis by
monocytes, generate promising reasons to give them a potential
property for eradication of the micro-organisms.

FIGURE 2 | MSC-derived exosomes may decrease ROS production after
chlamydia infection and their effects on sperm membrane and DNA.
Therefore, MSCs-derived exosomes can potentially improve quality and
adhesive properties of sperm.

MSC-derived exosomes, as a natural carrier, possess a
capability of embedding and delivering antibiotics and drugs.
The use of exosomes as carriers leads to reduction of drugs
that metabolize, targeted drug delivery, and thus overcome drug
resistance (Bartolini et al., 2013; Yeo et al., 2013; Batrakova and
Kim, 2015; Gao et al., 2018; Oves et al., 2018; Herrmann et al.,
2021). However, exosome modifications change the functions
and therapeutic effects of these vehicles (Ma et al., 2017;
Tamura et al., 2017).

POTENTIAL THERAPEUTIC ROLE OF
MESENCHYMAL STEM CELLS-DERIVED
EXOSOME IN SPERM ABNORMALITY

To achieve proper male fertility, safe sperm manipulation
is important. Recently, new methods such as the use of
nanoparticles have been used to develop non-invasive techniques
for treating and manipulating sperm (Feugang, 2017). The
effectiveness and non-invasiveness of the nanoparticles such as
exosome for mammalian sperm have been proven (Vilanova-
Perez et al., 2020). According to animal studies, exosomes
appear to be a promising avenue to restore spermatogenesis
and sperm regeneration; a study has shown that amniotic
fluid-derived exosome can restore sperm parameters such as
motility, concentration, as well as the number of spermatogonia,
spermatocytes, and ultimately male fertility (Mobarak et al.,
2021). The protective effect of exosomes against sperm
cryoinjuries (such as cell membrane injury, DNA damage)
and oxidative stress produced by cryopreservation process
and improvement of the post-thaw sperm parameters has
been reported (Qamar et al., 2019; Mahiddine et al., 2020).
Interestingly, treatment of spermatozoa with MSC-derived
exosomes, in addition to improving sperm parameters after
frozen-thawed, can increase sperm adhesive and fusogenic
properties by adhesion molecules shuttling such as CD44, CD29,
CD54, and CD106 (Mokarizadeh et al., 2013; Figure 2).
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Exosomes contain different molecules such as RNAs that can
be incorporated into immune or host cells. RNA sequencing
analysis showed that microRNAs were the most frequent in
exosomes (Huang et al., 2013). MSC-exosomes can play a
role in injury repair and preventing apoptosis after injury
through the miRNAs (e.g., miR-19a, miR-144, and miR-21-
5p). The potential role of the miRNAs in improvement of
chlamydial-induced sperm damages may confer a therapeutic
application to the exosome. In addition, there are several
clinical trials that demonstrated loading of exosomes with
drugs or bioactive molecules (NCT01294072, NCT03608631,
NCT01159288) for therapeutic proposes (NCT04602442,
NCT04213248, NCT03437759, NCT04276987) (Herrmann et al.,
2021). Therefore, it seems that exosomes can be used for
treatment of sperm damage.

CONCLUSION

There are reported evidences demonstrated regenerative, anti-
microbial, and anti-inflammatory and anti-oxidant activities of
exosomes. It is worthwhile to investigate and challenge the

identity and effectiveness of the exosomes in the treatment and
control of the consequences of male genitalia tract infections,
especially chlamydia. MSC-derived exosomes therapy can lend
itself as the potential treatment of male infertility caused by
microbial infections in the near future.
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