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Bacteria are capable of colonizing industrial processing surfaces creating biofilms on
them which may adversely affect the quality and safety of products. Traditional cleaning-
in-place (CIP) treatments using caustic and nitric acid solutions have been known to
exhibit variable efficiency in eliminating biofilm bacteria. Here, we introduce enzymes
as an alternative to traditional CIP treatments and discuss their mechanism of action
against bacterial biofilms in cheese manufacturing. In addition, we discuss research
gaps namely thermal stability, substrate specificity and residual activity of enzymes that
may play a vital role in the selection of enzymes with optimal effectiveness against
multi species biofilms. The outcome of this mini review will aid in the development of
a novel and sustainable enzyme-based CIP treatment during cheese manufacturing in
the future.
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INTRODUCTION

In the dairy industry including cheese manufacturing, bacteria colonize processing surfaces
through biofilms which may adversely impact the quality and safety of milk and cheese products by
contamination (Bremer et al., 2009; Sadiq et al., 2016).

To combat biofilms, the dairy industry uses CIP methods involving circulation of cleaning
solutions containing 0.5–2% caustic soda and 0.5–1% nitric acid at high velocity with turbulent
flow at elevated temperatures (Seale et al., 2010; Thomas and Sathian, 2014). Previous studies have
indicated that the effectiveness of CIP treatments can vary in eliminating surface adhered biofilms,
raising the need for an alternative treatment with a higher reliability (Faille et al., 2001; Marchand
et al., 2012). Bremer et al., 2006, studied the effectiveness of different CIP treatments and reported
a large variation in the ability of sodium hydroxide to consistently remove dairy biofilms. This
finding was in accordance with previous studies that have reported such variations (Flint et al., 1999;
Dufour et al., 2004). Several factors including the age, composition of the biofilm, cleaning time
and temperature have been previously identified to influence the effectiveness of CIP treatments
(Changani et al., 1997; Lelievre et al., 2001).

Recent advancements have highlighted the role of enzymes in replacing the caustic-based
cleaning agents with potential benefits including reduced energy and water consumption,
environmental impact and improved safety (Boyce et al., 2010; Delhalle et al., 2020). Previous
studies have primarily focused on enzyme-based strategies to combat biofilms in the medical and
food industry except cheese manufacturing (Nahar et al., 2018; Saggu et al., 2019; Jiang et al.,
2020). In this mini review, we provide an overview on the role of enzymes as an alternative
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CIP treatment and their mechanism of action on biofilms during
cheese manufacturing which has not been discussed previously.
In addition, we highlight some research gaps in the use of
enzymes as a potential CIP agent during cheese manufacturing.
This information will benefit future investigations on the
underlying mechanism of action of enzymes on biofilms in
the dairy industry.

BIOFILM FORMATION IN A CHEESE
MANUFACTURING PLANT-THE
UNDERLYING PROBLEM

Johnson et al., 2021, demonstrated variation among microbial
sub populations within sections of cheese manufacturing
environments. The process flow diagram of cheese
manufacturing is shown in Figure 1. Raw milk stored in silos at
low temperatures is prone to microbial contamination resulting
from the formation of biofilms by heat sensitive Pseudomonas
and Listeria species (Shaheen et al., 2010; Marchand et al., 2012).
In addition, Zhang et al., 2020, demonstrated that psychotropic
bacteria are capable of growing and forming biofilms during
storage of refrigerated raw milk. Raw milk can be contaminated
with heat stable enzymes produced by a broad spectrum of
psychotropic bacteria which may survive heat processing
steps and can affect the quality of dairy products including
cheese (Vithanage et al., 2016). Following storage in silos, raw
milk is pasteurized to reduce the population of planktonic
cells including spoilage microorganisms (Visser and Jeurnink,
1997). However, vegetative cells and spores of psychrotrophic,
mesophilic and thermophilic bacteria are capable of surviving
such treatments, germinating, and forming biofilms within
the plate heat exchanger (PHE) (Meer et al., 1991; Flint et al.,
2002; Hinton et al., 2002) or on processing equipment (Kumar
et al., 2021). Equipment surfaces in the draining and matting
conveyor (DMC) are made of stainless steel which is a known
substrate for biofilm formation by psychrotrophic, mesophilic
and thermophilic bacteria (Suarez et al., 1992; Zhao et al., 2013;
Sadiq et al., 2017; Kumar et al., 2021). In addition to stainless
steel pipelines, the accumulation of food borne pathogens
in the form of biofilms on rubber gaskets and seals made of
Buna-N and Teflon have been discussed previously (Austin and
Bergeron, 1995; Kumar and Anand, 1998). In the design of an
enzyme-based CIP treatment, it is vital to consider the spatial,
temporal variability of microbial sub populations at different
sections of the cheese manufacturing plant and the varying
chemical composition of biofilms which consequently demands
an optimized enzyme combination for their removal.

MECHANISM OF ACTION OF ENZYMES
ON BIOFILMS

In bacterial biofilms, the extracellular matrix plays a vital role
in the establishment and maintenance of the biofilm structure
and is composed primarily of extracellular polymeric substances
(EPS) (Flemming and Wingender, 2010; Di Martino, 2018). The

EPS matrix is composed of proteins, polysaccharides, and nucleic
acids (eDNA and RNA) along with lipids and ions (Kristensen
et al., 2008; Whitfield et al., 2015; Coughlan et al., 2016).
Previous studies have identified a strain related variation in the
composition of polysaccharides in the EPS matrix (Banik et al.,
2007; Torres et al., 2012; Roca et al., 2015; Zhang et al., 2015). In
addition to strain variation, several other factors can potentially
influence the yield and composition of the EPS matrix (Li et al.,
2021). Lequette et al., 2010, analyzed the cleaning efficiency of
polysaccharidase and proteolytic enzymes against biofilms of
bacterial species isolated from the food industry and concluded
that the composition of the EPS matrix affected the choice and
cleaning efficiency of the enzyme treatment. In Figure 2, we
demonstrate the mechanism of action of an enzyme cocktail
containing polysaccharide hydrolase, protease, and DNase on a
mature biofilm matrix.

Earlier studies have discussed the effect of alkaline and acidic
cleaning agents on the biofilm matrix which differs in comparison
with enzymes (Liikanen et al., 2002; Parkar et al., 2004; Dogsa
et al., 2005). The substrate specificity of enzymes may contribute
toward their enhanced efficiency for the removal of biofilms
in comparison with alkali and acid cleaning agents and needs
further investigation. In addition, the design of an enzyme-based
CIP treatment should proceed in tandem with developing good
hygiene practices of equipment, surfaces, and devices.

GAPS AND FUTURE
RECOMMENDATIONS

Studying the potential advantages and shortcomings in the use of
enzymes for CIP treatment is important for designing a robust
cleaning regime with a higher cleaning efficiency compared to
conventional CIP treatments.

Thermal stability of enzymes plays a vital role in determining
the enzymatic activity which may impact the efficiency of the
CIP treatment (Boyce et al., 2010). These authors demonstrated
that three commercial proteases were inactivated by any of the
heat sanitation steps commonly employed in the dairy industry.
Future research should further investigate the thermal stability
of several commercially available enzymes and consider the same
when designing an effective CIP treatment. Lequette et al., 2010,
who screened the biofilm removal ability of seven proteases and
polysaccharidase concluded that the efficiency of enzymes on
biofilm removal depended on the bacterial species with proteases
being more efficient in removing Bacillus biofilms in contrary
to polysaccharidase being more effective against Pseudomonas
fluorescens biofilms of industrial origin. To our knowledge, the
use of enzymes for CIP does not imply any associated effects on
bacterial viability within biofilms. Further research is warranted
to study the substrate specificity of enzymes to increase the
range of action of an enzyme treatment against multi species
who form complex biofilms of varying compositions. Besides the
thermal stability and substrate specificity, the residual activity
of an enzyme is a critical parameter that may impact the
selection criteria for enzymes to be used in CIP treatments.
Boyce et al., 2010, concluded that an acid circulation step

Frontiers in Microbiology | www.frontiersin.org 2 December 2021 | Volume 12 | Article 791061

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-791061 December 13, 2021 Time: 16:24 # 3

Kumar et al. Enzymatic Disruption of Biofilms in Cheese Manufacturing

FIGURE 1 | Flow diagram showing the general mechanism of action of enzymes on biofilm formed during cheese manufacturing. Image adapted from Nahar et al.
(2018) and Johnson et al. (2021) with permission and was re-created with the BioRender software.

FIGURE 2 | Diagrammatic representation of the mechanism of action of enzymes (polysaccharide hydrolase, protease, and DNase) targeting exopolysaccharides,
proteins, and eDNA within the EPS matrix. Image has been adopted from Nahar et al. (2018) with permission and was recreated with BioRender software. Black
arrows indicate the binding of the enzyme to the substrate.

(0.5–1% nitric acid at 60◦C) is capable of inactivating the
residual enzyme activity of ten commercial proteases and lipases,
remaining on the processing equipment surface after cleaning.

In the cheese industry, residual enzyme activity may impact
the quality of cheese through bitterness generation, excessive
proteolysis and lipolysis and hence processing steps are needed
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to ensure complete inactivation of any added enzyme used for
CIP. Furthermore, the impact of enzymes on the dairy processing
wastewater treatment needs to be evaluated and future steps
should focus on the recovery of enzymes from dairy processing
wastewater sludge (DPS). Future research on the development
of an enzyme-based CIP treatment for cheese manufacturing in
the European Union must comply with the expectations on the
use of enzymes in the food industry as per regulations (EC) No
1332/2008 and (EC) No 648/2004.

In addition to enhanced cleaning efficiency, enzyme-based
cleaning is associated with lower rinsing volumes which results
in reduced water consumption and water costs (Boyce et al.,
2010). Moreover, the wastewater generated from an enzyme-
based cleaning may require minimal processing due to lack of
need for a neutralization step involving the lowering of the pH
of the effluent stream which may also lower the operating cost
(D’Souza and Mawson, 2005).

CONCLUSION

The implementation of an enzyme-based cleaning as an
alternative to traditional CIP treatment is favorable due to

the improved cleaning performance provided there is no
deterioration to the product quality. In this review, we
highlight the mechanism of action of enzymes used as a
CIP treatment, however, further studies are needed to study
the substrate specificity and thermal stability of commercially
available enzymes that can be used as cleaning agents in
cheese manufacturing.
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