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Given the desirable results of using probiotics and enzyme preparations as
feed supplements in poultry health, here, the effects of Bacillus and Non-starch
Polysaccharase (NSPase) on the growth performance, serum antioxidant profiles, and
gut microbial communities of early stage ducks is investigated. A total of 400 Zhjjiang
ducks (of similar body weight and 1 day age) was selected and randomly divided into
four groups. The feeding period was 28 days. Each group contained 10 replicates of
10 birds. Control group (l) was fed with basal diet, while treatment groups Il to IV
were fed, respectively, with 150 mg/kg NSPases, 25 mg/kg Bacillus probiotics, and
150 mg/kg NSPases + 25 mg/kg Bacillus probiotics in their basal diet. The results
demonstrated that dietary Bacillus (25 mg/kg) increased average final weight, average
daily gain (ADG), and decreased the malonaldehyde (MDA) in birds (P < 0.05). Dietary
Bacillus (25 mg/kg) and NSPases + Bacillus (150 mg/kg + 25 mg/kg) presented
much higher glutathione (GSH) and activities of superoxide dismutase (SOD) in birds
(P < 0.05). Additionally, as revealed by B-diversity indices and analysis of similarities,
dietary NSPases + Bacillus could affect the ileum microbial abundances and diversities
at the genera level (P < 0.05), but it had no effect on the caecal microbiota. Also, 16S
rRNA sequencing revealed that dietary Bacillus and NSPases + Bacillus increased the
populations of Ruminococcaceae genera in the cecum (P < 0.05), and S24-7_group
and Lactobacillus genera in the ileum (P < 0.05). However, dietary NSPases and Bacillus
alone and in combination could significantly decrease the content of Bacteroides in
the ileum (P < 0.05). According to Spearman correlation analysis, 7 ilea bacterial
microbiomes (S24-7 group, Lactobacillus, Subgroup 2, Subgroup 1, Kitasatospora,
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Candidatus Solibacter, and Akkermansia) were positively correlated with SOD (P < 0.05).
In conclusion, Bacillus (25 mg/kg) and NSPases (150 mg/kg) included in the diet could
efficiently enhance the growth performance by altered gut microbiota composition at the
genera level and antioxidant indices of ducks.

Keywords: gut microbiota, Bacillus, non-starch polysaccharidase, growth performance, serum antioxidant

profiles, intestinal morphology, duck

INTRODUCTION

Due to the antibiotic resistance of bacteria being on
the rise (Guo et al, 2016) and the increasing consumer
concern regarding poultry products, antibiotic-free flocks
(Gadde et al, 2017), and environmental sustainability
(Xing et al., 2015), a prohibition on antibiotics had been
imposed in Europe (Stolker et al, 2007), South Korea
(Kumar et al, 2012), and China (Hu and Cowling, 2020)
since 2006, 2012, and 2020, respectively. Hence, replacing
antibiotics with alternative products (Han et al, 2017) has
become a hot research topic in recent years. Probiotics
and enzymes are attracting much attention as important
alternatives to antibiotics.

Bacillus is widely used in poultry diets as a type of
probiotic, which improves the productive performance of poultry
(Naumova et al., 2021) by producing naturally synthesized
antimicrobial peptides, maintaining microbial flora balance in
the intestie, accelerating the increase of beneficial microbiota
along the gastrointestinal tract, and adjusting the immunological
function and gut morphology (Sen et al, 2012; Grant et al,
2018). Many findings confirmed the significant improvement
of growth performance, immune response, cecal microbial
population, and intestinal morphology of weanling pig (Lee
et al., 2014), Cherry Valley ducks (Guo et al, 2016), and
Ross broiler chicks (Sen et al., 2012) with Bacillus-based
diets. In addition, lacking enough enzymes to fully digest
fiber, birds rely on exogenous enzymes in their diets to
improve the fiber digestion process (Alagawany et al., 2018).
As one of the most important exogenous enzymes, non-starch
polysaccharidase (NSPase) is commonly used in poultry diets
and plays many essential roles such as breaking down the
non-starch polysaccharides, releasing nutrients encapsulated by
the cell wall, reducing intestinal viscosity, improving animals’
utilization of nutrients, and affecting the composition and
metabolic potential of bacterial populations (Kiarie et al,
2013; Ravindran, 2013; Amerah, 2015). Ao et al. (2010)
and Coppedge et al. (2012) reported the supplementation of
NSPase could improve the growth performance of market
broilers and pigs and be used as a strategy to degrade
antinutritional compounds so as to reduce dietary energy
levels and costs.

Both Bacillus and NSPase can improve the productive
performance of poultry, and are able to directly or indirectly
affect the intestinal flora. However, it is not clear whether
there is a synergistic effect between them. A few studies
demonstrated that there was a certain synergistic effect on
improving intestinal health, promoting nutrient digestion and

growth in broiler chickens, when both Bacillus and NSPase
were used as a supplement in the feed (Lin Q. et al, 2012;
Wealleans et al., 2017). However, no such study has been
conducted in ducks. In the present study, we aimed to study
the effects of Bacillus and NSPase on the growth performance,
serum antioxidant profiles, intestine morphology, and intestinal
microbiota composition in ducks.

MATERIALS AND METHODS

All the experimental procedures of this study were approved by
the Animal Care and Use Committee of the Institute of Bast Fiber
Crops, Chinese Academy of Agricultural Sciences.

Experimental Design, Diets, and Birds

Zhijiang duck, an important indigenous bird breed in Southern
China, is characterized by rapid growth, strong disease resistance,
unique flavor, and delicious meat. Usually, they are sold as
products in the marketplace at the age of 56 days, often
with an average body weight of around 2,650 g for a single
duck. From the age of 1-28 days, Zhijiang duck are at the
critical stage of intestinal development and maximum growth.
Therefore, a total of 400 female Zhijiang ducks (aged 1 day
and free of infectious disease) were obtained from Hunan
Hexiang Duck Industrial Co., Ltd. They were then transferred
into the laboratory of the Bast Fiber Crops Institute, Chinese
Academy of Agricultural Sciences for a feeding period of 28
days. Feed and water were provided ad libitum during the
whole trial period. Each Zhijiang duck was weighed at the
beginning to obtain the average initial weight, in order to
divide them into four groups without significant difference
among groups. Each group (100 Zhijiang ducks) was further
subdivided into 10 cages (10 ducks/cage), and the dimension
of each cage was 150 cm X 150 cm. Group I received a
basal diet (BD), Group II received BD supplemented with
150 mg/kg NSPases (Manufactured by Shanghai CJYOUTELL
Biotechnology Co., Ltd., China); the main components of this
NSPases are cellulase (> 2,000 IU/g) and xylanase (> 30,000
IU/g). Group II received BD supplemented with 25 mg/kg
Bacillus probiotics; the main components being Bacillus subtilis
and Bacillus lichenif or mi s, 5 x 10'2 CFU/g, manufactured
by Wuhan Xiongfeng Technology Co., Ltd., China. Group IV
received BD supplemented with 150 mg/kg NSPases + 25 mg/kg
Bacillus probiotics. The BD was prepared in accordance with
the Nutrient Requirements of Ducks (National Research Council,
1994) and the Nutrient Requirements of Meat-type Duck (China,
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NY/T 2122-2012) (Ministry of Agriculture of the People’s
Republic of China, 2012; Table 1).

Growth Performance

Birds were weighed at the beginning (day 1) and the end (day
28) of the trial for calculation of growth performance. Average
daily weight gain (ADG), average daily feed intake (ADFI), and
feed/gain ratio (F/G) were calculated according to the data from
each cage for the whole experimental period. The birds were
fasted for 12 h before weighting and sampling.

Sample Collection

At the end of the trail, one bird per cage with a live weight
close to the mean (10 birds per group) were selected for
sampling. Blood samples from the wing vein were collected
into vacuum blood collection tubes and were centrifuged at
3,000 x g for 10 min to collect the serums. Birds were slaughtered
by exsanguination from the jugular vein. Samples of the small
intestine were immediately removed and then divided into three
parts: Duodenum, jejunum, and ileum. Intestinal tissue samples
were cut from the medial of the duodenum, jejunum, and ileum
with a segment of 1.5 cm, and lightly flushed using physiological
saline (154 mmol/L) and drained on filter paper. Then these fresh
samples were fixed into 10% neutral buffered formalin for further
analysis of intestinal mucosal morphology (Watkins et al., 2004;
Applegate et al., 2005). Samples of chyme in each ducK’s ileum
and cecum were collected separately into 2 mL EP tubes and
flash-frozen using liquid N, and stored at -80°C until analysis.

Serum Antioxidant Capacity

Samples of serum were analyzed for malonaldehyde (MDA),
antioxidant biomarkers including glutathione (GSH), activities of
superoxide dismutase (SOD),glutathione peroxidase (GSH-Px),
total antioxidant capacity (T-AOC), and Catalase (CAT) were
determined by the commercial assay kits (Nanjing Jiancheng

TABLE 1 | Composition and nutrient levels of basal diets (air-dry basis, %).

Item Ingredients Item Nutrient levels?
Corn 46.95 ME/(Mcal/kg) 2.83
Soybean meal 25.30 CP 17.37
Rice bran 9.00 Calcium 0.90
Barley 14.52 Total P 0.68
Limestone 1.63 Available P 0.36
CaHPO4-2H,O 1.20 NaCl 0.34
NaCl 0.30 Lys 1.00
98.5% DL- Met 0.11 Met 0.39
78% L- Lys 0.09 Met + Cys 0.68
1% Premix? 1.00 CF 3.34
Total 100.00

aThe premix provided the following (per kilogram of complete diet) micronutrients:
VA 12000 IU, VD3 2 500 IU, VE 20 mg, VK3 3 mg, VB; 3mg, VB2 8 mg, VBs 7 mg,
VB12 0.03 mg, D-pantothenic acid 20 mg, nicotinic acid 50 mg, biotin 0.1 mg,
folic acid 1.5 mg, Cu (as copper sulfate) 9 mg, Zn (as zinc sulfate) 110 mg, Fe
(as ferrous sulfate) 100 mg, Mn (as manganese sulfate) 100 mg, Se (as sodium
selenite) 0.16 mg, | (as potassium iodide) 0.6 mg. b Nutrient levels are calculated
values.

Bioengineering Institute, China) with an automated fluorescence
instrument (MultiskanMTM SkyHigh, Thermo Fisher Scientific,
Waltham, MA, United States).

Measurement of Intestinal Mucosal
Morphology

The intestinal morphological measurement of the duodenum,
jejunum, and ileum was based on the method reported in our
previous research (Lin Q. et al., 2017). Briefly, 1.5 cm-intestinal
tissue samples of the duodenum, jejunum, and ileum were
fixed and embedded in paraffin, sectioned at a thickness of 5
or 6 pm using a microtome (RM-2235, Leica microsystems
AG., Hessen, Germany), then mounted on glass slides and
subsequently stained with hematoxylin and eosin (HE staining).
We observed the finished slides and chose the typical microscopic
fields to take photos of under an Olympus Van-Ox S microscope
(Opelco, Washington, DC). Visual measurements of the villus
height, crypt depth, and intestinal wall thickness from each slide
were made on 10 readings at 40 x and 100 x magnifications
using an image analysis system (Image-Pro, Media Cybernetics,
Inc., Silver Springs, MD, United States). Then the ratios of villus
height to crypt depth (V/C) can be calculated.

Gut Microbiota Composition by 16S
rRNA Gene Sequencing

The genomic DNA of the ileum and cecum microbial community
were extracted according to the manufacturer’s instructions
by the E.ZZN.A. DNA kits (Omega Bio-tech, Norcross, GA,
United States). Ten ileum/cecum digesta samples were mixed
in pairs for the 16S rDNA sequence determination. The 16S
rRNA gene V3 + V4 regions of the bacteria were amplified with
the primer pairs 806R (5'-GGACTACHVGGGTWTCTAAT-
3’) and 338F (5-ACTCCTACGGGAGGCAGCAG-3") combined
with adapter sequences and barcode sequences. Next, the
DNA was purified by AxyPrep DNA Gel Extraction Kits
(Axygen Bioscience, Union City, CA, United States). Finally, the
sequencing of 16S rRNA gene was performed on an Illumina
HiSeq 2500 platform (Illumina, San Diego, CA, United States)
with purified amplicons were paired.

Reads with complete (length > 300 bp) sequence barcodes
were screened for the following analysis. Obtained sequences of
samples were filtered by using QIIME (version 1.17) software and
the number of operational taxonomic units (OTUs) with a cut
of 97% sequence similarity were determined by using UPARSE
(version 7.1). Each OTU represented sequence was analyzed
by Ramer-Douglas-Peucker (RDP) Classifier version 2.2 via the
16S rRNA database.

The alpha diversities of the ileal and cecal microbiota,
including abundance-based coverage estimator (ACE), Chaol
estimator, Simpson and Shannon diversity index were calculated
to investigate the richness and diversity of the community,
respectively. Principal coordinate analysis (PCoA), and Non-
MetricMulti- Dimensional Scaling (NMDS) were calculated to
evaluate the difference of the microbial community based on
the Bray-Curtis dissimilarity matrix. The analysis procedures of
ileal and cecal microbiota were processed on the free online
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platform of BMK Cloud Platform (BioMarker Technologies Co.,
Ltd., Beijing, China).

Statistical Analysis

One-way ANOVA model was performed to identify significant
differences in growth performance, serum antioxidant profiles,
intestinal mucosal morphology, and richness and community
diversity of bacteria. All the results were presented as means plus
standard errors of the means (SEM). Differences between means
of all groups were considered significant at P-value less than
0.05. The analysis of statistical comparison was conducted on the
basis of Student’s t-test to declare the difference of the relative
abundance of the ileal and cecal microbiota between two groups.
Spearman correlation analysis was performed to identify the
relationship between ileum and cecum microbial community and
measured parameters. Heatmap was constructed using Prism 9.0
(GraphPad Software, San Diego, CA). All the statistical analysis
was done with SPSS 19.0 (IBM, Armonk, New York).

RESULTS

Growth Performance

Growth performances are shown in Table 2. Compared to the
control group I, the values of average final weight and ADG
showed a significant increase in Group III, whereas Group II
and Group IV exhibited an increasing trend with no significant
difference (P > 0.05). The ADFI and F/G of ducks among any
groups did not change significantly (P > 0.05) during the entire
experimental period.

Serum Antioxidant Profiles

Six serum antioxidant indicators were presented in Table 3. GSH-
Px (P = 0.878), T-AOC (P = 0.411) and CAT (P = 0.282) in
different treatment group showed similar levels. But significant
differences were told among groups in the serum levels of GSH,
SOD, and MDA (P < 0.01). Compared to Group I, Groups III,

TABLE 2 | Effects of each treatment' on growth performance of Zhijiang ducks?
(1 28 days).

Item Group|l Groupll Grouplll GrouplV SEM P-value
Average initial 45.72 45.82 45.84 45.80 0.048 0.835
weight, g

Average final 1323.00° 1343.19%P 1369.58% 1355.28%° 6.161 0.046
weight, g

ADG, g 47.31° 48,0520 49.032 48,502 0.228 0.046
ADFI, g 99.87 99.95 98.62 100.31  0.918 0.929
F/G 2.1 2.08 2.01 2.07 0.020 0.344

ADG, average daily weight gain; ADFI, average daily feed intake; F/G, feed to gain
ratio.

"Group | (control group), Group Il (150 mg/kg NSPases in basal diet),
Group Il (25 mg/kg Bacillus probiotics in basal diet), Group IV (150 mg/kg
NSPases + 25 mg/kg Bacillus probiotics in basal diet).

2Data is the mean of 10 replicates per treatment.

a-bpjfferent superscript letters in the same row indicate significant differences at
P < 0.05.

TABLE 3 | Effects of each treatment' on antioxidative parameters of Zhijiang
ducks? (1 28 days).

Item Group | Groupll Grouplll GrouplV SEM P-value
MDA, nmol/mL 7.002 5.39P 3.65°¢ 576°  0.306 <0.01
GSH, pmol/L 16.46P 17126 21.082 19.812  0.494 <0.01
SOD, U/mL 65.32°  68.83°  74.312 76.312 1164  <0.01
GSH-Px, U/mL 193.97 189.16  187.39  188.28 2908 0.878
T-AOC, mmol/mL  0.86 0.97 0.93 1.01 0.032  0.411
CAT, U/mL 1.03 0.92 0.96 087  0.029 0.282

MDA, malonaldehyde;, GSH, glutathione; SOD, superoxide dismutase; GSH-Px,
glutathione peroxidase; T-AOC, total antioxidant capacity; CAT, Catalase.

"Group | (control group), Group Il (150 mg/kg NSPases in basal diet),
Group Il (25 mg/kg Bacillus probiotics in basal diet), Group IV (150 mg/kg
NSPases + 25 mg/kg Bacillus probiotics in basal diet).

2Data is the mean of 10 replicates per treatment.

a=CDjfferent superscript letters in the same row indicate significant differences at
P < 0.05.

and IV showed a significant increase in the serum level of SOD
and GSH (P < 0.01). In contrast, the level of MDA showed
a significant decrease in Groups II, III, and IV compared to
that of Group 1.

Intestinal Mucosal Morphology

According to Table 4, no significant difference (P > 0.05)
was observed on any intestinal morphology parameters of all
groups. But for the duodenum, jejunum, and ileum, an increasing
trend in villus height and V/C, and a decreasing trend in
Crypt depth has been shown in Groups II, III, or IV when
compared to Group L.

Modulation of Intestinal Microbiota

Shannon, Simpson, ACE, and Chao, are important indexes of
the o diversity of a bacterial community. The results (as shown
in Table 5) were obtained through the 16S rRNA sequencing.
For ileum, the values of ACE (P = 0.007) and Chao (P = 0.006)
showed a significant increasing trend in Group IV, and they
also increased in Group II and Group III. But instead, the o
diversity parameters of the cecum showed no change (P > 0.05)
among groups. PCoA and NMDS revealed the variation between
microbiome profiles based upon Bray-Curtis dissimilarity. For
cecum, PCoA plot (Figure 1A) and NMDS plot (Figure 1B)
revealed no differences in microorganism distributions between
the four groups at the genera level. However, in the ileum,
samples from Group I and Group II were clearly distributed in
both clusters, on the left and right parts of both PC1 (Figure 1C)
and NMDSI1 (Figure 1D), respectively.

In cecum, microbial communities among different groups
at the genus level are shown in Figure 2A. Faecalibacterium,
Ruminococcaceae, Lachnospiraceae, Torques group, and UCG-014
were the dominant microbes and occupied approximately 50%
of the total genera. Faecalibacterium was detected in the highest
abundance in Group I, whereas the Ruminococcaceae and
Torques group showed lower abundance than other groups. As
for Lachnospiraceae, higher abundance was observed in Group
II and IV. For the microbial composition analysis, pair-wise
comparisons with Students T approach were used between
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experimental groups and the control group. Significant
differences were found in Ruminococcaceae (P < 0.01)
(Figure 2B) and vadinBB60 group (P < 0.05) (Figure 2C)
between Group I and IV, Ruminococcaceae (P < 0.05) (Figure 2B)
between Group I and IV.

In the ileum (Figure 3A), Candidatus Arthromitus and
Bacteroides were dominant genera in Groups I, II, and III which
represented more than 30% of the genus type. However, they were
detected in Group IV with low abundance. As for Barnesiella,
Intestinibacter, and Faecalibacterium, higher abundance was
observed in Group I. Additionally, the relative abundance of $24-
7 group, Lactobacillus, and Subgroup 2 in Group IV were higher
compared with other groups. Through the Students T-test,
there were significant differences of Bacteroides, S24-7 group,
Lactobacillus, and Subgroup 2 (P < 0.05) (Figures 3B-E) between
Group I and test groups.

Furthermore, the correlation between the microbiota
composition of ceacum/ileum and the indices of growth
performance and antioxidative capacity were shown in Figure 4.
After Spearman’s correlation analysis in ceacum, ADFI and
F/G were found to have significant positive correlations
with Faecalibacterium (P = 0.018 and P = 0.031), while
negative correlations were examined between GSH and the
Bacteroides (P = 0.039), and ADFI and the Eisenbergiella
(P = 0.027). In ileum (Figure 4B), significantly positive results
were observed between SOD and $24-7 group (P = 0.013),
Lactobacillus (P = 0.024), Subgroup 2 (P = 0.013), Subgroup 1
(P = 0.010), Kitasatospora (P = 0.002), Candidatus Solibacter
(P = 0.009), and Akkermansia (P = 0.040). Meanwhile, SOD
was significantly negative in the Bacteroides (P = 0.024) and
Alistipes (P = 0.009). In addition, significant positive correlations
were existed between T-AOC and Akkermansia (P = 0.015),GSH

TABLE 4 | Effect of each treatment? on intestinal morphology of Zhjiang ducks® (1 28 days).

Item Group | Group Il Group lll Group IV SEM P-value
Duodenum

Villus height, pm 577.45 590.31 598.00 610.14 12.455 0.835
Crypt depth, um 130.20 122.07 121.67 129.11 2.376 0.452
V/C 4.45 4.86 4.98 4.77 0.113 0.394
Intestinal wall thickness, um 1938.62 1856.93 188.24 196.25 3.886 0.785
Jejunum

Villus height, pm 582.71 586.32 606.55 602.88 11.677 0.866
Crypt depth, pm 129.62 122.12 117.19 125.40 2.392 0.314
V/C 4.53 4.88 5.23 4.85 0.124 0.256
Intestinal wall thickness, um 192.18 190.62 176.98 184.00 3.161 0.313
lleum

Villus height, pm 544.05 554.70 562.82 537.81 8.685 0.761
Crypt depth, um 123.71 117.50 121.86 120.09 2.201 0.794
V/C 4.42 4.76 4.65 4.51 0.073 0.356
Intestinal wall thickness, um 192.30 182.38 183.14 182.94 3.292 0.684

V/C, the ratios of villus height to crypt depth.

aGroup I (control group), Group Il (150 mg/kg NSPases in basal diet), Group Ill (25 mg/kg Bacillus probiotics in basal diet), Group IV (150 mg/kg NSPases + 25 mg/kg

Bacillus probiotics in basal diet).
bData is the mean of 10 replicates per treatment.

TABLE 5 | o diversity of cecum and ileum microbial community in different groups™-2.

Item Group | Group Il Group Il Group IV SEM P-value
Cecum

Shannon 3.00 3.61 3.47 3.19 0.135 0.404
Simpson 0.208 0.089 0.114 0.147 0.023 0.319
ACE 294.40 311.18 304.62 305.61 4.449 0.639
Chao 299.04 313.05 304.77 309.10 4.604 0.766
lleum

Shannon 3.15926 4.22804 3.84302 5.84306 0.391 0.081
Simpson 0.13528 0.1852 0.16514 0.01094 0.043 0.508
ACE 460.473° 667.262° 735.2523.6 975.8532 58.653 0.007
Chao 441.658° 674.640-° 740.6532b 982.8252 60.437 0.006

TGroup I (control group), Group Il (150 mg/kg NSPases in basal diet), Group lll (25 mg/kg Bacillus probiotics in basal diet), Group IV (150 mg/kg NSPases + 25 mg/kg

Bacillus probiotics in basal diet).
2Data is the mean of 5 replicates per treatment.

a=CDjfferent superscript letters in the same row indicate significant differences at P < 0.05.
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FIGURE 1 | PCoA and NMDS analysis of cecum (A,B) and ileum (C,D) microbial community compositions based on information of operational taxonomic units
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0.042),and GSH and Kitasatospora

DISCUSSION

Several lines of studies demonstrated that Bacillus Probiotics
could improve the growth performance of poultry (Jeong and
Kim, 20145 Lee et al., 2015; Lin Y. et al., 2017). In the current
study, we found that Bacillus probiotics supplementation could
increase the average final weight and ADG by modulating
antioxidative status and intestinal microflora. In fact, the
antioxidant effect of Bacillus Probiotics has been verified in
rats before (Paik et al., 2005). In our study, we found Bacillus
probiotics have the efficacy of significantly decreasing the serum
level of MDA and increasing the level of SOD and GSH. These
results revealed that feeding ducks with Bacillus Probiotics can
also improve the antioxidant status. Meanwhile, there were
a higher relative proportion of the genera Ruminococcaceae,
vadinBB60 group, and S24-7 group in the Bacillus-fed group in
the cecal or ileal microbial community. Many species belonging
to these genera are able to produce short-chain fatty acid (SCFA),
especially butyrate (Hooda et al,, 2012; Ridlon et al., 2015),

which serves as a preferred energy source for enterocytes and
a known regulator of cellular differentiation and proliferation
within the intestinal mucosa (Sikandar et al., 2017; Bedford and
Gong, 2018). This can contribute to improving the morphological
development of the intestines and to reinforce the intestinal
defense barrier, for instance, strengthening tight junctions,
thereby promoting animal growth (Le Blay et al., 2000; Fukunaga
et al., 2003; Bordin et al., 2004; Peng et al., 2007). Additionally, a
significant increasing trend was also observed for Lactobacillus
of the ileum in the Bacillus-treated group. This point deserves
further investigation as it might be of interest, as Lactobacillus
may provide nutrients to the host and help defend against
opportunistic pathogens (Cross, 2002; LeBlanc et al., 2013).
Interestingly, the Bacteroides genus was largely decreased with the
presence of Bacillus, which conflicts with the findings of a very
recent broiler study (Wang et al., 2017). However, studies using
other species, such as swine, have shown that Bacillus subtilis
supplementation decreased the copy numbers and percentage of
Bacteroidetes while it increased the percentage of Firmicutes in the
cecal contents (Cui et al., 2013). Similarly, a significant decrease
trend was also revealed in Bacteroidetes of the ileum in our study.
Given the fact that the decrease in Bacteroidetes and the increase
in the Firmicutes/Bacteroidetes ratio are positively correlated with
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body mass index in humans (Koliada et al., 2017) and associated
with an increase in ADG (Salaheen et al., 2017), our data revealed
that Bacillus Probiotics promotes duck growth by improving the
intestinal flora.

Nowadays, poultry feed with higher levels of NSP may
reduce the digestibility of nutrients in their diets (Salim et al.,
2010), which can lead to poorer growth and performance of
birds (Annison and Choct, 1991). One solution to this issue
accounting for feed cost and variability is to use exogenous
enzymes (Woyengo et al, 2019), including NSPases. In our
study, the addition of NSPases increased the average final
weight and ADG of ducks, but insignificantly. A similar
result was also obtained by Uthai et al. (2004). They found
NSPase type mixture supplementation could improve the growth
performances (average total weight gained, average daily gain,
and average feed intake) of pigs also with non-statistically
significant differences. Besides, Ao et al. (2010) reported that
2% NSPase supplementation to based diets for weaned piglets
did not significantly improve performance. But interestingly,
the average daily gain and gain/feed were increased 4.40 and
6.26% when fed with 1% NSPase supplementation. Variation
in the results is likely associated with the content of substrates
(Ao et al.,, 2010). However, a significant increase was found in

the proportions of the §24-7 group, Lactobacillus, and Subgroup
2, while a significant decrease was found in the proportion
of Bacteroides in the NSPase-treated group at the ileal level.
Considering the results that the decrease in Bacteroidetes and
the increase in $24-7 group, Lactobacillus, and Subgroup 2 are
positively correlated with SOD activity. Thus, ducks fed with
NSPases showed improved growth performance, and increased
antioxidant capacity might be linked to the microbial changes. In
many studies, the change of intestinal microflora was beneficial
for the health and welfare of poultry. Naumova et al. (2021)
found that the beneficial effect on the production of ducks was
associated with the changes in gut microbiota due to Bacillus-
feed probiotic supplementation. Dietary probiotics can enhance
growth performance by the regulation of intestinal microbial
composition, the immune system, and maintenance of intestinal
integrity and barrier function, as described by Tuohy et al. (2003).
In our study, the major changes were found within the foregut
area and the predominant role of Lactobacillus was enhanced.
Lactobacillus consists of gram-positive and facultative anaerobes
that produce lactic acid, which can create a low pH environment
and inhibit the growth of pathogens (Rodriguez-Cabezas et al.,
2010). In addition, Lactobacillus was proven to be of antioxidant
activity (Lin and Chang, 2000), and having the capacity of
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scavenging free radicals to alleviate damages induced by oxidative
stress (Xin et al.,, 2014). It indicated that the increase of the
genus Lactobacillus probably enhances the antioxidant activity
of duck. However, other bacterial species and their interaction
(significantly positively associated with SOD) were still unclear.

In the present study, Bacillus probiotics and NSPases
supplementation have been proven to be a potential method
to improve the average final weight and ADG of ducks. Our
findings are consistent with the result reported by Lin Q. et al.
(2012), who demonstrated that Bacillus probiotics and NSPases
showed obvious synergistic growth-promoting effects on yellow-
feathered broilers. Most noteworthily, compared to the basal diet
group, the diversity index of ACE and Chao increased when the
treatment of NSPase or Bacillus Probiotics alone or combined,
especially, the significantly increased (P < 0.05) of ACE and
Chao revealed in group IV. The PCoA and NMDS results further
indicated that the group of diet NSPases + Bacillus was far from
the control group, which was consistent with the above ACE and
Chao analysis results. Our results were consistent with Klein et al.
(2015) and Liu et al. (2018). They reported that the beneficial
effects may be observed from the use of multiple enzymes
or mixed-use of Bacillus subtilis and photosynthetic bacteria.
Moreover, a significant increase was found in proportions of
Ruminococcaceae, S24-7 group, Lactobacillus, and Subgroup 2,
and a significant decrease was found in the proportion of
Bacteroides in NSPase + Bacillus Probiotics-treated group at the
cecal or ileal level. An obvious change in ACE or Chao index
would suggest the deep changes in microbial diversity. On one
hand, NSPase might affect the intestinal microbiota by reducing
the undigested substrates and some short-chain oligosaccharides
with potential prebiotic effects were created (in situ) from cell
wall NSP (Kiarie et al., 2013). On the other hand, Bacillus
probiotics could influence the distribution and colonization of
the innate microflora along the gastrointestinal tract, reduce
the competition for nutrients between microbes and the host,
promote the growth and proliferation of other good symbiotic
bacteria (Grant et al., 2018). To summarize, it has been suggested
that Bacillus Probiotics and NSPases have a significant synergistic
effect on improving the intestinal microflora of ducks.

CONCLUSION

Including Bacillus (25 mg/kg) and NSPases (150 mg/kg) in the
diet could efficiently enhance growth performance via altering
gut microbiota composition at the genera level and antioxidant
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